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A B S T R A C T

Background: Although significant advances have been made recently to characterize the biology of pancreatic
ductal adenocarcinoma (PDAC), more efforts are needed to improve our understanding and to face challenges
related to the aggressiveness, high mortality rate and chemoresistance of this disease.
Methods: In this study, we perform the metabolomics profiling of 77 PDAC patient-derived tumor xenografts
(PDTX) to investigate the relationship of metabolic profiles with overall survival (OS) in PDAC patients, tumor
phenotypes and resistance to five anticancer drugs (gemcitabine, oxaliplatin, docetaxel, SN-38 and 5-
Fluorouracil).
Findings: We identified a metabolic signature that was able to predict the clinical outcome of PDAC patients
(p < 0.001, HR=2.68 [95% CI: 1.5�4.9]). The correlation analysis showed that this metabolomic signature was
significantly correlated with the PDAC molecular gradient (PAMG) (R = 0.44 and p < 0.001) indicating signifi-
cant association to the transcriptomic phenotypes of tumors. Resistance score established, based on growth
rate inhibition metrics using 35 PDTX-derived primary cells, allowed to identify several metabolites related
to drug resistance which was globally accompanied by accumulation of several diacy-phospholipids and
decrease in lysophospholipids. Interestingly, targeting glycerophospholipid synthesis improved sensitivity to
the three tested cytotoxic drugs indicating that interfering with metabolism could be a promising therapeutic
strategy to overcome the challenging resistance of PDAC.
Interpretation: In conclusion, this study shows that the metabolomic profile of pancreatic PDTX models is
strongly associated to clinical outcome, transcriptomic phenotypes and drug resistance. We also showed that
targeting the lipidomic profile could be used in combinatory therapies against chemoresistance in PDAC.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive and lethal cancers with a dismal outcome due to many
factors including the high heterogeneity of tumors, late diagnosis,
and high resistance to chemotherapies. The overall 5-year survival
rate is currently around 8% which highly depends on the surgery and
stage of disease [1]. For example, a tumor resection combined with
adjuvant therapies can increase this rate to 20% [2]. However, only 15
to 20% of patients are potentially resectable at the time of diagnosis
[3]. PDAC tumors have been classified commonly into two main sub-
types, classical, with a better prognosis, and basal-like with a poorer
clinical outcome [4,5]. However, the heterogeneity in PDAC tumors is
higher than anticipated as shown in recent studies which indicate
that not only basal-like and classical cell populations coexist in the
same tumor [6] but, a continuum distribution of phenotypes describ-
ing PDAC aggressiveness, rather than a binary system, is present in
PDAC subtypes [7]. The high level of heterogeneity in PDAC results
from a combination of genetic, epigenetic, and micro-environmental
alterations, which is directly related to development of drug resis-
tance. In fact, during treatment, a small subpopulation of cancer cells
may be able to metabolize the anticancer drug, thereby developing a
resistance that allows them to grow and become the dominant
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Research in context

Evidence before this study

PDAC is the most common cancer of the exocrine pancreas and
probably the tumor that has benefited the least from clinical
progress in the last three decades. Targeting metabolism of can-
cer cells gives a precious opportunity to overcome challenges
related to the high mortality and chemoresistance in PDAC. A
limited number of studies concerning metabolomics characteri-
zation have been reported on PDAC probably due, at least in
part, to the limited access to relevant models.

Added value of this study

Metabolic profiling of PDAC patient-derived tumor xenografts
used in this study allowed highlighting the strong link between
metabolism and both clinical outcome of the patients and che-
moresistance. Metabolic signature was able to discriminate
between good and bad prognosis groups of patients based on
their level of key metabolites. Identification of key metabolic
markers associated to chemoresistance allowed to improve
sensitivity to anticancer drugs.

Implications of all the available evidence

These results provide new insights to help to predict patient
survival and elaborate new combinatory therapies against che-
moresistance in PDAC patients attesting of the important clini-
cal value of this work.
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population. This resistance to therapeutic molecules, either intrinsic
or newly developed, is still the major challenge in PDAC treatment
[8]. Indeed, investigations on the mechanisms underlying drug resis-
tance over the past decade have contributed toward the better
understanding of this disease, but more knowledge is needed to
improve PDAC chemotherapy.

The metabolic activities in cancer cells are reprogrammed to meet
the need of tumors for growth and rapid proliferation through
increased biosynthesis and metabolism of macromolecules, such as
lipids and amino acids [9�12]. Therefore, given that metabolism is a
key regulator of tumorigenesis, therapeutic efficacy is related to the
ability to modulate the metabolic alterations of tumor cells. As
recently reported, metabolic alterations have been associated with
drug resistance in cancer cells [13]. In PDAC, the inhibition of fatty
acid biosynthesis is able to overcome gemcitabine resistance [12].
Furthermore, other studies have shown that the oxidative phosphor-
ylation (OXPHOS) pathway in mitochondria significantly contributes
to drug resistance. In fact, chemotherapy resistance was associated to
high OXPHOS status in several cancers [14,15]. Targeting high
OXPHOS in PDAC tumors is synergistic with gemcitabine treatment
[16], and disrupting lipid-rafts sensitizes resistant pancreatic tumor
initiating cells to standard chemotherapy and decreases their meta-
static potential [17]. Hence, therapeutic strategies based on the mod-
ulation of metabolism in combination with chemotherapeutic drugs
provide a promising opportunity to overcome drug resistance in pan-
creatic cancer.

In this study, we investigated the metabolic profiles of 77 PDAC
PDTXs (patient-derived tumor xenografts) and analyzed their rela-
tionship with the resistance to five anticancer drugs to identify rele-
vant metabolic biomarkers. Notably, we found that some metabolites
are associated to multidrug resistance, and through modifying the
lipidomic profile, we were able to re-senstize PDAC cells to some
cytotoxic drugs. Overall, our study reveals key therapeutic targets to
improve the treatment of PDAC and overcome drug resistance.

2. Methods

2.1. Ethics statements for Animal and human tissue experiments

The study was approved by the local ethics committee (Comit�e de
protection des personnes Sud M�editerran�ee I) following patient
informed consent (11�61). The PaCaOmics study is registered at
www.clinicaltrials.gov with registration number NCT01692873.
PDAC samples were collected from Jannuary 2012 to December 2015.
All experimental protocols were carried out in accordance with the
Guide for the Care and Use of Laboratory Animals (National Acade-
mies Press, 2011). All experimental procedures on animals were
approved by the Comit�e d’�ethique de Marseille num�ero 14 (C2EA-
14). Mice were kept within the Experimental Animal House of the
centre de Canc�erologie de Marseille (CRCM).

2.2. Metabolite extraction

Seventy-seven pancreatic cancer PDTX were obtained as previ-
ously described [18] from PaCaOmics clinical trial patients through
subcutaneous implantation of PDAC samples into 6-week old male
Swiss nude mice (Crl: Nu(lco)�Foxn1nu, Charles River, Wilmington,
MA). Both resected PDAC tissue and samples obtained by endoscopic
ultrasound-guided fine needle aspiration (EUS-FNA) were frag-
mented and mixed with 100 mL of Matrigel before subcutaneous
injection. The mice tumors were removed after reaching 1.5 cm3.
Then, they were passed three times before proceeding to primary cell
culture as described [18].

Endogenous metabolic profiling experiments were measured
using mass spectrometry coupled to ultra-performance liquid chro-
matography (UPLC-MS). Chromatography was performed using an
ACQUITYTMHPLC system (Waters Corp., Milford, USA), coupled with
the mass spectrometer Waters LCT Premier (Waters Corp., Milford,
USA). Due to the wide concentration range of metabolites coupled to
their extensive chemical diversity, metabolite extraction was accom-
plished by fractionating the pancreatic tissue samples into pools of
species with similar physicochemical properties, using appropriate
combinations of organic solvents as recently described [19]. Thus,
multiple UPLC-MS based platforms were used to analyze endogenous
metabolic profile for the extraction of the metabolites [19]. Briefly,
four separate UPLC-MS plataforms were used to extract and quantify
the reported metabolites. PDTX were fractionated into four sections
to apply the combination of solvents to extract the specific metabo-
lites group. Methanol and a mix of sodium chloride and chloroform/
methanol (2:1) were used to isolate lipids, bile acids, and amino acids.
Polar metabolites, including carbon metabolism purification, were
done through a mixture of methanol/water (3:2), followed by chloro-
form and acetonitrile addition. All the measures included three
defined quality control samples used to batch normalization.

2.3. Data preprocessing and normalization

Raw data were processed using the TargetLynx application man-
ager for MassLynx 4.1 software (Waters Corp., Milford, USA). A set of
predefined retention time, mass-to-charge ratio pairs, Rt-m/z, corre-
sponding to metabolites included in the analysis are considered.
Associated extracted ion chromatograms (mass tolerance
window = 0.05 Da) are then peak-detected and noise-reduced in
both the LC and MS domains. A list of chromatographic peak areas is
then generated for each sample injection. Normalization factors were
calculated for each metabolite by dividing their intensities in each
sample by the recorded intensity of an appropriate internal standard
in that same sample, following the procedure described by Martinez-
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Arranz et al. [20]. Following normalization, sample injection data
were returned for manual inspection of the automated integration
performed by the TargetLynx software.

2.4. Establishment of drug resistance score

Successful primary cell cultures were derived from 35 PDTX sam-
ples with metabolomics data. Thus, PDX samples were split into sev-
eral small pieces (1 mm3) and processed in a biosafety chamber.
After a fine mincing, they were treated with collagenase type V
(C9263; Sigma-Aldrich, Inc., St. Louis, Missouri, USA) and trypsin/
EDTA (25200�056; Gibco, Sigma-Aldrich, Inc., St. Louis, Missouri,
USA) and suspended in DMEM supplemented with 1% w/w penicil-
lin/streptomycin (Gibco, Life Technologies) and 10% of fetal bovine
serum (Lonza). After centrifugation, cells were re�suspended in
Serum Free Ductal Media (SFDM) and conserved at 37 °C in a 5% CO2
incubator. These cell cultures were seeded in a 96 well plate at a con-
centration of 5000 cells/well and treated with increasing doses (1 nM
to 1 mM) of five different drugs: gemcitabine, oxaliplatin, docetaxel,
the active metabolite of Irinotecan SN-38, and 5-fluorouracil (5-FU).
Dose-response data were used to calculate the Growth Rate (GR)
inhibition metrics using GRmetrics R package [21] and to obtain the
fitted curves for each drug. Thus, four metrics were considered to
establish the GRM (growth rate multimetrics) score, the new score of
resistance to drugs based on the following growth rate inhibition
metrics: (1) GR50 correspond to the concentration at which the effect
reaches 50% of growth rate; (2) GRmax represent the effect at the
highest concentration; (3) GR_AOC, refers the area over the curve
and (4) The hill coefficient of the fitted curve (h_GR), indicating how
steep the curve is. Next, we performed a principal component analy-
sis on these metrics using the FactoMineR [22] package with five
dimensions on four GR metrics including GR50, GRmax, GR_AOC and
hGR. For each drug, a weighting coefficient was calculated for each
metric based on its correlation with PCA dimensions and the corre-
sponding percent of variance as follow: coeff ¼ P

i

�
cor

�
GR metric;

dimðiÞ
�
� %varianceði

��
.

2.5. Chemograms in presence of FSG67 inhibitors

Four primary PDAC cells (PDAC013T, PDAC017T, PDAC053T and
PDAC056T) were cultured in SFDM and plated during 24 h before
starting the experiment at 5000 cells per well in a 96-well plate as
previously described [23]. Cells were incubated with FSG67 (30 mM),
or DMSO as control, 48 h before to start the cytotoxic treatments. A
range of concentrations were tested to value to use for the inhibitor.
At a concentration of 30 mM we did not found significant cytotoxic
effect when FSG67 utilized as single treatment. Cells were then
treated with increasing concentrations (1 to 1000 mM) of gemcita-
bine, oxaliplatin or 5-FU for 72 h in presence or absence of the inhibi-
tor. Cell viability was measured with PrestoBlue (Thermo Fisher
Scientific) reagent and quantified using the plate reader Tristar LB941
(Berthold Technologies). Each experiment was repeated at least three
times. Values were normalized and expressed as the percentage of
the control (vehicle), which represents the 100% of normalized fluo-
rescence.

2.6. Bioinformatics and statistical analysis

All statistical and bioinformatics analysis were performed using
different packages and custom scripts of the R programming lan-
guage. Data were log2 transformed and centered prior to down-
stream analysis. Hierarchical clustering analysis was performed using
ComplexHeatmap library. Independent component analysis (ICA)
was performed using JADE package based on five components. Cox
proportional hazard regression model from the “survival” package
was used to perform the univariate survival analysis and determine
relative risk of death associated to different factors, with a confidence
interval of CI = 95%. Each metabolic feature was associated to the
PAMG [7] and drug resistance score using a significant Pearson’s coef-
ficient of correlation with a p value of correlation test < 0.05. The pre-
processing of the data prior to downstream analysis allows to reduce
the biais related to the potential extreme values (outliers) which
could impact the correlation analysis and thus the biological conclu-
sions.

2.7. Role of funders

The Funders had no role in study design, data collection, data
analyses, interpretation, or writing of manuscript.

3. Results

3.1. Metabolic profiling of PDAC

We performed metabolic profiling on 77 pancreatic cancer sam-
ples grown as PDTX. Unsupervised clustering analysis of these meta-
bolic profiles revealed distinct clusters on the dendrogram, indicating
key heterogeneity among the PDAC samples analyzed. The metabolic
heterogeneity across samples was related to the intensity variations
in metabolites that belong to different classes as shown in Fig. 1a.
Considering the entire metabolome dataset of all samples, a total of
502 metabolites were detected and included in further analysis. The
vast majority of these metabolites were from the lipid class. Glycero-
phospholipids were the most represented class with 45% metabolites
followed by glycerolipids (17.1%), fatty acids (10%), sphingolipids
(8.2%), amino acids (5.8%), nucleotides (2.8%) and sterols (2.2%), as
summarized in Fig. 1b. The other metabolites, representing 9% of all
metabolites, included carbohydrates, such as monosaccharides and
disaccharides, as well as alkylamines. All metabolite data correspond-
ing to each patient is shown Dataset S1 and the annotation of meta-
bolic feature in Dataset S2. Thus, the metabolomic profiles of human
PDAC tumors grown as PDTXs display heterogeneity that is com-
prised largely of the lipid class of metabolites.

3.2. New metabolic signature to predict patient survival in PDAC

To investigate whether a metabolic profile could impact the sur-
vival of PDAC patients, we performed an independent component
analysis including all the metabolites, followed by a survival analysis
using univariate Cox regression based on PaCaOmics patient cohort
[7] to assess their prognostic value. ICA5 component significantly
associated with overall survival (OS) in our patient cohort. The
weights in this component attributed a score for each sample in the
dataset and subsequently used for survival analysis by creating low
and high score groups (Fig. 1c). Patient survival in the high-ICA5-
score group was significantly improved compared with patients in
the low-ICA5-score group with log rank p-value < 0.001 and hazard
ratio HR = 2.68 (95% CI: 1.5�4.9) (Fig. 1d). These results demonstrated
that the metabolic signature identified here has a significant predic-
tive value in OS of patients with PDAC. This predictive value of the
metabolic component was then confirmed using a relative risk (RR)
regression model. Results showed that patients with lower ICA5
score have significantly higher RR (log rank p = 0.03, HR = 0.71 [95%
IC: 0.52�0.97]) than patients with higher ICA5 score (Fig. 1e). Clinical
features and the ICA5 score of each patient are presented in the Data-
set S3.

As described above, the most represented metabolites in the over-
all patient metabolome belonged to the glycerophospholipid class;
however glycerolipids contributed most to the metabolomics signa-
ture identified here for predicting patient survival. In Fig. 1f, we rep-
resented the top 100 metabolites according to their weights
(negative or positive contribution) in component ICA5.



Fig. 1. Metabolic profiling and prognostic signature of PDAC patients. (a) Heatmap showing differential metabolic profiles of PDAC samples using unsupervised hierarchical clus-
tering. The column annotation represents the main classes of metabolites. (b) Pie chart indicating the global distribution of metabolic classes in all samples. (c) Waterfall plot show-
ing the sorted scores of patients in the identified metabolic signatures. (d) Kaplan-Meier plot of survival using univariate analysis based on ICA5 scores of patients. Two groups of
patients were considered with high and low score. (e) Univariate relative risk for overall survival associated with the metabolic signature. Each point is a patient’s relative risk of dis-
ease with error bars corresponding to a 95% confidence interval. (f) Barplot illustrating the contribution of the top 100 metabolites into the component ICA5.
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Triacylglycerols, such as TG30 and TG56 along with several oxidized
fatty acids, had a negative association to the component suggesting
that these metabolites could be associated with poor prognosis. How-
ever, cholesteryl esters (ChoE_11 and ChoE_8) and glycerophospholi-
pids, especially lysophospholipids, were positively associated to the
component indicating a possible link with improved prognosis in
patients with high ICA5 scores (Fig. 1f and Dataset S4). Therefore,
component analysis of metabolomic profiles allows us to idenfity key
signature associated with patient survival.

3.3. The metabolomics profile associated with phenotype of PDAC

To investigate the link between the metabolomic profiles and
molecular phenotypes, we compared the metabolic signature identi-
fied in this study with the PDAC molecular gradient (PAMG) previ-
ously described [7]. The PAMG is a transcriptomic signature that
describes PDAC heterogeneity as a continuous gradient from pure
basal-like (low PAMG) to pure classical phenotypes (high PAMG). The
correlation analysis showed that the metabolic signature identified
in this study significantly correlated with the PAMG with a Pearson
coefficient R = 0.44 and p < 0.001 (Fig. 2a and b), indicating the asso-
ciation between the metabolic signatures and transcriptomic pheno-
types of the tumors. To note, this comparison was done on the PDTX
samples for which the PAMG was available (sixty patients) in the pre-
viously published work by Nicolle et al. using the same identification
numbers [7]. Along with their good prognosis estimation, tumors
with high ICA5 scores appeared to be more classical, while tumors
with low ICA5 scores were characterized by a basal-like phenotype
with poor prognosis. These results show that the metabolic signature
identified here is strongly associated with both tumor phenotypes
and OS of patients in PDAC. Furthermore, we performed correlation
analysis to identify all metabolites that could be associated individu-
ally with the PAMG. Globally, out of 502 metabolic features analyzed,
97 positively correlated with the PAMG and were mainly glycero-
phospholipids (70%), while 88 metabolites negatively correlated and
belonged mainly to glycerolipids (Fig. 2c). For instance, lyso-phos-
phatidylcholines (LPC) and lyso-phosphatidylethanolamine (LPE),
which are part of the glycerophospholipids class, correlated posi-
tively to the PAMG, whereas triacylglycerols (TAGs), which are classi-
fied as glycerolipids, such as TG73 and TG68, were inversely
correlated with the PAMG. As much as 65% of the negatively-corre-
lated metabolites were glycerolipids, followed by glycerophospholi-
pids (15%), in particular 2-acyl‑glycero phosphatidylcholine
(MEMAPC), and sphingolipids (12.5%) as presented in Fig. 2c). Overall,
these results display the strong association between transcriptomic
heterogeneity and the metabolic heterogeneity in PDAC patients. We
conclude that the more basal-like a tumor is the higher likelihood it
exhibits increased levels of fat lipids, such triacylglycerols, as
opposed to a classical tumor that would be more prone to present
with an accumulation of glycerophospholipids, such as LPC and LPE.
The increased level of TAGs in basal-like tumors could be characteris-
tic of tumor aggressiveness, as these fat lipids are the main compo-
nents of lipid droplets that constitute an important reservoir of fatty
acids and energy for cell growth and proliferation.

3.4. Establishment of drug resistance score

To explore the association between the metabolic profiles and
drug resistance, we established a new score of resistance based on
GR inhibition metrics as described in the methods section. In fact, tra-
ditional dose-response metrics such IC50 and Emax could be con-
founded by the number of cell divisions and the assay duration
which induces bias to biological effect of the drug [21]. Using GR met-
rics fitted to sigmoidal curves allowed thereby a better quantification
of the response to drugs. Dose-response data of 35 primary cell lines
derived from pancreatic PDTX samples were used to calculate metrics
for five drugs tested in this study including gemcitabine, oxaliplatin,
docetaxel, SN-38 and 5-fluorouracil (5FU) (Fig. 3a). For each drug,
after performing principal component analysis (PCA), a weighting
coefficient was calculated for each metric based on its correlation to
the first three dimensions that explain more than 90% of variance in
the dataset (Supplementary Figs. S1 to S5). To standardize the score
calculation, the average weighting coefficient across drugs was used
to calculate the GRM score of resistance as follows: GRMs = (log10
(GR50) x GR50Coeff) + (GRmax x GRmaxCoeff) + (GR_AOC x
AOCcoeff) + (hGR x hCoeff). It is important to note that all used met-
rics have positive coefficients except AOC, which is negatively associ-
ated to other metrics and had negative weighting coefficient. Thus,
GR50Coeff = 1.9, GRmaxCoeff = 2, AOCcoeff = �2.25 and hCoeff = 0.72.
The GRM scores were then centered and scaled for further analysis.
The score of each drug ranked the tumors from the most resistant
(highest score) to the most sensitive by considering multiple metrics
normalized to growth rate to provide more robust estimation of drug
resistance (Fig. 3b to f).

3.5. Identification of metabolic markers associated to drug resistance

As described above, the GRM score allowed the ranking of patients
according to gemcitabine resistance (from the most sensitive to the
most resistant). To investigate the metabolites associated with gemci-
tabine resistance, we performed a Pearson regression analysis between
all the metabolites in the dataset and gemcitabine GRM scores (corre-
lation threshold p < 0.05). As shown in Fig. 4a, the majority of identi-
fied metabolites belonged to the glycerophospholipid class, such as
diacyl-PC (i.e. DAPC47 and DAPC16) and diacyl-PE (i.e. DAPE09), which
positively correlated to the resistant score, whereas several monoacyl-
PCs (i.e. MAPC16, MAPC07), monacyl-PE (i.e. MAPE31) and mono-
phosphatidylinositols (PI), such as MAPI03, negatively correlated. In
these monoacyl-PC or -PE, namely also lyso-PC or lyso-PE (LPC and
LPE, respectively), one fatty acid group is removed and a phosphoryl-
choline or a phosphorylethanolamine moiety occupies a glycerol sub-
stitution site. In addition, amino acids, such as aspartic acid (AA13) and
aminoadipic acid (AA28), were increased in resistant cells (Fig. 4a and
Supplementary Fig. S6). However, we found a significant decrease in
sterol metabolites in resistant cells, including the cholesteryl esters
(ChoE_13, ChoE_14 and ChoE_17). Finally, sphingolipids, such as
ceramids (Cer_02 and Cer_13) and sphingomyelins (SphLip_04,
SphLip_04 and SphLip_13), also inversely correlated to gemcitabine
resistance (Fig. 4a and Supplementary Fig. S6). Similarly, metabolic fea-
tures associated to resistance to oxaliplatin were mostly glycerophos-
pholipids. LPC, such as MAPC49 and MAPC45, were particularly low in
resistant cells (highly anti-correlated), as opposed to DAPCs (diacyl-
PC), including DAPC47 and DAPC09, along with TAGs, such as TG22
and TG26, which were positively associated to oxaliplatin resistance
(Fig. 4b and Supplementary Fig. S7). In fact, sterol levels (i.e. ChoE_03,
ChoE_07) were low in resistant cells in conjunction with an increase of
amino acids, such as aspartic acid (AA13) and hypotaurine (AA26).
This metabolite AA26 was also significantly correlated to increasing
resistance to 5-FU along with a polyunsaturated fatty acid (FFA29;
docosapentaenoic acid) and many diacyl-PC (i.e. DAPC09, DAPC46)
and LPE (MAPE34, MAPE38) (Fig. 4c and Supplementary Fig. S8). In
contrast, three free fatty acids (FFAs) decreased in resistant cells,
including margaric acid (saturated FFA34), eicosenoic acid (monoun-
saturated FFA38) and oxidized linoleic acid (polyunsaturated
FFAox35). Beyond the singular metabolic features associated to drug
resistance presented here, our results suggest that the metabolic pro-
file that characterizes drug-resistant cells in PDAC could be similar for
both oxaliplatin and gemcitabine.

Correlation analysis was also utilized to identify numerous metab-
olites that are associated with GRM scores of SN-38, an active analog
of irinotecan and docetaxel. Particularly, we found several nucleoti-
des that were highly associated to SN-38 resistance, including uridine



Fig. 2. Metabolic signature is correlated with molecular gradient of the tumors. (a) Scatter plot showing the correlation between molecular gradient and ICA5 scores (Pearson
coeficient 0.38 and p = 0.0031). (b) Scatter plots of most correlated metabolites to molecular gradient. Statistics of the Pearson's correlation are shown. (c) Visualization of all corre-
lated metabolic features to molecular gradient. Pie charts and volcanoplot illustrate the repartition among main classes of anticorrelated (left) and correlated (right) metabolites. All
metabolites with a Pearson correlation p values < 0.05 were shown.
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5-monophosphate (a pyrimidine nucleotide Nucl_14), ADP-glucose
(purine nucleotides Nucl_22 and Nucl_23), inosine (Nucl_16), guano-
sine (Nucl_02) and cyclic AMP (Nucl_25) and cytidine monophos-
phate (Nucl_07), as shown in Fig. 4e. In addition to nucleotides, some
LPI, including MAPI08 and MAPI13, and MAPI05, along with a single
sphingomyelin (SphLip_25) were positively associated with SN-38
resistance score. In contrast, several sphingomyelins inversely corre-
lated with SN-38 resistance scores (Fig. 4e and Supplementary Fig.
S9). Moreover, some PLs, such as diacy-PI DAPI06, diacyl-PE DAPE25
and MEMAPE13 (1-ether, 2-acylglycerophosphocholine), along with
acylcarnitines (fatty esters), including L-octanoylcarnitine (AC02),
decanoylcarnitine (AC04) and dodecanoylcarnitine (AC05), also had
low levels in resistant cells. This data indicates that the metabolic
reprogramming related to SN38 resistance results in accumulation of
nucleotides in resistant cells, possibly generated by enhanced de
Novo synthesis.

Regarding metabolic features associated to docetaxel resistance,
our results showed increased levels of many sphingolipids, particularly



Fig. 3. Establishment of drug resistance score. (a) Schematic illustration of GRM score calculation based on Growth rate fitted curves of dose-response of PDAC cell lines treated
with different drugs. (b to f) Ranking of cell lines from the most resistant to the most sensitive based on GRM scores respectively for gemcitabine, oxaliplatin, 5-FU, SN-38 and doce-
taxel. Red to green colours reflect the gradient of resistance/sensitivity to the drug. Scores were scaled and centered around zero.(For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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ceramides, such as Cer_05, Cer_03 and Cer_09 (Fig. 4e and Supplemen-
tary Fig. S10). Eicosenoic acid (FF18) and some LPC, such as MAPC03,
MAPC11 and MAPC02, also positively associated with resistance. How-
ever, almost all metabolites that negatively correlated to resistance
belonged to two main subclasses of phospholipids, namely diacyl-LPE,
including DAPE28 and DAPE29, and diacyl-PC, such as DAPC20 and
DAPC4 (Fig. 4e and Supplementary Fig. S10). Thus, resistance to doce-
taxel appears to elicit its own unique metabolic profile. Docetaxel and
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paclitaxel are taxanes, they share the same mechanism of action as
anticancer agents and show the same score of sensitivity. The differ-
ence we found is in their IC50 which is higher for paclitaxel compared
to docetaxel. Thus, we consider that using the one or the other is indif-
ferent for scoring sensitivity.

Overall, these results show that the resistance of tumors to che-
motherapy treatment is associated to significant changes in meta-
bolic profiles and alteration of several metabolites. These findings
provide new insight on the potential of standard chemotherapeutics
combined with targeting cancer metabolism as promising treatment
strategies for PDAC.

3.6. Multi-drug resistance metabolic features

Our exploration of metabolic features associated to drug resis-
tance identified common metabolites that were significantly
Fig. 4. Metabolic features associated to cytotoxic drugs. Pie charts representing the negativ
bine (a) Oxaliplatin (b), 5-FU (C), SN-38 (d) and Docetaxel (e).
correlated in a positive manner to three out of five drugs studied
here. Unsupervised clustering based on correlations between GRM
scores of each drug and metabolites revealed two distinct main clus-
ters of metabolites, indicating global positive and negative correla-
tions to multidrug resistance (Fig. 5). In fact, gemcitabine, oxaliplatin
and 5-FU GRM scores clustered together, highlighting a similar pro-
file of associated metabolites (Fig. 5a and b). Interestingly, we found
that phospholipids containing two acyl-groups, such as diacyl-PC and
diacy-PE, along with some TAGs could be universally considered as
metabolic markers of multidrug resistant (Fig. 5A). In contrast, lyso-
phospholipids and some cholesteryl esters demonstrated a general
inverse correlation with multidrug resistance across these three
drugs (Fig. 5b and c). These results indicate that PLs, which constitute
the major components of the plasma membrane of the cell, could
play a key role in the acquisition of multidrug resistance in PDAC
tumors.
e (left) and positive (right) correlated metabolites to the score of resistance to Gemcita-



Fig. 5. (a) Heatmap of the hierarchical clustering based on the correlation of all identified metabolic features that were associated to at least one drug. Red and blue colors indicate
positive and negative correlation, whereas the white color indicates the absence of correlation. (b) Scatterplots comparing the GRM scores among the three significantly correlated
drugs; gemcitabine, oxaliplatin and 5-FU. (c) Graphic visualization of correlation matrix among GRM scores of the five drugs. The proportion of the pie chart indicates the level of
correlation and the color indicates positive and negative correlation.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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3.7. Targeting the lipid profile for improving chemosensitivity to
standard anticancer drugs in PDAC models

Our investigations of associations between metabolic profiles and
chemoresistance offer more insights on the metabolic changes
related to anticancer drug resistance. As described above, several
metabolites belonging to diacyl-PC and TAGs correlated with multi-
drug resistance. In particular, glycerophospholipid content positively
correlated to multi-drug resistance, indicating a possible role in the
acquisition of this cellular phenotype. To understand whether target-
ing the synthesis of these metabolites could impact the response to
chemotherapeutics, we treated primary PDAC-derived cells with
increasing concentrations of gemcitabine, oxaliplatin or 5-FU alone
or together with the specific inhibitor of glycerol 3-phosphate acyl-
transferase (GPAT1) FSG67. GPAT1 esterifies acyl-group from acyl-
ACP to the sn-1 position of glycerol-3-phosphate, an essential step in
glycerophospholipid and triacylglycerol biosynthesis. The GR_AOC in
the presence or absence of FSG67 was analyzed (Fig. 6). Remarkably,
inhibition of glycerophospholipid synthesis is almost systematically
followed by an improved sensitivity to the three cytotoxic drugs
tested in several primary cultures. Although more validation experi-
ments are required, these results indicate that the metabolism is a
promising therapeutic target to overcome the challenge of chemo-
therapeutic resistance in pancreatic cancer cells.

4. Discussion

Although several investigations provide an increasing knowledge
on the characterization and treatment of PDAC, it remains one of the
most lethal diseases with poor prognosis and distinctive chemore-
sistance development. Many studies have allowed better understand-
ing of the complexity of PDAC tumors, based mainly on molecular



Fig. 6. Effect of FSG67 on treatment with gemcitabine, oxaliplatin and 5-FU. PDAC013T, PDAC017T, PDAC053T and PDAC056T primary cells were treated with increasing concen-
trations of gemcitabine (a), oxaliplatin (b) and 5-FU (c) in the presence (green) or absence (red) of FSG67. The GR_AOC, represented as boxplots, in the presence or absence of the
FSG67 was analyzed.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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characterization and classification. PDAC cells demonstrate a signifi-
cantly reprogrammed metabolism, which facilitates their adaptation
to ensure energy and biomass sources for survival and proliferation
[9,24]. Thus, in this study, we establish another facet to characterize
PDAC tumors at the metabolic level, as a promising area of investiga-
tion to offer new insights into the association between PDAC meta-
bolic profiles and their transcriptomic profiles, as well as their
resistance to standard chemotherapeutic drugs. Our metabolic
profiling of 77 PDTX samples showed that most metabolites were lip-
ids, especially glycerophospholipids and glycerolipids. Unsupervised
clustering based on metabolic profiles revealed an important hetero-
geneity among patients, indicating significant changes in metabolite
levels. To characterize this metabolic heterogeneity among tumors,
we identified a metabolic signature using ICA analysis. This signature
allowed us to, first, draw significant distinctions between patients
with worse versus improved clinical outcomes (Fig. 1d and e). This
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finding indicates that changes in metabolic features could play a key
role in tumor aggressiveness along with patient survival. In addition
to its patient prognostic value, the metabolic signature identified
here strongly correlated to the PAMG that describes PDAC tumors
from the pure basal-like to the pure classical phenotype. PDAC with
high ICA5 scores were more classical and characterized by increased
levels of glycerophospholipids, while PDAC with low ICA5 scores had
a basal-like phenotype with increased levels of triacylglycerols. This
result is in concordance with recent studies showing that the accu-
mulation of triacylglycerols correlates with a more aggressive pheno-
type in lung carcinoma cells [25,26]. Thus, increasing TAG lipolysis in
basal-like tumors could be a favorable target to reduce the aggres-
siveness of tumor cells in which the accumulation of lipid droplets
(containing mainly TAGs) constitute an important source of fatty acid
and energy for cell growth and proliferation. Moreover, a previous
study on PDAC cell lines found a low level of redox metabolites in the
glycolytic phenotype, which corresponded with a basal-like cell sub-
type [27]. Similar results were obtained in our study regarding this
subclass of metabolites, which were increased in classical tumors
(high ICA5 and high PAMG). In fact, ICA5 scores of PDAC significantly
correlated with redox related metabolites, such as CCM_26, which is
Flavin adenine dinucleotide (Pearson coefficient = 0.37, p-
value = 0.0032) and CCM_34, a nicotinamide adenine dinucleotide
(Pearson coefficient = 0.3, p-value = 0.018), (Supplementary Fig. S11).
These differences in metabolite content, which strongly associate
with patient survival and tumor phenotype, demonstrate the key
role of metabolic alterations in PDAC cells. In summary, our findings
provide additional insights on the characterization of metabolic pro-
files related to previously identified PDAC phenotypes and clinical
outcomes of PDAC patients.

We also investigated the relationship between resistance of
PDAC-derived cells to drugs and metabolic profiles. Although study-
ing the synergistic interactions of combining multiple anticancer
drugs would be of great interest for clinical application, the goal of
this study is to explore the amount of metabolites to different drugs
resistance. Our results demonstrated that resistance to cytotoxic
drugs associates to a significant imbalance in both type and quantity
of metabolic features. Globally, glycerophospholipids seem to be the
most altered metabolites between resistant and sensitive tumors, in
regards to treatment with the cytotoxic drugs gemcitabine, oxalipla-
tin and 5-FU. Interestingly, higher resistance was characterized by
increased levels of glycerophospholipids, including diacyl-PC and
diacyl-PE. Conversely, most of LPC inversely correlated with the resis-
tant score. Previous studies have shown that breast and lung cancer
cells are characterized by important quantitative and qualitative
alterations of lipid concentrations in the plasma membrane,
highlighting the ability to adapt to different environmental condi-
tions to ensure proliferation and survival [28�31]. Moreover, lipid
composition of the plasma membrane plays a critical role in the
delivery of anticancer drugs to reach their intracellular targets via
passive diffusion or active transport [32,33]. One of the mechanisms
of drug resistance observed in our study could be related to reduced
plasma membrane fluidity in resistant cells. In fact, increased
amounts of glycerophospholipids, which constitute major compo-
nents of the cell membrane, could limit drug diffusion into the cell.
Although the mechanistic characterization of drug resistance still
very complex, studies reporting the link between modification of
plasma membrane composition and anticancer drug resistance are
constantly growing [34�38]. In this study, the metabolic features
that positively associated to multidrug resistant (at least to gemcita-
bine, oxaliplatin and 5-FU) were glycerophospholipids, which are
constituted by very long chains of fatty acids with the total number
of carbon atoms greater than 40. However, down-regulated metabo-
lites, such as LPC, have only one fatty acid chain with a total number
of carbon atoms less than 30 (Supplementary Fig. S12). Previously, it
has been shown that glycerophospholipids containing very long fatty
acyl chains are abundant in the extracellular vesicles derived from
gefitinib resistant cancer patients [39]. Here, we employed the GPAT
inhibitor, FSG67, to modulate the lipid profile directly on PDAC-
derived primary cultures as a proof-of-concept reporting that influ-
encing the lipid content could modulates the therapeutic response to
cytotoxic drugs. GPAT1 catalyzes the conversion of glycerol-3-phos-
phate and long chain acyl-CoA to lysophosphatidic acid (LPA), the
rate limiting step in glycerophospholipid synthesis. We found that, in
multidrug resistant cells, decreasing the glycerophospholipid synthe-
sis sensitizes the majority of PDAC cells tested here to the effect of
three classical cytotoxic drugs (Fig. 6). Indeed, in the present work,
we do not focus on the characterization of the mechanistic process of
drug development and how targeting potential metabolic markers
could reduce the resistance to anti cancer drugs. In fact, the activity
of the inhibitor tested here could have a broad impact and lowest
specificity due to the high complexity of the metabolic pathways and
the high diversity of biosynthesis process that could lead to synthtize
a given metabolite. Thus, in the current study, although we observed
a significant effect on the drug resistance by using the GPAT inhibitor,
our investigations cannot exclude an unspecific effect. Further studies
are needed to provide more insights on these aspects to better under-
standing different interactions between drugs and tumoral cells in
PDAC tumors. Moreover, the nature of samples used to study the
PDAC tumors is still challenging and need to be taken into account to
evaluate the impact of using different pre-clinical models. Here, we
used in vivo model to perform the metabolic profiling and perform
the chemosensitivity assays, when possible, on the corresponding
early stage primary cultures to minimize the potential effect of the
model and capture the most correct picture of the tumor. Thus, even
PDTX models and primary culture cells cannot be generated for 100%
of patients due to different factors, the cohort used in this study could
be considered as a model representative of PDAC disease with its het-
erogeneity; including different phenotypes and diverse clinical fea-
tures.

The recent advances in metabolomics area allowed to improve the
extraction and detection of a wide range of metabolites from biologi-
cal samples. However, more investigations are needed to overcomes
the remaining challenges related to the great complexity and diver-
sity of the metabolites which varie widely. In the present study, we
used multiple UPLC-MS plateform to capture the highest number of
engogenous metabolites in our samples and provide as exaustive as
possible picture of the metabolic profile. Moreover, the processing of
large amount of metabolomics data is also challenging especially
regarding different sources of biais in the datasets and imperfection
in the available databases. In this study, we performed several nor-
malization and preprocessing prior to downstream analysis of data to
minimize these potential biais and increase the robustness of our
conclusions. Also, the use of parametric method to perfom the corre-
lation such as Pearson regression allowed better estimation of the lin-
ear associations between different variables.

In conclusion, beyond the challenges and limitations discussed
above, our findings provide a new insights and add new piece of puz-
zle to characterize and better understanding the connexions between
tumor phenotypes, metabolic profile and resistance to drug in PDAC
patients. We also demonstrate that modifying the lipidomic profile
by inhibiting the GPAT1 enzyme could be used to improve sensitivity
to some cytotoxic drugs, offering a promising therapeutic target to
overcome challenges related to drug resistance in PDAC.
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