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Abstract

Wastewater treatment plants (WWTPs) are important for pollutant removal from wastewa-

ter, elimination of point discharges of nutrients into the environment and water resource pro-

tection. The anaerobic/anoxic/oxic (A2/O) process is widely used in WWTPs for nitrogen

removal, but the requirement for additional organics to ensure a suitable nitrogen removal

efficiency makes this process costly and energy consuming. In this study, we report mixo-

trophic denitrification at a low COD (chemical oxygen demand)/TN (total nitrogen) ratio in a

full-scale A2/O WWTP with relatively high sulfate in the inlet. Nitrogen and sulfur species

analysis in different units of this A2/O WWTP showed that the internal sulfur cycle of sulfate

reduction and reoxidation occurred and that the reduced sulfur species might contribute to

denitrification. Microbial community analysis revealed that Thiobacillus, an autotrophic sul-

fur-oxidizing denitrifier, dominated the activated sludge bacterial community. Metagenomics

data also supported the potential of sulfur-based denitrification when high levels of denitrifi-

cation occurred, and sulfur oxidation and sulfate reduction genes coexisted in the activated

sludge. Although most of the denitrification genes were affiliated with heterotrophic denitrifi-

ers with high abundance, the narG and napA genes were mainly associated with autotrophic

sulfur-oxidizing denitrifiers. The functional genes related to nitrogen removal were actively

expressed even in the unit containing relatively highly reduced sulfur species, indicating that

the mixotrophic denitrification process in A2/O could overcome not only a shortage of car-

bon sources but also the inhibition by reduced sulfur of nitrification and denitrification. Our

results indicate that a mixotrophic denitrification process could be developed in full-scale

WWTPs and reduce the requirement for additional carbon sources, which could endow

WWTPs with more flexible and adaptable nitrogen removal.

Introduction

With the increasing realization of the impacts of excess nitrogen (N) discharge on the environ-

ment and human health, N effluent regulations have become increasingly stringent worldwide.

Until now, the biological process of nitrification/denitrification has been the most prevalent
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wastewater treatment plant (WWTP) used to remove N from wastewater. Normally, the ratios

of COD (chemical oxygen demand)/TN (total nitrogen) and BOD (biological oxygen

demand)/TN are required to be higher than 15 and 8, respectively, to supply a sufficient car-

bon source for the traditional nitrification/denitrification process [1,2]. To ensure N removal,

external organics are often required, and the additional consumption of carbon and energy

has become a challenge in some WWTPs.

As sustainable wastewater treatment becomes a priority, autotrophic denitrification pro-

cesses based on sulfur oxidation have become increasingly popular [3–5]. Sulfur-based auto-

trophic denitrification, such as the sulfate reduction autotrophic denitrification nitrification

integrated (SANI1) process and sulfur-limestone autotrophic denitrification (SLAD), has

been comprehensively studied [3,5–8]. In these processes, chemolithotrophic sulfide-oxidizing

denitrifying bacteria (SONB) (Thiobacillus sp., Sulfurimonas denitrificans, Beggiatoa sp., and

Thiothrix sp.) and heterotrophic sulfide-oxidizing denitrifiers (Thauera-like taxa, Azoarcus,
Pseudomonas, and Dechloromonas) cooperate in the processes of N removal [3,5,9–14]. More-

over, sulfate reducing bacteria (SRB), such as Desulfobacteraceae, Desulfonema, and Thermoto-
gaceae, in activated sludge (AS), which convert sulfate to sulfur, sulfide, and poly-S, could

cooperate with SONB and enhance N removal by providing electron donors [3,8,15].

Normally, studies of sulfur-based denitrification have focused on wastewater containing

high concentration of sulfate, such as saline sewage [3,16]. In fact, some inland WWTPs, espe-

cially WWTPs located in industrial parks, also treat influent containing high sulfate concentra-

tions due to the high concentration of sulfate in industrial wastewater [17,18], which might

boost the development of sulfur-based denitrification. In our previous study, we analyzed the

performance of a full-scale WWTP (referred to hereafter as the YXM WWTP) based on an

anaerobic/anoxic/oxic (A2/O) process in an industrial park in Yixing, China, and found that

the WWTP could achieve efficient N removal under a low ratio of COD/TN [19]. In the YXM

WWTP, approximately 40% of the influent was collected from an industrial park, and the aver-

age concentration of SO4
2--S in the inlet was over 100 mg L-1, which could provide the sulfate

needed in mixotrophic denitrification. Moreover, organic carbon, N and sulfate coexist in

actual wastewater. Mixotrophic denitrification, which integrates the advantages of heterotro-

phic and autotrophic denitrification, is promising in removing N, and it can match the actual

conditions of wastewater and reduce the requirement for carbon sources [6,11,20]. Further-

more, the A2/O process has temporal changes in redox conditions that create an environment

favorable for sustaining sulfide for extended time periods, and previous researchers have

reported sulfide-related corrosion in the A2/O process [14]. Accordingly, we hypothesized

that the N removal under a low COD/TN ratio in the YXM WWTP was due to mixotrophic

denitrification facilitated by the sulfur cycle.

In this study, we sought to reveal i) whether mixotrophic denitrification facilitated by sul-

fur-based autotrophic denitrification could be developed in full-scale WWTPs using A2/O

through acclimation to low COD/TN and high sulfate concentrations and ii) the underlying

microbial and genetic mechanisms of mixotrophic denitrification in full-scale A2/O WWTPs.

Until now, A2/O process, i.e., anoxic denitrification followed by aerobic oxidation of organic

and N, and then recycling of nitrate back to the anoxic reactor for denitrification to N2 is still

the most common mainstream biological N and phosphorus removal process used in full-scale

WWTPs [2]. Despite innovations leading to energy-efficient N management, the improvement

of existing WWTPs to fulfil stringent N regulation will be increasingly valuable [14]. Under-

standing the underlying mechanisms of mixotrophic denitrification in full-scale A2/O

WWTPs will help to design and reform existing full-scale A2/O WWTPs to improve the N

removal efficiency, cost savings and sludge minimization.
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Materials and methods

Description of the YXM WWTP

The WWTP built in Yixing, Jiangsu, China (YXM WWTP), was designed to receive 60% local

urban sewage and 40% industrial wastewater. The process flow of the YXM WWTP, consisting

of pre-anoxic (PRAN), anaerobic (ANA), anoxic (AN), and aerobic (AE) units, followed by

post-anoxic (POAN) and post-aerobic (POA) units (S1 Fig and S1 Table), was described in

Chen et al. [19]. During the operation, the external cycling liquid was returned to PRAN, and

the internal cycling liquid was returned to the AN unit [19]. The influent was distributed to

PRAN and ANA at a ratio of 3:7. Stable operation of the YXM WWTP began after nearly one

year of operation [19]. After one year of stable operation, mixed liquid samples were collected

from PRAN, ANA, AN, and POAN units.

Analytical methods

The mixed liquid was sampled from the PRAN, ANA, AN, and POAN units and filtered

through a millipore filter (0.45 μm), and the filtrates were analyzed for TN, NH4
+-N,

NO2
--N, NO3

--N, COD and TP using standard methods of the National Environmental

Bureau [21]. Sulfate (SO4
2--S) was analyzed using an ion chromatography method with a

conductivity detector (DIONEX-100, IonPac AS9-HC analytical column). The TDS

(total dissolved sulfide, including H2S, HS-, and S2-) was measured using an iodometric

method [22]. The subsamples used for TDS analysis were supplemented with 0.1% v/v of

10 mol/L NaOH to prevent H2S from escaping. All samples were collected and run in

triplicate.

The TN removal efficiency, ΔCOD and ΔTN were calculated as follows:

TN removal eff iciency ¼ ðTNinlet � TNoutletÞ=TNinlet ð1Þ

DCOD ¼ CODinlet � CODoutlet ð2Þ

DTN ¼ TNinlet � TNoutlet ð3Þ

The relationships of COD/TN and ΔCOD/ΔTN with TN removal efficiency were analyzed

with linear regression in GraphPad Prism 7.0.

Nucleic acid extraction and cDNA synthesis

Mixed active sludge (AS) liquid (100 mL) was collected from the PRAN, ANA, AN, and

POAN units and then centrifuged at 10,000 g for 10 min to collect the AS pellet. Total DNA

was extracted from 100 mg of the AS pellet using the FastDNA spin kit for soil and the Fas-

tPrep instrument (both from MP Biomedicals, Santa Ana, CA) following the manufacturer’s

instructions. The concentration and purity of the extracted DNA were quantified micro-

spectrophotometrically (NanoDrop1 ND-1000, NanoDrop Technologies, Wilmington, DE,

USA).

Total RNA was extracted from 100 mg of the AS pellet using the FastRNA Pro Soil-Direct

kit (MP Biomedicals) according to the manufacturer’s instructions. The extracted RNA was

immediately reverse transcribed into cDNA using the PrimeScriptTM RT reagent kit (Takara,

Dalian, China) following the manufacturer’s protocol. DNA and cDNA were stored at -80 oC

before further analysis.
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DNA library construction and metagenomic sequencing

The DNA library was constructed following the manufacturer’s instructions (Illumina).

Briefly, the DNA was sheared using an M220 Focused-ultrasonicatorTM (Covaris Inc.,

Woburn, MA, USA), and fragments of ~300 bp were extracted for paired-end library construc-

tion. The DNA fragments were processed by end repair, A-tailing, adapter ligation, DNA size

selection, PCR, and PCR-product purification according to the Illumina TruSeq DNA sample

prep v2 guide. The average insert size of the library was 350 bp. Paired-end sequencing

(2 × 100 bp) was performed on an Illumina genome analyzer (HiSeq2000, Illumina) at Major-

bio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using the TruSeq PE cluster kit

v3-cBot-HS and the TruSeq SBS kit v3-HS according to the manufacturer’s instructions (Illu-

mina). All original metagenomic sequences were archived at the NCBI Sequence Read Archive

(SRA) under accession SRP140747.

Taxonomic and functional annotation analyses

Merged long-read sequence sets were blasted for sequence matching using the NR (nonredun-

dant) database. The BLASTX alignments were further processed using MEGAN5 [23] to statis-

tically analyze the abundance of each taxon. MEGAN (MEta Genome ANalyzer) software uses

a homology-matching algorithm to generate a phylogenetic tree based on the GenBank taxo-

nomic database.

The protein-coding reads were annotated in two steps: 1) the predicted open reading

frame (ORF) was subjected to Rap-search (version 2.0) [24] against the entries in the NCBI

NR database, with an E value cutoff of 1e-5; 2) the reads were mapped to the ORFs using

the bow-tie program [25], allowing two mismatches. The number of reads mapped to each

ORF was counted using the SAM tools package [26] and used to quantify ORF abundance

within the metagenome. MEGAN5 [23] was used to parse the tabular outputs of BLASTN

and Rap-search into various taxonomic and functional (SEED) levels. For comparison pur-

poses, all distributions were normalized as a function of the number of annotated

sequences/genes.

KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology (KO) annotation was con-

ducted in a BLAST search (v2.2.25) against the KEGG database (http://www.genome.jp/keeg/

). Hierarchical clustering analysis of the KO annotation results obtained for the different sam-

ples were carried out using Hierarchical Clustering Explorer.

Taxonomic analysis of the denitrification gene sequences

MG-RAST was used to assign the narG, napA, nirS, nirK, norB, and nosZ genes to specific bac-

terial genera by BLASTX against the entries in the NCBI-NR database, with an E-value cut off

of 1e-5. The BLASTX results were visualized using MEGAN (http://ab.inf.uni-tuebingen.de/

software/megan/) at a threshold of a bit score > 50 [27].

Gene expression activity analysis using quantitative PCR (qPCR) and

reverse transcription qPCR (RT-qPCR)

SYBR Green I qPCR was performed to estimate the abundance and expression of the N-

cycling functional genes (amoA, narG, napA, nirS, nirK, norB, and nosZ) by using DNA and

cDNA as templates. The primer pairs and programs used in the qPCR are listed in S2 Table.

Standard plasmids of the genes of interest were prepared as described in a previous study [28].

Each reaction was performed in triplicate.
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Statistical analysis

SPSS 19.0 was used to calculate the Spearman index and to perform the correlation analysis. A

p-value< 0.05 was considered to indicate statistical significance. Data were expressed as the

mean ± SD.

Results and discussion

Sulfur-cycling facilitated nitrogen removal

The influent of the YXM WWTP was characterized by a low ratio of COD/TN (< 6) [19] and

a high sulfate concentration (> 100 mg SO4
2--S L-1). Additionally, the ratio of BOD/COD in

the YXM WWTP was only approximately 0.35. However, the effluent quality could meet the

first class A criteria of effluent discharge, and the average removal efficiency of COD, TN and

NH4
+-N could reach 83%, 72.4%, and 98.6%, respectively [19]. Both COD/TN and ΔCOD/

ΔTN showed no significant relationship with TN removal efficiency (p> 0.05, Fig 1), which

indicated that the ratio of COD/TN did not significantly influence the N removal processes in

the YXM WWTP.

In the PRAN unit, NO3
--N decreased from 7.41 ± 0.44 mg L-1 in the influent to 1.03 ± 0.25

mg L-1 in the effluent, and the concentration of NO3
--N continued to decrease to 0.41 ± 0.08

mg L-1 in the ANA unit effluent (Table 1). Meanwhile, approximately 12 mg L-1 SO4
2--S was

reduced, and 10 mg L-1 TDS was produced in the ANA unit. In AN, the main denitrification

unit in the A2/O process received 400% nitrate-rich internal influx from the AO unit (S1 Fig),

and approximately 17 mg L-1 COD was removed, which at most corresponded to

Fig 1. The relationship of COD/TN (A) and ΔCOD/ΔTN (B) with TN removal efficiency.

https://doi.org/10.1371/journal.pone.0250283.g001

Table 1. Performance of the PRAN, ANA, AN and POAN chambers.

Parameter PRAN influent PRAN effluent ANA effluent AN effluent POAN effluent

COD (mg L-1) 74.23 ± 5.01 65.27 ± 3.02 77.06 ± 2.34 60.63 ± 3.03 38.65 ± 3.56

TN (mg L-1) 21.2 ± 1.55 18.85 ± 0.98 18.2 ± 0.39 10.38 ± 1.61 9.76 ± 0.24

NH4
+-N (mg L-1) 9.38 ± 0.37 13.22 ± 0.56 15.09 ± 0.48 7.95 ± 0.21 0.67 ± 0.08

NO3
--N (mg L-1) 7.41 ± 0.44 1.03 ± 0.25 0.41 ± 0.08 1.48 ± 0.15 8.56 ± 0.31

SO4
2--S (mg L-1) 110.02 ± 10.08 109.35 ± 11.13 98.65 ± 10.31 107.22 ± 15.34 109.26 ± 13.06

TDS (mg L-1) 11.13 ± 1.51 2.33 ± 0.32 < 0.1

DO 0.3–0.5 0.01–0.1 0.1–0.5 -0.4–0.7

PRAN: Pre-anoxic unit, ANA: Anaerobic unit, AN: Anoxic unit, POAN: Post-anoxic unit.

https://doi.org/10.1371/journal.pone.0250283.t001
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approximately 7 mg L-1 TN removal. Previous studies reported that 2.86 mg L-1 BOD was

needed for complete denitrification of 1 mg L-1 nitrate [29]. However, approximately 8 mg L-1

TN was removed in AN, which indicated that heterotrophic denitrification alone could not

meet the need for N removal even though all of the consumed COD was used for denitrifica-

tion. In addition to COD reduction, we also found that approximately 9 mg L-1 TDS was oxi-

dized to SO4
2--S in AN, which stoichiometrically corresponded to approximately 6 mg L-1 TN

removal following the equation of 5HS- + 8NO3
- + 3H+! 5SO4

2- + 4N2 + 4H2O [30]. Thus,

the combined data showed that the internal sulfur cycle of sulfate reduction and re-oxidation

did occur in the A2/O system, and sulfur-based autotrophic denitrification could be a supple-

ment to the integrated denitrification capacity.

Simultaneous sulfur-based autotrophic and heterotrophic denitrification has been reported

to be achieved in pilot and full-scale bioreactors [6,31,32]. Wu et al. [16] reported that a high

sulfate-to-COD ratio (> 1.25 mg SO4
2-/mg COD) facilitated the development of sulfur-based

autotrophic denitrification. Accordingly, the average concentration of SO4
2--S was over 100

mg L-1 in the inlet of the YXM WWTP, which was high enough to provide sufficient sulfur

through sulfate reduction. In addition, the A2/O process has varying redox environments,

including anaerobic and anoxic zones, which are favorable for sulfate reduction and sulfur oxi-

dation. Normally, the redox potential needed for sulfate reduction is lower than that needed

for denitrification, and NO3
--N can interfere with sulfate reduction. In the YXM WWTP,

NO3
--N and DO were consumed in PRAN before entering the ANA unit (Table 1), which

facilitated the establishment of an anaerobic environment suitable for sulfate reduction in

ANA [33]. Furthermore, the floc micro-environment might also play an important role in sul-

fur-based denitrification in the A2/O process. AS flocs are partially penetrated by oxygen, and

the outer portion of the flocs is aerobic, while the inner portion of the flocs will be anoxic and/

or anaerobic [34], which could provide a critical micro-environment for the harmonious coex-

istence of SRB, heterotrophic denitrifiers and sulfur-based autotrophic denitrifiers.

Overview of the microbial community and key bacteria involved in sulfur

cycling facilitated nitrogen removal

To reveal the underlying microbial and genomic mechanisms of the observed denitrification

under low COD/TN, the metagenome of the AS in the YXM WWTP was analyzed. The AS

microbial communities were composed of 86 phyla and over 1,700 genera. Bacteria

(5,612,582–6,168,910 reads, 98.22%) dominated the AS microbial communities, followed by

Archaea (36,272–45,988 reads, 0.72%), Eukarya (13,566–17,280 reads, 0.27%), and viruses

(25,632–42,440 reads, 0.80%). For bacteria dominant in AS microbial communities, we

focused our analysis on the domain of bacteria. Similar to other full-scale N removal WWTPs

[19,35], Proteobacteria (35.2%-38.8%), Bacteroidetes (20.8%-23.0%), Ignavibacteriae (8.4%-

9.6%), Nitrospirae (4.1%-6.3%), Chloroflexi (5.6%-7.4%), Acidobacteria (2.9%-3.2%), and Fir-

micutes (2.5%-2.9%) were the dominant bacterial phyla (Fig 2). At the class level, β-proteobac-

teria was the most dominant class, accounting for approximately 20.64%-23.25% of the total

bacterial reads, much more than other Proteobacteria. The dominance of β-proteobacteria in

sulfur-based N removal AS bacterial communities was also reported in other metagenomics

studies [15,35].

At the genus level, the top 20 abundant genera collectively accounted for 42.1–44.1% of the

total bacterial reads (Fig 3). Many members among the top 20 genera were associated with

nitrification and sulfur-based denitrification. Nitrospira (4.0%-6.3%) and Nitrosomonas (0.8%-

1.1%), typical nitrifiers, also dominated in other AS communities [19,35]. Ignavibacterium
(7.3%-8.4%) was the most dominant genus in the AS community, which was associated with
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sulfur-based autotrophic denitrifying processes, converting NO2
- and NO to N2 [36,37]. Thio-

bacillus (4.9%-5.6%) was the third most abundant taxon, which was previously reported to be

the dominant taxon in sulfur-based autotrophic denitrification bioreactors and could also

cooperate with heterotrophic denitrifiers in heterotrophic environments [8,11,15,32]. Sulfuri-
talea (0.80%-0.91%) and Thauera (0.65%-0.76%) were also found to act as sulfur-driven auto-

trophic denitrifiers [13]. Dechloromonas (1.40%-2.30%), a heterotrophic denitrifier, was also

found to contain sulfur oxidation genes [38].

Sulfate reduction by SRB provides the reduced S species for sulfur-assisted denitrification.

The relative abundance of SRB (e.g., Geobacter, Desulfobulbaceae, Pelobacteraceae, and Desulfo-
bacteraceae) was 1.74%-1.88% of the total bacterial reads. Unlike the mainstream sulfur-driven

Fig 2. Bacterial community composition at the phylum level, determined using metagenomic sequencing, in the

four denitrification units.

https://doi.org/10.1371/journal.pone.0250283.g002

Fig 3. Bacterial community composition at the genus level in the four denitrification units.

https://doi.org/10.1371/journal.pone.0250283.g003
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denitrification process [3,8,15], SRB were not the dominant taxa in the A2/O process. However,

the guild of SRB showed high diversity in our study (40 genera) (S3 Table). The high diversity of

SRB could facilitate the adaption and activity of SRB guilds when they went through units with

different environments in A2/O facilities. In addition, Ignavibacterium might also act as the

potential SRB because it was reported to have polysulfide, thiosulfate reductases, and tetrathio-

nate reductases [36]. Meanwhile, Ignavibacterium, together with other fermenters, could provide

organic acids (butyrate, lactate, fumarate) or alcohols (ethanol), which could be used by SRBs

and heterotrophic denitrifiers [33,36,39]. Generally, the metagenomics data showed the co-exis-

tence of nitrifiers, anaerobic SRB, autotrophic SOB denitrifiers and heterotrophic denitrifiers in

AS, which could provide a substantial microbial basis for sulfur-based mixotrophic N removal.

Functional genes related to sulfur reduction and oxidation

Sulfate reduction mediated by SRB was anticipated to provide reduced S species for electron

donors in sulfur-based autotrophic denitrification, and the genes involved in dissimilatory sulfate

reduction, including sulfate adenylyltransferase (sat), adenylylsulfate reductase (aprAB) and dis-

similatory sulfite reductase (dsrAB), were found in high abundance in the AS communities of the

YXM WWTP (Fig 4 and Table 2). In addition, a high abundance of the poly-S formation gene

coding sulfide quinone oxidoreductase (sqr) was found in the AS community (Fig 4 and Table 2).

Poly-S could also serve as electron and energy storage material for denitrification [8,16,40].

Sulfur oxidation genes, including those for sulfur oxidation multienzyme complex (sox)

and heterodisulfide reductase (hdr), were detected in the AS communities (Fig 4 and Table 2).

The Sox enzyme system oxidizes thiosulfate, which is produced by SRB or chemical oxidation

of H2S [33,41,42]. A previous study showed that the sox and hdr genes were simultaneously

expressed with denitrification genes in Thiobacillus and Thauera [13], indicating the impor-

tant role of sox and hdr in sulfur-based denitrification. Therefore, the metagenomic analysis of

internal sulfur cycling-related genes showed that the AS of the YXM WWTP could proceed

with the internal cycling of sulfur through the cooperation of enzymes encoded by sulfate

reduction and sulfur oxidation genes, which consolidated the possibility of sulfur-based auto-

trophic denitrification without additional TDS supplementation (Fig 4).

Functional genes related to nitrogen transformation and taxonomic

classification of denitrification genes

Of the detected functional genes related to N cycling, those related to denitrification had the

highest number of hits, followed by ammonification and nitrification genes. The functional

Fig 4. Internal cycling of sulfur through the cooperation of enzymes encoded by sulfate reduction and sulfur oxidation genes.

https://doi.org/10.1371/journal.pone.0250283.g004
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gene related to the anammox process (hzo, encoding hydrazine oxidoreductase) was not

detected in this study, which suggested that denitrification was the main pathway of N removal

in the YXM WWTP. Among the denitrification genes, the abundance of narG was the highest

(4,320–4,660 reads), followed by napA (2,366–2,618 reads), nosZ (2,122–2,296 reads), and

norB (1,130–1,330 reads), whereas the abundances of nirK (748–798 reads) and nirS (1,044–

1,120 reads) were much lower (Table 3).

The taxonomic origins of the denitrification genes were also analyzed. The results showed

that denitrification genes were unevenly distributed in eighty genera, whereas most of them

were affiliated with β-proteobacteria (Fig 5), which was consistent with the dominance of β-

proteobacteria in the AS communities. The narG gene was mostly associated with Thauera,

Pseudomonas, Thermus, Azoarcus, Stenotrophomonas, Acidovorax, Rhodanobacter, and Thio-
bacillus. The napA gene was mainly associated with Thauera, Thioalkalivibrio, Sulfuritalea,

Dechloromonas, Cupriavidus, and Leptothrix (Fig 5). Among the genes required for the trans-

formation of NO2
--N to NO, nirS was mainly associated with Labrenzia, Pseudomonas, Alicy-

cliphilus, Thauera, Sulfuritalea, and Dechloromonas, while nirK was mainly affiliated with

Azospirillum, Rhodanobacter, and Polaromonas. The norB gene was mostly associated with

Thauera, Rubrivivax, Hyphomicrobium, Hydrogenophaga, and Variovorax. In our metage-

nomics data, 23 genera were found to harbor nosZ, predominately Dechloromonas, Sulfurita-
lea, and Candidatus Accumulibacter phosphatis. The diversity of denitrifying gene associated

taxa showed that every step of denitrification was metabolized by a combination of gene prod-

ucts that originated from different bacterial species. Complete denitrification is achieved

through the combined activity of taxonomically diverse co-occurring bacteria performing suc-

cessive metabolic steps. The diverse denitrifiers catalyze N transformation at very different

rates, however, the diverse denitrification consortia were suitable to adapt to varying environ-

ments in different units in the A2/O process.

The genes encoding enzymes initiating nitrate reduction, narG and napA, were mainly

associated with autotrophic Thiobacillus, Thioalkalivibrio, and Sulfuritalea (Fig 5). Consistent

with the dominance of Thiobacillus in the microbial communities, the results showed the

important roles of autotrophic sulfur-based denitrifiers at the functional gene level. Thauera

Table 2. Sulfur oxidation and sulfate reduction genes in the sludge samples.

Gene(s) PRAN ANA AN POAN

Sulfur oxidation sqr 2188 2378 2286 2474

soxZ 330 320 336 348

soxA 700 704 682 676

soxY 702 586 676 718

soxB 1022 1030 1024 1130

soxX 428 426 424 452

hdrC 284 316 360 358

hdrB 760 822 852 800

hdrA 750 838 956 912

Sulfate reduction dsrB 432 502 462 504

dsrA 588 626 646 694

sat 4044 4560 4746 4908

aprB 262 268 254 264

aprA 864 802 948 944

PRAN: Pre-anoxic, ANA: Anaerobic, AN: Anoxic, POAN: Post-anoxic.

https://doi.org/10.1371/journal.pone.0250283.t002
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was associated with a high relative abundance of the narG, napA, nirS, norB, and nosZ genes

(Fig 5). Both Thauera and Thiobacillus can use reduced sulfur as the electron donor and con-

tribute to sulfur-driven autotrophic denitrification [12,13]. The analysis provided insight into

microbial and functional gene foundations for the occurrence of sulfur-based mixotrophic

denitrification in the A2/O process.

It must be noted that most of the denitrifier taxa and high abundance of the denitrification

genes narG, napA, nirS, norB, and nosZ were associated with heterotrophic denitrifiers, such

as Dechloromonas, Pseudomonas, and Rhodanobacter. Dechloromonas, which carries the napA,

nirS, norB, and nosZ genes, accounted for a relatively high percentage of the denitrifiers (Fig

5). Dechloromonas, which was found to act as a heterotrophic sulfur oxidizing denitrifier [43],

might also contain sulfur oxidation genes [38]. The results were not surprising because hetero-

trophic denitrification was still the main N removal pathway in the A2/O process. Notwith-

standing, the coexistence of autotrophic and heterotrophic denitrifiers provided evidence that

denitrification in the YXM WWTP could be a mixotrophic process.

Mixotrophic denitrification involves the use of fewer carbon sources and less sulfate pro-

duction than heterotrophic or autotrophic denitrification and thus allows for a relatively good

rate of nitrate removal over a long period of time while achieving efficient COD and N removal

[44]. Notably, the mixotrophic denitrification process could achieve high efficiency of NH4
+-N

removal, as indicated in our study and others [43]. We should keep in mind that electron

donors significantly impact the microbial community structure and composition [32]. Our

previous study also showed that the addition of external carbon source could improve the effi-

ciency of TN removal, however, the external carbon source elevated the proportion of hetero-

trophic denitrifiers in the AS communities and incurred feedback for more carbon sources

[45]. Additional exploration of the communities in sulfur-based mixotrophic denitrification,

with clearer variations in performance parameters, as well as the interactions between

Table 3. The abundances of genes related to nitrogen removal.

Gene(s) PRAN ANA AN POAN

Ammonification gdhA 984 1016 1004 1110

ureE 84 68 60 64

ureD, ureH 6 12 16 8

ureC 236 238 210 196

Nitrification pmoA-amoA 88 106 86 74

pmoB-amoB 108 98 72 134

hao 536 602 550 636

Denitrification narG 4320 4660 4440 4562

napA 2366 2578 2486 2618

nosZ 2122 2296 2138 2146

norB 1130 1214 1192 1330

nirS 1044 1082 1062 1120

nirK 778 748 772 798

norC 340 416 324 342

Dissimilatory nitrate reduction nirB 1012 1094 1074 1024

nrfA 606 818 718 810

Assimilatory nitrate reduction narB 10 30 22 24

nasA 612 624 604 628

nirA 238 170 158 162

PRAN: Pre-anoxic, ANA: Anaerobic, AN: Anoxic, POAN: Post-anoxic.

https://doi.org/10.1371/journal.pone.0250283.t003
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“Thiobacillus” and heterotrophic denitrifiers in A2/O, will facilitate the development of low-

cost and more flexible denitrification processes.

Activities of nitrification and denitrification genes

Although SONB can tolerate a certain concentration of sulfide, a high concentration of sulfide

can inhibit their denitrification activity [12]. A previous study also showed that the activities of

nitrification were inhibited by sulfide because ammonia oxidizers were sensitive to sulfide

[14]. To evaluate the influence of TDS on mixotrophic denitrification in the YXM WWTP, the

expression activities of functional genes related to N removal were analyzed using RT-qPCR.

In our study, a high amoA mRNA/DNA ratio (S4 Table) was found in all four units (from

0.43 in POAN to 2.88 in AN), and the expression of amoA had no significant relationship with

the content of reduced sulfur, which indicated that amoA expression was not inhibited by sul-

fide, as reported in a previous study [14]. The high-level expression of amoA ensured a high

rate of NH4
+-N transformation and subsequent denitrification in the A2/O process despite the

low abundance of nitrifiers (Fig 6) [46].

In agreement with the metagenomics data, the abundance and expression of the narG gene

were higher than those of napA (Fig 6). Moreover, the expression of narG and napA in ANA

and AN was significantly higher than that in PRAN and POAN. The high expression of narG
confirmed the important role of Thiobacillus and Thauera in denitrification, as Thiobacillus

Fig 5. Taxonomic distribution of denitrification genes (a) and relative abundance of taxa (b).

https://doi.org/10.1371/journal.pone.0250283.g005
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and Thauera were the main taxa carrying narG (Fig 5). We also found a higher mRNA/DNA

ratio of narG and napA in the ANA chamber than in other units (S4 Table), indicating that the

anaerobic environment was favorable to the expression of narG and napA, while narG and

napA were not sensitive to TDS (Fig 6). However, the low content of nitrate and short hydrau-

lic retention time (HRT) implied no significant denitrification in the ANA chamber.

The abundance of nirS was higher than that of nirK, and the mRNA abundance of nirS was

3.1- to 93.3-fold higher than that of nirK, indicating that nirS was a key player in NO2
--N

reduction (Fig 6). Although among the denitrification genes, the abundance of norB was rela-

tively high, its expression was low, as evidenced by its mRNA/DNA ratio, which only varied

from 0.05 to 0.21. The nosZ gene is often used as a marker of complete denitrification [47].

Fig 6. Quantitative PCR analysis of the activity of nitrifying and denitrifying bacteria based on the abundance (DNA)

and expression (RNA) of nitrogen-associated genes in the four denitrification units, a: napA; b: narG; c: nirK; d: nirS; e:

norB; f: nosZ; g: amoA; h: the expression levels of nitrogen-related genes in the four denitrification units.

https://doi.org/10.1371/journal.pone.0250283.g006
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The activity of nosZ is critical for the elimination of N2O in the denitrification process. Some

recent studies have shown that sulfur-based autotrophic denitrification could promote the

production and accumulation of N2O as a significant intermediate product [48]. In this study,

the abundances of the nosZ gene and mRNA were the lowest among the denitrification genes

(Fig 6). Therefore, the bioaugmentation of nosZ-type denitrifiers, including Thauera and Can-
didatus Accumulibacter phosphatis, might facilitate the enhancement of the TN removal per-

formance of WWTPs.

The correlation of the expression of amoA and denitrification genes and the content of

TDS was analyzed, and no significant relationship was found between them (p> 0.05). Our

results suggested that reduced sulfur did not inhibit or stimulate the potential of N removal in

the AS of the YXM WWTP. The expression pattern of functional genes might be attributed to

mixotrophic denitrification using both reduced sulfur and organic compounds as electron

donors, which compensate for the influence of high reduced sulfur levels on functional gene

activity. In the cooperation of SRB with SONB and other heterotrophic bacteria, metabolic

diversity helps to relieve the inhibition of sulfide. As discussed above, HS- produced by SRB

might be transformed to poly-S and thiosulfide, and these reduced S species could also be oxi-

dized by Thiobacillus in denitrification.

Conclusion

Mixotrophic denitrification was reported in the A2/O process with low COD/TN and high sul-

fate in the influent. Metagenomic analyses revealed the mixotrophic denitrification potential

based on sulfur reduction and oxidation cycles at the level of microbial communities and func-

tional genes. High abundances of sulfur oxidation, sulfate reduction and denitrification genes

were found in our study. Thiobacillus dominated the microbial communities, and the narG
gene was mainly harbored by Thiobacillus and Thauera, however, denitrification genes were

enriched in heterotrophic denitrifiers with high abundance. Both autotrophic and heterotro-

phic denitrifiers contributed to nitrogen removal. Reduced sulfur showed no inhibition of the

expression of nitrifying and denitrifying genes. Further investigation aimed at manipulating

the denitrification process will help to further identify the key autotrophic denitrification

metabolism pathways involved in nitrogen removal and the important factors related to deni-

trification under different conditions.
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