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Abstract: Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic 
potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support 
liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage 
caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and 
fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the 
treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on 
solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin- 
C-2’,3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation 
in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed 
understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. 
This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the 
benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies 
that investigated the protective effects of silibinin in various forms of liver damage. 
Keywords: silybin, bioavailability, liver disease, silibinin-phosphatidylcholine complex, silibinin-C-2‘3-dihydrogen succinate

Introduction
The liver is one of the most important organs in the body and plays a key role in metabolism, protein synthesis, bile 
production, vitamin and mineral storage, and detoxification while maintaining overall health and body homeostasis.1,2 

Liver damage due to liver diseases has become a serious global problem, affecting millions of people around the world, 
accounting for 4% of all deaths worldwide.3 Chronic liver damage characterized by advanced fibrosis may eventually 
evolve into liver cirrhosis, which represents a major risk factor for the development of hepatocellular carcinoma 
(HCC).4,5 Unlike liver cirrhosis, the process of liver fibrosis is reversible as long as the cause of the fibrosis is 
removed.6,7 Several factors may enhance this process such as alcohol consumption, non-alcoholic steatohepatitis 
(NASH), viral hepatitis (hepatitis B and hepatitis C), autoimmune hepatitis, nonalcoholic fatty liver disease (NAFLD), 
and cholestatic liver disease.8 The development of chronic inflammation is a common denominator for the progression of 
these diagnoses to the fibrotic stage. The inflammatory state promotes the transdifferentiation of hepatic stellate cells into 
proliferating, contractile and migrating myofibroblasts expressing large amounts of extracellular proteins (eg collagen, 
vimentin, a smooth muscle actin, and extramuscular myosin).9 As a consequence, a gradual accumulation of these 
proteins in the extracellular matrix occurs, which impairs the physiological structure and function of the liver. Apoptosis 
of hepatocytes with scar tissue formation gradually replaces the functional and healthy liver tissue leading after long time 
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to irreversible fibrotic changes.10–13 According to the World Health Organization, more than 750,000 people worldwide 
died from liver cancer in 2022 reaching the second place among deaths from all cancer diseases. It is estimated that by 
2035, liver tumors will be responsible for more than 1 million deaths, of which 90% will be most likely HCC.3,14 The 
increasing number of patients with liver cancer and the limitations of current therapeutic approaches indicate an emerging 
need for new and more efficient treatment possibilities. One such could be offered by silibinin, a bioactive component of 
milk thistle extract (Silybum marianum), belonging to the Asteraceae family.

S. marianum has been used for over 2000 years to treat liver and biliary disorders. The first record of milk thistle can 
be found in the Old Testament (Genesis 3:18). Since ancient times, the Greeks (Theophrastus of Eresos, 4th century B.C.) 
and Romans (Pedanios Dioscorides, 50 A.D. and Plinius the Elder, 1st century A.D.) have utilized this herb for their 
medicinal properties and used as a hepatoprotective agent. The seeds, also known as lady’s thistle or Saint Mary’s thistle, 
are particularly helpful in protecting and maintaining the liver’s health.15,16 During the Middle Ages, milk thistle was 
used as an antidote for poisoning due to snake bite. Likewise, in the next centuries, herbalists and scientists recom
mended the use of milk thistle to treat various diseases, especially liver pathologies. Nowadays, the use of milk thistle in 
medicine has been well documented for the treatment of liver disorders such as viral hepatitis, nonalcoholic liver disease, 
alcoholic liver disease, cirrhosis, drug-induced liver injury, and mushroom poisoning.17,18

This scientific review critically examines the literature reporting the use of silibinin, the major bioactive component of 
silymarin, in the treatment of liver diseases to offer a comprehensive overview of this area’s current state of knowledge. 
Pharmacodynamics and pharmacokinetics of silibinin, the results of cell culture and animal studies will be discussed 
together with ongoing clinical trials to gain an overall picture of silibinin advantages for liver protection. Furthermore, 
possible challenges and directions for future research will be outlined.

Chemistry of Silibinin
For the first time, silibinin was isolated by G. Möschlin within his dissertation work.19 The structure of silibinin was 
originally described by organic chemist Pelter and pharmacist Hansel in 1968 and 1975.20,21 Silibinin, also called silybin, 
is a type of polyphenolic flavonoid with a molecular formula of C25H22O10, a molecular weight of 482.44 g/mol, and 
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CAS No. 22888–70-6. Silibinin itself is a mixture of two diastereomers, silybin A (2R, 3R, 10R, 11R) and silybin B (2R, 
3R, 10S, 11S), in an approximately equimolar ratio and makes up the majority of the silymarin mixture (approx. 
40–60%). Other main components of silymarin are flavonolignans silychristin (15–25%), silydianin (10%), isosilybin 
A (10%), 2,3-dehydrosilybin (5%), isosilybin B (<5%) and isosilychristin (3%), along with the flavonoid taxifolin 
(Figure 1).22,23

Silibinin is quite resistant to reduction, but is easily oxidized to 2,3-dehydrosilybin. Long-term heating above 100 °C 
causes damage to its skeleton structure.25 The molecule of silibinin shows its maximum absorption at a wavelength of 
289 nm (Figure 2).

This absorption maximum provides two advantages. The first one is that thanks to this, the amount of silibinin in the 
cell can be determined. The absorption spectroscopy can be used not only to determine the internalization of pure 
silibinin effectively but also to determine silibinin complexes or silibinin-coated nanoparticles within the cells. In our 
laboratory, this method has been applied for the determination of bovine serum albumin (BSA) and sodium oleate-coated 
iron oxide nanoparticles in A549 cells.26

The second advantage proves to be useful in in vitro release rate studies that measure the quantity of silibinin released 
from the nanoparticle into the solution. In the case of solid lipid or mesoporous nanoparticles, it has been observed that 
silibinin exhibits a very slow release at pH 7.4 (physiological), and even after 72 hours, it was not released from the 
nanoparticle. This slow release is beneficial in the terms of nanoparticle-mediated prolongation of the drug release, which 
ultimately leads to an increase in its bioavailability.27,28

A similar result was achieved with poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG)-modified 
Fe3O4 magnetic nanoparticles displaying 80.4% of silibinin released from the nanoparticles over 2 days.29 On the other 
side, it has been observed that in case silibinin was bound to gold nanoparticles, more than 70% of silibinin was released 
from the nanoparticle at pH 7.4 after only 6 hours. Interestingly, if the pH changed to 5 (simulating the pH of the tumor 
microenvironment), 100% of the silibinin was released from the nanoparticle after 6 hours.30 This release rate of silibinin 
from gold nanoparticles is even slightly higher than that of silymarin, given that only 42% of silymarin was released from 
the nanoparticle after 6 hours.31 Such rapid release of silibinin from nanoparticles may not necessarily be disadvanta
geous. The liver is capable of removing 30–99% of nanoparticles from the bloodstream with the highest distribution 
occurring within the first 6 hours after administration.32,33 This possibility to design nanoparticles with early or late 
release of silibinin opens up more opportunities for better treatment of liver pathologies.

Biological Properties of Silibinin
Silibinin is considered the most bioactive component of silymarin.34–36 The three most common effects are attributed to 
silibinin impact on liver cells: it acts as an antioxidant, modulates inflammation, and alleviates fibrogenesis.

Silibinin possesses the highest antioxidant activity among all silymarin compounds, which is demonstrated by 
its inhibition of ROS (99.5%) compared to silybin A (68.7%), silybin B (74%), or silymarin (99.2%).37 Silibinin 
protection of the liver cells from oxidative intracellular-free radicals is mediated by increasing the activity of 
enzymes such as superoxide dismutase and peroxidase, as well as by increasing the concentration of glutathione.38 

Silibinin can also function as a metal chelator. In the model of arsenic-induced hepatotoxicity in rats, silibinin 
successfully reduced the levels of liver enzymes such as alanine transaminase (ALT), aspartate transaminase 
(AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), and bilirubin to the level of control 
animals. The amount of damaged DNA was also decreased and histologically, no inflammation, necrosis, or 
vacuolization was observed in the hepatocytes of the arsenic-exposed rats.39 The antioxidant and hepatoprotective 
effects of silibinin were further confirmed in a model of non-alcoholic steatosis of the liver.40 Rats with NASH 
that received silibinin-phosphatidylcholine complex as a food supplement showed a lower grade of liver steatosis, 
decreased plasma insulin, reduced levels of malondialdehyde, O2

∙− and glutathione and attenuated inflammatory 
responses. Interestingly, silibinin also reduced the amount of the TNF-α in this rat model,40 which is in line with 
its anti-inflammatory properties, that are discussed further.

The mechanism underlying the anti-inflammatory effects of silibinin lies in the modulation of the NFκB protein. 
NFκB following its activation moves into the nucleus, binds to DNA and acts as a transcription factor triggering the 
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Figure 1 The main flavonolignans and one flavonoid (taxifolin) of silymarin - an extract from the seeds of Milk thistle (Silybum marianum). Structure of molecules were 
drawn using ACD/ChemSketch software based on data from the PubChem database.24
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activation of genes involved in inflammatory responses, cell survival, differentiation, and growth.41 In vitro, silibinin 
inhibited the activation of NFκB and expression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 at the transcriptional and 
translational levels in healthy mouse hepatocytes.42 Silibinin also reduced oxidative damage and inflammation in oleic 
acid-induced HepG2 cells by upregulating NRF2, downregulating CYP2E1 and CYP4A, and decreasing intracellular NO 
levels.43 In vivo, the impact of silibinin on lipotoxicity has been studied in a mouse model of NASH. Silibinin treatment 
was shown to counteract liver injury by suppressing oxidative stress-mediated lipotoxicity and activity of NFκB p65 and 
p50 subunits.44

The antifibrotic properties of silibinin have been demonstrated in vitro by the inhibition of profibrotic activity of 
human hepatic stellate cells, including reduced proliferation and de novo synthesis of procollagen type I via direct 
inhibition of phosphorylation of ERK, MEK, Raf, and IκBa, eventually being more effective than silymarin.45,46 The 
inhibition of stellate cells proliferation is dose- and time-dependent, showing that the strongest inhibition of the 
proliferation of LX-2 cells is achieved after 96 hours by 100 µM (48 µg/mL) silibinin affecting the cell cycle targets 
eg Akt, p27 or sirtuin signaling.47 In vivo, silibinin also attenuated iron-induced liver fibrosis as well as thioacetamide- 
induced liver damage in rodents.48,49 On the other hand, neither silibinin nor silymarin were able to decrease the carbon 
tetrachloride (CCl4)-induced accumulation of collagen in the liver in the rat fibrotic model.50

However, silibinin also possesses additional positive properties beyond those mentioned above. It is highly 
beneficial in protecting hepatocytes, for example, by preventing the penetration of various toxins into the cell, 
preventing apoptosis through modulation of intracellular mechanisms, and also by inhibiting the hepatitis C virus 
infection even more effectively than silymarin.37,51 The anti-hepatocarcinogenic potential of silibinin has also 
been demonstrated. In a diethylnitrosamine/2-acetylaminofluorene/CCl4-induced HCC model in rats, silibinin 
inhibited the growth of cancerous lesions at the lowest applied dose (30 times lower than silymarin dose and 
40 times lower than total milk thistle extract dose) exhibiting similar or even superior results, compared to 
silymarin and the total extract.52 Interestingly, the opposite result was achieved by Miguez et al. Comparing the 
hepatoprotective effect of silymarin and silibinin dihemisuccinate (a soluble form of silibinin) in isolated rat liver 
cells revealed that 200 times higher (2 mM; 964 µg/mL) concentration of silibinin was required to achieve the 
same effect as 0.01 mM (4.8 µg/mL) silymarin to effectively protect the cells against allyl alcohol.53

Figure 2 Wave spectrum of pure silibinin (Merck) with a maximum peak 289 nm (Our unpublished data).
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All these properties make silibinin not only a molecule useful in the treatment of liver diseases, but also predict its 
benefits in the treatment involving other organs such as kidneys, lungs, brain, prostate, or pancreas.54–60

Bioavailability of Silibinin
Silibinin has highly hydrophobic and non-ionizable properties, making it practically insoluble in water (50 μg/mL).61,62 It 
is poorly soluble in ethanol (0.1 mg/mL) or methanol and insoluble in nonpolar solvents such as chloroform or 
petrolether. However, the solubility of silibinin increases significantly in various organic solvents, such as acetone, 
dimethylformamide, or dimethyl sulfoxide (≥20 mg/mL). Importantly, low solubility in water considerably affects its 
bioavailability. After oral administration in rodents (50 mg/kg dose), silibinin possesses a low absorption efficiency and 
is rapidly absorbed in the stomach, with a Tmax of approximately 0.5 hours and a t1/2 of approximately 1–2 hours in 
different tissues or with a Tmax of approximately 1.5 hours and a t1/2 of approximately 3 hours in plasma (Figure 3).63,64

Silibinin absorption in the gastrointestinal tract depends on various factors such as the presence of other solubilizing 
substances like amino acids, cholesterol, fats, flavonoids, proteins, etc. Silibinin is swiftly and equally distributed 
between the blood and hepatobiliary system, resulting in higher levels of silibinin in bile fluid than in plasma. The 
absolute oral bioavailability of silibinin in rats was 0.95%.65 Therefore, various approaches to increase the bioavailability 
of silibinin have been proposed. The most common methods include using a micellar drug delivery system or water- 
soluble silibinin derivatives as described below.

Micellar Silibinin Delivery System
The water solubility of silibinin can be significantly increased by using a polymeric micellar system, which can act as 
a potential delivery carrier, thus enhancing its bioavailability. The common approach to reach the formation of a silibinin- 
phospholipid complex is the use of phosphatidylcholine. As a result, a complex named Silipide (also referred as IdB 
1016) is being created, which was demonstrated more than 30 years ago.66,67 After oral administration of Silipide or pure 
silibinin at a concentration of 200 mg/kg, the maximum concentration of silibinin from Silipide in the rat plasma was 
more than 20 times higher for both forms, unconjugated and total.68 Four times lower dosage of pure silibinin led to 
a similar effect in rats as a pure silibinin at a dosage of 200 mg/kg.64 Interestingly, after a single oral administration of 
pure silibinin at 2.5 times higher dosage, the maximum concentration of total and unconjugated silibinin in plasma was 
still lower and was found in plasma for a shorter time than in the case of Silipide (Figure 4).65

From a pharmacological perspective, silipide treatment significantly improved liver health by effectively reducing 
inflammation and lipid peroxidation, decreasing plasma insulin and TNF-α, and successfully normalizing liver weight 

Figure 3 Bioavailability of silibinin in different organs and plasma after a single oral application of pure silibinin at a dose of 50 mg/kg body weight in rodents. Levels of total 
silibinin was measured by HPLC or LC-MS method. Data were obtained from published levels of silibinin in the tissues and plasma, and represent mean ± SD.63,64
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and GSH levels in mice as well as improved liver enzymes ALT, AST, GGT, and total bilirubin in patients with chronic 
active hepatitis.40,67,71 The effects of silipide shown in rats have also been confirmed in humans in clinical studies. Nine 
healthy volunteers received a single oral dose of Silipide or silymarin and the amount of the substance in the plasma was 
monitored after 0.5–12 hours. A plasma level of Silipide was 4 times higher than that of silymarin, in one subject even 

Figure 4 Level of total (A) and unconjugated (B) silibinin in rat plasma after a single oral application of Silipide (200 mg/kg) or pure silibinin (50, 200, or 500 mg/kg). Data 
were obtained from published levels of total and unconjugated silibinin in plasma, and represent mean ± SD.64,65,68–70
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extremely high - up to 80 times higher.66 Today, this complex is known under the trademark Siliphos® and entered 
the second phase of clinical testing as a drug for the treatment of liver diseases.72

The second most frequent micellar drug delivery system is the complex silibinin-phosphatidylcholine-vitamin 
E (trademark Realsil®), which is in the Phase III of clinical trials for the treatment of a steatosis or NASH.73,74 

D-α-tocopherol supplementation alone leads to a decrease of collagen α1(Ι) gene expression both in vitro and 
in vivo in the liver of normal mice and in cultured hepatic stellate cells. The combination of silibinin, 
phosphatidylcholine, and vitamin E has been found to have hepatoprotective, anti-inflammatory, and antifibrotic 
effects. This combination has been previously tested to be effective in reducing hepatic fibrosis in rats with bile 
duct ligation. The complex was administered orally and was successful in preventing liver injury, stellate cell 
proliferation and activation, as well as collagen deposition.75

Water-Soluble Silibinin Derivatives
An alternative method to increase silibinin bioavailability, water-soluble silibinin derivatives are used. One of the 
derivates, known as silibinin-C-2’,3-dihydrogen succinate, disodium salt, known as Legalon® SIL (further in the text 
as Legalon), preserves the hepatoprotective properties of the original silibinin. Legalon has been approved for use in 
numerous European countries since 1984. This medicine is commonly used to treat Amanita phalloides intoxication. One 
vial of Legalon contains 528.5 mg of silibinin-C-2’,3-dihydrogen succinate, disodium salt, which corresponds to 315 or 
350 mg of silibinin according to HPLC or DNPH analyses.76 Since 1982, many articles have been published showing that 
after mushroom poisoning and the administration of Legalon alone or in combination with penicillin G, patients survived 
(almost 93%).76 However, Legalon is suitable not only for this type of liver intoxication. An in vitro study was conducted 
to determine its effectiveness in reducing the expression of the hepatitis C virus in human hepatoma cells. The study 
results revealed that treatment with Legalon significantly reduced hepatitis C virus (HCV) RNA and protein levels. 
Additionally, Legalon downregulated the heme oxygenase-1 RNA while upregulating the Nrf2 protein. These findings 
indicate that Legalon may be an effective alternative or complementary therapy for the treatment of HCV infection.77 In 
vitro results have later been confirmed in vivo. Chronically HCV-infected mice were treated daily by intravenous 
Legalon for 14 days at doses of 61.5, 265, or 469 mg/kg. Legalon effectively blocked viral production across all dosages 
in a dose-dependent manner. Legalon also resulted in a continuous second-phase viral decline and increased anti- 
inflammatory and antiproliferative gene expression in human hepatocytes.78 Actually, 8 clinical studies for the treatment 
of hepatitis C virus are underway (more in the clinical studies section).

Another type of water-soluble form of silibinin is silibinin meglumine, a silibinin-amino-sugar meglumine 
complex. Results showed that oral silibinin meglumine was an effective in reducing overall lung tumor volume.79 

The solubility of silibinin is also increased by the phosphodiester bond that binds two silibinin monomers. Such 
phosphate-linked silibinin dimers have approximately 50-times higher water solubility, and higher antioxidant 
activity than pure silibinin monomers.80 The glycosylated derivatives of silibinin demonstrated exceptional solubi
lity in water, exceeding 15 mg/L, almost 40 times more than pure silibinin. Upon a thorough biological evaluation, it 
was observed that these new derivatives exhibited strong cellular anti-proliferative activities. However, it is 
important to note that pure silibinin outperformed these derivatives in inhibiting proliferation in HepG2 and 
Hep3B cell lines.81

Silibinin in Experimental Research
Silibinin properties have been confirmed by many publications. By the end of 2023, more than 2100 publications 
containing the keywords “silibinin” or “silybin” were uploaded to PubMed. On the other hand, over 1300 
publications contained the keyword “isosilybin OR silydianin OR silychristin OR isosilychristin OR taxifolin 
OR dehydrosilybin OR dehydrosilibinin”. As expected, the number of publications containing the keyword 
silymarin is the highest (over 4500 by the end of 2023) because it is a general group of all milk thistle 
flavonolignans and flavonoids. Nevertheless, an average of almost 100 new scientific articles with “silibinin” 
have been published every year since 2000 (Figure 5). Of note, the second most researched silymarin molecule – 
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taxifolin shows an average of almost 50 new articles added every year despite the fact that taxifolin occurs in 
various other organisms.

In vitro Experiments
Several in vitro experiments have been published aiming to determine the effect of silibinin and its derivatives on liver 
tumor cells, particularly HepG2, HuH7 hepatocytes, and Hep3B cells. Multiple studies typically include the measurement 
of cytotoxicity/proliferation using the MTT assay. Analyzing the results from 14 of these publications (cited in Table 1), 
the estimated average IC50 value of pure silibinin reached approximately 230 µM in HepG2 cells after 24 hours of 
exposure (Figure 6). Fewer publications are available for HuH7 and Hep3B cells, however, the cytotoxic profiles seem to 
be similar as for HepG2 cells. In the case of non-tumor mouse cell lines AML12 and FL83B and primary rat hepatocytes, 
the IC50 value exceeds 300 µM. The original findings and relevant citations are described in Table 1. These results show 
that in human cancer cell lines, silibinin inhibited growth, promoted apoptosis, suppressed HIF-1α accumulation, 
activated Akt, reduced VEGF, and improved pyroptosis.82 Silibinin also affected liver cell metabolism by regulating 
triglycerides, nitric oxide, oxidative stress, glucolipid metabolism and reduced lipid accumulation.43 Importantly, 
silibinin was able to reduce the genotoxic effect of Benzo[a]pyrene, bleomycin, and aflatoxin B1.83 In non-cancerous 
human cells, silibinin was shown to reduce ROS production and inhibit the pro-fibrogenic actions of hepatic stellate cells 
(HSC) by reducing mRNA levels of TGF-β1, COL1A1, TIMP-1, and MMP-2.46 Silibinin also inhibited the proliferation 
and motility of cells and de novo synthesis of extracellular matrix components. Similar effects were observed in animal 
cells, especially mouse lines and mouse and rat primary hepatocytes.

In vivo Experiments
Based on the results of in vitro experiments, in vivo studies are designed basically according to two main criteria – used 
silibinin drug and administration route. The used substance is either pure silibinin or modified silibinin (most often 
a water-soluble derivative or a combination of phospholipids). The methods of drug administration involve per os (either 
supplemented by diet or by gavage), intraperitoneal, and intravenous applications. Performing administration route per 
os, the average applied dose was 150 mg/kg applied at average of 25 doses, with approximately 2700 mg/kg total dose of 

Figure 5 The number of publications since 2000, according to the PubMed database, in which the word silymarin, silibinin, or taxifolin is mentioned. On average, there have 
been almost 200 new publications with silymarin, 100 with silibinin, and 50 with taxifolin per year since 2000. However, since 2014, the number of new publications has 
increased significantly, with an average of almost 280 new publications with silymarin, 140 with silibinin, and 80 with taxifolin being published annually.
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Table 1 The Effect of Silibinin on Human and Rodent Cancerous or Noncancerous Cells

Model Drug Dosage of 
silibinin

Time Finding Ref

Human cancer cells

HepG2 Silibinin 0–100 µM 

(0–48 µg/mL)

24, 48, 

72 h

Silibinin regulated triglycerides, nitric oxide, oxidative stress and glucolipid metabolism in 

HepG2 cells.

[43]

HepG2 Phosphate-linked silibinin dimers 0–100 µM 
(0–48 µg/mL)

24 h Silibinin dimers have lower toxicity and higher anti-oxidant activity than pure silibinin. [80]

HepG2 Silibinin 0–100 µM 

(0–48 µg/mL)

24 h Silibinin improved pyroptosis in steatotic HepG2 cells and inhibited activation of the NLRP3 

inflammasome.

[82]

HepG2 Silibinin 0–200 µM 

(0–96 µg/mL)

24 h Silibinin reduced the genotoxic effect induced by benzo[a]pyrene, bleomycin and aflatoxin  

B1.

[83]

HepG2 Silibinin 0–100 µM 
(0–48 µg/mL)

24 h Silibinin inhibited RSL3-induced cell death. [84]

HepG2 Silibinin; 

Silibinin-loaded liposome

0–200 µM 

(0–96 µg/mL)

24 h Silibinin liposomes had better effects in alleviating lipid metabolism disorders, insulin 

resistance, and inflammation than did silibinin alone.

[85]

HepG2 Silibinin 0–529 µM 

(0–255 µg/mL)

24, 48 h Silibinin was cytotoxic for non-cancerous cells, but had a proliferative effect on cancerous 

HepG2.

[86]

HepG2 Silibinin 0–415 µM 
(0–200 µg/mL)

24, 48, 
72 h

Silibinin dose-dependently inhibited the viability of HepG2 cells. [87]

HepG2 Silibinin- 2-hydroxypropyl-β- 

cyclodextrin nanoparticles; silibinin

0–1000 µM 

(0–482 µg/mL)

48 h Nanoparticles had a higher solubility and toxicity than pure silibinin. [88]

HepG2 Silibinin- multiwalled carbon 

nanotubes

0–104 µM 

(0–50 µg/mL)

72 h Silibinin nanoparticles showed reduced cytotoxicity against free SB. [89]

HepG2 Silibinin 0–250 µM 
(0–120 µg/mL)

24 h Silibinin reduced the cytotoxic effect of lasalocid on HepG2 cells. [90]

HepG2 Silibinin 0–200 µM 

(0–96 µg/mL)

12, 24, 

48 h

Silibinin reduced tumor cell adhesion, migration, GSH levels, and total antioxidant capability 

and increased the apoptosis and ROS.

[91]

HepG2 Silibinin 0–75 µM 

(0–36 µg/mL)

24, 48, 

72 h

Silibinin could inhibit cell proliferation and invasive potential of HepG2 cells. [92]

HepG2 Silibinin 0–100 µM 

(0–48 µg/mL)

48h Silibinin had a protective effect on cells by preventing ethanol- or acetaldehyde-induced 

apoptosis.

[93]

HepG2; Huh7 Silibinin 0–518 µM 
(0–250 µg/mL)

24 h Silibinin inhibited the growth of HepG2 and Huh7 human HCC cell lines. [94]

HepG2; Huh7; Bel; MHCC; 

LM-3; SMMC-7721

Silibinin 0–200 µM 

(0–96 µg/mL)

72 h The combination of silibinin and sorafenib has been shown to strongly inhibit the 

proliferation of various HCC cells, while also induce significant apoptosis.

[94]

HepG2; Huh7; PLC/PRF5; 

Hep3B; SNU

Silibinin 0–200 µM 

(0–96 µg/mL)

72 h Combining sorafenib or gefitinib with silibinin enhanced the growth-inhibiting effects of 

both drugs.

[95]

https://doi.org/10.2147/D
D

D
T.S483140                                                                                                                                                                                                                               

D
o

v
e

P
r
e

s
s
                                                                                                                                     

D
rug D

esign, D
evelopm

ent and Therapy 2024:18 
4638

Selc et al                                                                                                                                                              
D

o
v

e
p

r
e

s
s

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Huh7, HepG2, PLC/PRF/5, 
and Hep3B

Silibinin 0–240 µM 
(0–116 µg/mL)

24 h Silibinin significantly reduced the growth of all cells, promoted apoptosis of HuH7 cells, has 
anti-angiogenic effects and reduced growth of HuH7 cells.

[96]

HepG2; Hep3B Silibinin 0–300 µM 

(0–145 µg/mL)

12, 24, 

48, 72 h

Silibinin strongly inhibited growth of both cells with an apoptosis induction in Hep3B cells. [97]

HepG2; Hep3B Silibinin 0–400 µM 

(0–193 µg/mL)

12, 24, 

36 h

Silibinin induced apoptosis in cells due to up-regulated autophagy and/or reduced glycolysis. [98]

Hep3B Silibinin 0–500 µM 
(0–241 µg/mL)

4 h Silibinin suppressed HIF-1α accumulation, activated Akt, reduced VEGF. [99]

Huh7.5 Silibinin; Legalon 80 µM 

(38.60 µg/mL)

48 h Silibinin was more toxic than Legalon. Both silibinin and Legalon inhibit HCV infection. [51]

Huh7 Polyvinylpyrrolidone-silibinin 

nanoparticles

0–200 µM 

(0–96 µg/mL)

Silibinin nanoparticles effectively reduced oxidative stress and HCV transmission and 

infection.

[100]

Huh7 Silibinin 0–7.5 µM 
(0–3.6 µg/mL)

24, 72, 
144 h

Silibinin reduced the free fatty acid-induced production of ROS in cells. [101]

Human non-cancer cells

LX-2 Silibinin 0–207 µM 

(0–100 µg/mL)

48 h Silibinin had higher antiproliferative effects than silymarin and reduced TGF-β1 release, 

COL1A1, TIMP-1, and MMP-2 mRNA levels.

[46]

LX-2 Silibinin 0–100 µM 

(0–48 µg/mL)

24, 96 h Silibinin inhibited LX-2 cell proliferation in a dose- and time-dependent manner by 

upregulating the protein expressions of p27 and p53.

[47]

LX-2 Silibinin 0–7.5 µM 
(0–3.6 µg/mL)

24, 72, 
144 h

Silibinin reduced cell proliferation and the free fatty acid-induced production of ROS in 
cells.

[101]

LX-2 Silibinin 0–100 µM 

(0–48 µg/mL)

24 h Silibinin reduced liver damage by inhibiting the activation of hepatic stellate cells and 

decreasing profibrotic genes.

[102]

Primary HSC Silibinin 0–100 µM 

(0–48 µg/mL)

24 h Silibinin inhibited pro-fibrogenic actions of HSC, cell proliferation, cell motility, and de novo 
synthesis of extracellular matrix components.

[45]

Human primary hepatocytes Legalon 0–20 µM 
(0–10 µg/mL)

Up to 
14 days

Legalon benefited hepatocytes during ethanol exposure and stimulated protein synthesis in 
cells without ethanol.

[103]

Animal cancer cells

Hepa 1–6; H22 Silibinin 0–200 µM 

(0–96 µg/mL)

72 h The combination of silibinin and sorafenib has been shown to inhibit the proliferation of 

various HCC cells strongly and induce significant apoptosis.

[94]

Hep-55.1C Silibinin 311 µM 

(150 µg/mL)

24, 48, 

72 h

Silibinin exerted important anticarcinogenic effects, including the activation of TRAIL death 

receptor apoptotic signaling pathway

[104]

H4IIE Silibinin 10 µM 
(4.8 µg/mL)

24 h Silibinin inhibited cytochrome p4502E1 induction, ethanol metabolism and ROS generation. [105]
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D
rug D

esign, D
evelopm

ent and T
herapy 2024:18                                                                             

https://doi.org/10.2147/D
D

D
T.S483140                                                                                                                                                                                                                       

D
o

v
e

P
r
e

s
s
                                                                                                                       

4639

D
o

v
e

p
r
e

s
s
                                                                                                                                                              

Selc et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 (Continued). 

Model Drug Dosage of 
silibinin

Time Finding Ref

Animal non-cancer cells

FL83B Silibinin 0–800 µM 
(386 µg/mL)

24 h Silibinin inhibited the expression of HMGCS2 and NF-kB, and prevented the nuclear 
translocation of NF-kB.

[42]

AML12 Silibinin 0–529 µM 

(0–255 µg/mL)

24, 48 h Silibinin was cytotoxic for AML12 cells, but had a proliferative effect on cancerous cells. [86]

AML12 Silibinin; PLGA/Silibinin 

Nanoparticles

0–200 µM 

(0–96 µg/mL)

24, 48 h PLGA/silibinin nanoparticles improved efficacy and protective properties in DTIC-induced 

hepatotoxicity compared to free silibinin.

[106]

Normal rat hepatocytes Silibinin 0–518 µM 
(0–250 µg/mL)

24 h Silibinin had no effect on non-tumor cells, at the highest concentration it was less toxic 
than the S. marianum total extract.

[52]

Normal rat hepatocytes Silibinin dihemisuccinate 0–2000 µM 

(0–965 µg/mL)

1.5, 

2.5 h

Silibinin reduced allyl alcohol- or t-butyl hydroperoxide-induced lipid peroxidation, but at 

a 200x higher concentration than silymarin.

[53]

Rat hepatic stellate cells Silibinin 0–100 µM 

(0–48 µg/mL)

Silibinin reduced rat hepatic stellate cell proliferation, but had no effect on their viability, 

morphology, or cytoskeletal architecture.

[107]

Rat primary hepatocytes Silibinin 0–260 µM 
(0–125 µg/mL)

24, 36 h Silibinin prevented an ochratoxin A, TNF-α /actinomycin D, and H2O2 mediated apoptosis. [108]

Mouse primary hepatocytes Silibinin 0–160 µM 

(0–77 µg/mL)

24 h Silibinin protected acetaldehyde induced apoptosis but not ethanol-induced death. [109]

Rat primary Kupffer cells Silibinin (Madaus) 0–200 µM 

(0–96 µg/mL)

Up to 

24 h

Silibinin inhibited leukotriene B4 formation (IC50 value of 15 μmol/L) by Kupffer cells, which 

contributes to its hepatoprotective properties.

[110]

Abbreviations: LO2, human hepatic cell line; HepG2, human hepatocellular carcinoma cell line; Hep-55.1C, mouse hepatocellular carcinoma cell line; H4IIE, rat hepatoma cell line; Hep3B, human liver adenocarcinoma cell line; Huh7, 
hepatocellular carcinoma cell line; PLC/PRF/5, Alexander hepatoma cell line; LX-2, human hepatic stellate cell line; FL83B, mouse normal hepatocyte cell line; SNU, human HCC cell lines SNU387, SNU398, SNU449, SNU475, and 
SNU761; HSC, hepatic stellate cells.
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applied silibinin. Intraperitoneal administration was performed at an average of 8 doses with the total injected dose of 
silibinin approximately 350 mg/kg. Intravenous administration resulted in 40 mg/kg of total injected silibinin applied at 
an average of 4.5 doses. A more detailed summary of individual experiments, concentrations of silibinin, and adminis
tered doses can be found in Supplementary Table 1. The differences between the doses of pure silibinin and modified 
silibinin were not significant (Figure 7). The original findings and relevant citations are described in Table 2.

Figure 6 The cell viability/reduction rate of MTT dye after 24 hours of exposure to silibinin in cancerous HepG2 (A), Huh7 (B), Hep3B (C) or noncancerous AML12, FL83B 
(D), LX-2 (F), human (A–C, F) or animal (D) cell lines or primary animal hepatocytes (E). The gray lines represent the measurements from the values published in articles. 
The red line represents the Lorentzian (Cauchy) model of nonlinear regression from grey lines with a 95% confidence level. Citations for selected cell lines and time point 
24h are available in Table 1.
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Silibinin in vivo exhibited a range of hepatoprotective effects, making it a promising therapeutic agent for various 
liver diseases. It activated macrophages and suppressed necroptosis and necroinflammation, while simultaneously 
reduced serum liver enzyme levels and improved histological status. This reduction in liver enzymes depends on the 
type of silibinin molecule and the route of administration. Serum ALT and AST levels are least reduced by pure silibinin 
administered intravenously, while modified silibinin administered intravenously reduced liver disease the most 
(Figure 8A and B). If the decrease in ALT and AST levels when calculating the total dose given to the animal is 
considered, it can observed that intravenously administered modified silibinin is about 25 times more effective than orally 
administered pure silibinin, and 5 times more effective than intraperitoneally administered pure silibinin (Figure 8C 
and D).

Clinical Studies
Clinical studies using silibinin started in 1980–1981 when the use of Legalon (silibinin-C-2’,3-dihydrogen succinate, 
disodium salt) was investigated in 18 cases of Amanita phalloides intoxication. It has been found that the intravenous 

Figure 7 The total dose of silibinin was calculated as a single dose of silibinin multiplied by number of administrations as given in respective publications. Each dot represents 
one in vivo experiment with silibinin, the grey dot represents pure silibinin, the green dot corresponds to water-soluble silibinin, the red dot represents the combination with 
phospholipids, the blue dot represents silibinin nanoparticles, and the yellow dot represents other combinations (with vitamin E, Puert tea or collagenase I). The lines 
represent mean ± SEM. All publications are mentioned in Table 2. Shapiro–Wilk normality test was used to test distribution. Statistical differences are calculated by unpaired 
t-test with Welch’s correction. The original findings and relevant citations are described in Table 2 and Supplementary Table 1.
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Table 2 The Effect of Silibinin on Animals in vivo

Model Drug Dosage Timeline Finding Ref

Oral administration

BALB/c mice (male) Silibinin / Silibinin-phospholipid 
complex

25 mg/kg 24 h before and 
2 h after D-GalN 

+LPS treatment

Silibinin-phospholipid complex activated macrophage and suppressed of necroptosis and 
necroinflammation, while the hepatoprotective character of this compound was also 

manifested by the decrease in serum liver enzyme levels and improvement of 

histological status.

[111]

BALB/c mice 

(female)

Silibinin nanoparticles/ silibinin 

nanoparticles with 

ursodeoxycholic acid/ silibinin

1 / 10 

mg/kg

Once a day for 30 

days

In a mouse model of acute phase Schistosomiasis mansonii infection, silibinin loaded solid 

lipid nanoparticles with/ without ursodeoxycholic acid decreased serum level of ALT.

[112]

C57BL/6 mice Silibinin 100 mg/kg Once a day for 

5 weeks

Lrp6(±) mice showed hypofunction in Wnt/β-catenin-Cyp2e1 signaling pathway 

resulting in reduced sensitivity to silibinin treatment.

[113]

C57BL/6 mice 
(male)

Silibinin 10 / 20 mg/kg Once a day for 
6 weeks

Silibinin regulated the CFLAR-JNK pathway to prevent NASH by activating CFLAR 
expression and inhibiting JNK phosphorylation. It also up-regulated NRF2 expression to 

modulate antioxidative and pro-oxidative enzymes and relieve hepatic oxidative stress 

injury.

[114]

C57BL/6 mice 

(male)

Silibinin 63 mg/kg Once a day for 14 

days

Silibinin treatment decreased serum ALT and AST and regulated the expression level of 

inflammatory cytokines in the liver of mice with acute alcohol exposure.

[115]

C57BL/6 mice 

(male)

Silibinin 20 mg/kg Once a day for 

8 weeks

Silibinin reduced serum ALT activity and levels of liver MDA and TG, improved liver 

histological findings, changed composition and relative content of serum lipids, levels of 

serum bile acids and gut microbiota.

[116]

C57BL/6 mice 

(male)

Silibinin 25 mg/kg Once a day for 7 

days

Silibinin effectively reduced the levels of serum ALT and AST, and also hepatic necrosis 

caused by CCl4.

[117]

C57BL/6 mice 
(male)

Silibinin 48 mg/kg 12 weeks In mice with non-alcoholic fatty liver disease induced by a high-fat diet, Silibinin 
effectively reduced weight and lipid accumulation.

[118]

C57BL/6J mice 

(male)

Silibinin capsules alone (silibinin 

content: 14%)/ combined with Pu- 
erh tea extract

86 mg/kg Once a day for 

6 weeks

Silibinin in combination with Pu-erh tea extract suppressed steatosis, reduced serum 

and hepatic TG levels and serum liver enzymes activities, inhibited oxidative stress, 
improved cholesterol homeostasis and inhibited fat synthesis more efficiently than 

silibinin alone.

[119]

C57BL/6J mice 
(male)

Silibinin/ 2 Silibinin Schiff base 
derivates (SS and ST)

50 or 100 mg/kg Once a day for 7 
days

Silibinin and its derivatives improved liver markers, reduced inflammation, apoptosis, 
and macrophage infiltration, while increasing anti-inflammatory factors. These effects 

were dose-dependent and more significant in the case of silibinin derivatives.

[120]

ICR mice (male) Silibinin 100 mg/kg Once a day for 3 
days

In a mouse model of tert-butyl hyperoxide-induced liver injury, silibinin showed 
a hepatoprotective effect in terms of reducing serum ALT and AST levels.

[121]

Kunming mice 

(female)

Silibinin 300 mg/kg Once a day for 3 

days

Silibinin improved liver enzymes, histopathological changes, and reduced expression of 

inflammatory genes in acetaminophen-induced liver injury.

[122]
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Table 2 (Continued). 

Model Drug Dosage Timeline Finding Ref

Mice (male) Silibinin/ silibinin-loaded 

nanostructured lipid carriers

100 or 200 mg/ 

kg

Once a day for 30 

days

Silibinin-loaded nanostructured lipid carriers reduced liver injury, showing dose- 

dependent improvements in hepatic TNF-α level, lipid peroxidation, liver enzyme levels, 

SOD and CAT activity, GSH content, total antioxidant activity and liver histological 
findings, compared to free silibinin.

[123]

Sprague-Dawley rats 

(male)

Siliphos 200 mg/kg Once a day for 

5 weeks

Silibinin treatment improved liver steatosis, inflammation, plasma insulin, TNF-α and 

decrease level of O2
∙− release.

[40]

Sprague-Dawley rats 

(male)

Silibinin 22.8 mg/kg 4 weeks Silibinin improved ALT, TG level, SOD activity and level of SREBP-1c and ACC more 

than 18α-and 18β-Glycyrrhizic acid.

[124]

Sprague Dawley rats 
(male)

Silibinin 100 mg/kg Once a day for 21/ 
33 days

Silibinin prevented histopathological alterations in the liver, reduced liver damage, and 
relieved oxidative stress.

[125]

Sprague Dawley rats 

(male)

Silibinin 26.25 mg/kg Once a day for 

6 weeks

Silibinin reduced body fat, improved liver function and glucose levels, and increased 

expression of ATGL in adipose tissue in rats with non-alcoholic fatty liver disease.

[126]

Sprague Dawley rats 

(male)

Silibinin nanoparticles / silibinin 50 / 100 / 

200 mg/kg

Once a day for 

3 weeks

Silibinin nanoparticles manifested a better pharmacokinetic profile than the pure 

silibinin. In a rat model of CCl4-induced hepatotoxicity, nanoparticles reduced the 

serum levels of ALT, AST, ALP and improved the histological findings of the liver.

[127]

Sprague Dawley rats 

(male)

Silibinin 26.25 mg/kg Once a day for 

6 weeks

In a rat model of NAFLD, silibinin reduced serum triglycerides and liver enzymes levels, 

decreased amount of MDA, elevated content of GSH and SOD, enhanced expression of 

adiponectin, suppressed expression of resistin and improved hepatic histological 
findings.

[128]

Sprague Dawley rats 

(both sexes)

Siliphos / silibinin 25–800 mg/kg Once a day for 3 

days/ single dose

In rat models of hepatic injury, Siliphos reduced serum ALT and AST activities in a dose- 

dependent manner.

[129]

Sprague Dawley rats 

(male)

Silibinin 45 mg/kg Once a day for 

8 weeks

Silibinin decreased the levels of ALT, AST, ADH and MDA, raised the amount of ALDH, 

SOD and GSH, promoted hepatic glycogen accumulation, reduced lipid accumulation, 

or improved liver histological findings in a rat model of chronic alcoholic liver injury.

[130]

Albino rats of 

Wistar strain(male)

Silibinin 75 mg/kg Once a day for 

4 weeks

Silibinin reduced liver enzyme levels, DNA damage, inflammation, necrosis, and 

vacuolation of hepatocytes in arsenic-exposed rats.

[39]

Wistar rats 
(male)

Silibinin 5 mg/kg Every other day 
from week 1 to 

week 25

Silibinin suppressed HCC cell proliferation, oxidative stress, Wnt/β-catenin, the HGF/ 
cMET, and PI3K/Akt/mTOR signaling pathways.

[52]

Wister rats (female) Silibinin 2000 mg/kg Single dose LD50 of silibinin is higher than 2000 mg/kg. No morbidity or mortality was observed in 
animals except for changes in renal function test parameters and lipid profile.

[131]

Wistar rats (female) Silibinin 100 mg/kg Once a day for 7 

days

Silibinin reduced serum NO, MPO and ALT levels, and enhanced serum and tissue SOD 

activity in a rat model of diazinon-induced hepatotoxicity.

[132]
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Wistar rats (both 
sexes)

Silibinin 100 mg/kg Once a day for 
2 weeks

Silibinin reversed liver damage caused by N-nitrosodimethylamine in rats by reducing 
elevated serum liver enzymes, increasing glutathione levels and its metabolizing 

enzymes, raising vitamin C and E levels, and improving histological findings of the 

affected organ.

[133]

Wistar rats (both 

sexes)

Silibinin 100 mg/kg Once a day for 45 

days

Zivovudine-silibinin co-treatment improved liver function and histology better than 

zivovudine alone.

[134]

Wistar rats (both 
sexes)

Silibinin 100 mg/kg Once a day for 45 
days

Silibinin co-treatment reduced liver enzyme activities, protein and bilirubin content, 
suppressed lipid peroxidation, increased glutathione and vitamin E levels, elevated SOD, 

CAT and ATPases activities, and improved liver histology.

[135]

Wistar rats 
(both sexes)

Silibinin 100 mg/kg Once a day for 45 
days

Silibinin alleviated hepatotoxicity induced by zidovudine and isoniazid by reducing serum 
liver enzyme activities and bilirubin levels, rectifying the expression of metabolizing 

enzymes, and lipid enzymes.

[136]

Wistar rats (female) Silibinin 100 mg/kg Once a day for 14 
days

In a rat model of itraconazole-induced hepatotoxicity, silibinin reduced liver tissue NO, 
MPO, serum ALT and AST levels, enhanced SOD and GSH-Px values and improved liver 

histological findings.

[137]

Wistar rats 
(male)

Siliphos 400 mg/kg Once a day for 7 / 
14 weeks

Siliphos effectively prevented severe oxidative stress and preserving hepatic 
mitochondrial bioenergetics in nonalcoholic steatohepatitis.

[138]

Wistar rats Silibinin 100 / 200 mg/kg Once a day for 21 
days

In a rat model of streptozotocin-induced diabetes, silibinin reduced ALT level, 
prevented insulin decrease and suppressed elevation of blood glucose concentration.

[139]

Psammomys obesus 

(both sexes)

Silibinin 100 mg/kg Once a day for 

8 weeks

Silibinin reduced weight gain, glucose, insulin, triglycerides and cholesterol content, 

SOD and plasma liver enzymes activities and MDA level, increased plasma total 
antioxidant status, content of GSH and GPx activity.

[140]

Hamsters (male) Silibinin-phospholipid complex 50 / 100 mg/kg Once a day for 

8 weeks

In a hamster model of high fat diet-induced NAFLD, silibinin-phospholipid complex 

suppressed elevation of plasma ALT, AST and insulin levels, decreased hepatic 
accumulation of triglycerides, reduced de novo lipogenesis.

[141]

Beagle dogs Silibinin nanosuspension 20 mg/kg Single dose Silibinin nanosuspensions reduced serum levels of AST, ALT, ALP, total bilirubin and 

GGT, elevated SOD content, and improved liver histological findings in a dog model of  
CCl4-induced hepatic injury.

[142]

Intraperitoneal administration

BALB/c mice Silibinin 10 mg/kg Once 1 h before/ 

after abrin 
treatment

Silibinin improved the survival rate after abrin intoxication by reducing serum liver 

enzyme levels, restoring antioxidant capacity, and suppressing inflammation and 
apoptosis.

[143]

BALB/c mice (male) Legalon SIL 25 mg/kg 4 doses Silibinin reduced liver enzyme levels, DNA fragmentation, and inflammation by 

modulating immune response, inhibiting pro-inflammatory cytokines, and decreases 
iNOS levels.

[144]

C57BL/6J mice 

(male)

Silibinin 10 mg/kg Single dose Silibinin protected DTIC-induced liver injury, but less than i.v. administration of silibinin 

nanoparticles.

[106]
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Table 2 (Continued). 

Model Drug Dosage Timeline Finding Ref

C57BL/6J mice 

(female)

Silibinin 40 mg/kg From day 8 to 15 Silibinin decreased AST, ALT, TG, and T-CHO levels, the levels of IL-1β, IL-6, and TNF-α 
were elevated after silibinin treatment.

[145]

C57BL/6J mice 

(male)

Silibinin 1 mg/kg Once a day for 

3 weeks

In mouse model of non-alcoholic steatohepatitis, silibinin decreased lipid accumulation 

and serum liver enzyme levels, and reduced hepatic inflammation severity by inhibition 

of NF-kB pathway dependent on O-GlcNAcylation.

[146]

C57BL/6J mice 

(male)

Silibinin 60 mg/kg Single dose In a mouse model of galactosamine/lipopolysaccharide-induced liver injury, silibinin 

suppressed activity of ALT, however its oxidized form cut down even AST and LDH 

activities.

[147]

ICR mice (male) Silibinin 100 mg/kg Single dose In a mouse model of tert-butyl hyperoxide-induced liver injury, silibinin showed 

a hepatoprotective effect in terms of reducing serum ALT and AST levels.

[121]

ICR mice (male) Silibinin 5 mg/kg Every 6 hours for 
48 hours

Silibinin did not lower serum levels of AST and ALT, nor reduced hepatonecrosis. [148]

Kunming mice (both 

sexes)

Silibinin 20 mg/kg Every 6 hours for 

48 hours

Silibinin treatment led to a significant reduction in serum ALT and AST levels, a notable 

increase in SOD and CAT activities, and a considerable decrease in MDA content in the 
liver when compared to the control group treated with α-AMA.

[149]

Kunming mice Silibinin 150 mg/kg Single dose Silibinin administered after induction of liver injury altered the levels of LDH, SOD, 

MDA and GSH-Px.

[150]

SPF-class Kunming 

mice (both sexes)

Silibinin 20 mg/kg/day Every 6 hours for 

48 hours

Silibinin treatment reduced serum ALT and AST levels, lowered mortality rates by 

20–40%, and increased liver antioxidant activity.

[151]

Swiss albino mice 
(male)

Silibinin liposomes 15 mg/kg Single dose Silibinin liposomes preserved liver function following Act toxicity and lowered the levels 
of sera transaminases.

[34]

Swiss albino mice Silibinin 400 mg/kg Single dose A day after silibinin treatment there was decrease in serum ALT level, and elevation in 

PPAse activity in a mouse model of microcystin-LR-induced liver damage. In addition, 3 
days post-treatment even decreased levels of AST and LDH were observed.

[152]

BKS.Cg-m 

+/+Leprdb/J (db/db) 
mice

Silibinin dihydrogen succinate 20 mg/kg Once a day for 

4 weeks

Silibinin treatment reduced liver injury in NASH by regulating lipids, suppressing 

oxidative stress-induced lipotoxicity and inhibiting NFκB activation.

[44]

BKS.Cg-m+/+ 

Leprdb/J (male)

Silibinin dihydrogen succinate 20 mg/kg For 4 weeks Silibinin improved liver steatosis, hepatocyte ballooning, and lobular inflammation in 

MCD-fed db/db mice.

[153]

Wistar rats 

(male)

Silibinin 30 mg/kg 2 doses In a rat model of ischemia-reperfusion injury, silibinin modulated expression of 

vasoregulatory genes in a positive way, decreased serum liver enzyme and hyaluronic 

acid levels, and alleviated histological findings related to tissue damage.

[154]

Wistar rats 

(male)

Silibinin 100 mg/kg Once a day for 

2 weeks

Silibinin effectively reduced the ASK1/p38 MAPK signaling pathway in rats with 

hepatotoxicity. It does so by decreasing ASK1 expression through the antioxidant 
defense system. Silibinin’s curative form is more effective than its prophylactic form in 

improving liver function and structure.

[155]
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Wistar rats 

(male)

Silibinin 60 mg/kg 2 doses In a rat model of ischemia-reperfusion injury, silibinin suppressed expression of 

mitofusin-1 and optical atrophy-1, decreased serum liver enzyme levels, improved 

hepatic histological findings, and attenuated mitochondrial destruction.

[156]

Wistar rats (female) Silibinin 25 / 50 / 100 mg/ 

kg

Once a day for 5 

days

Silibinin at a dose of 50 mg/kg showed hepatoprotective character in methotrexate- 

induced hepatotoxicity in rats via antioxidant effect.

[157]

Wistar rats 
(male)

Silibinin-dihydrogen succinate; 100 mg/kg Once a day for 5 
days

Silibinin pretreatment effectively reduced liver injury in rats after partial hepatectomy. 
AST levels were slightly decreased, while ALT levels were significantly reduced.

[158]

Wistar rats 

(male)

Silibinin alone/ combined with 

vitamin E

50 mg/kg Single dose before 

and three times 
after surgery

Silibinin combined with vitamin E enhanced natural free radical scavenging activity of the 

liver and suppressed serum liver enzyme levels in a rat after partial hepatectomy more 
significantly than silibinin alone.

[159]

Wistar rats 

(male)

Silibinin dihydrogen succinate 30 mg/kg 2 doses In a rat model of ischemia-reperfusion injury, silibinin attenuated expression of NF-κB 

and NLRP3, reduced serum liver enzyme activities, and improved histological findings 
related to liver tissue damage.

[160]

Wistar rats 

(male)

Chitosan embossed silibinin 

nanoparticles

50 mg/kg Once a day for 

4 weeks

Chitosan embossed silibinin nanoparticles lowered levels of AST, ALT and ALP, blood 

glucose and serum cholesterol content, increased SOD and improved hepatic 
histological findings in a model of streptozotocin-induced diabetes.

[161]

Sprague-Dawley rats 

(both sexes)

Silibinin 50 mg/kg Once a day for 7 

days

Silibinin reduced serum AST and ALT levels as well as improved histopathological 

changes more effectively than Plantago major L.

[162]

Sprague-Dawley rats Silibinin 50 mg/kg Once a day for 7 

days

Silibinin treatment showed more improvement in ALT and SOD levels than bee pollen in 

treating CCl4-induced hepatic damage in rats.

[163]

Intravenously administration

BALB/c mice Silibinin-BSA nanoparticles and 
free silibinin

20 mg/kg Single dose Silibinin nanoparticles accumulated in the liver and upregulate the Nrf2/ARE signaling 
pathway, reducing liver enzyme levels, apoptosis and necrosis rates, and improving 

survival rates.

[164]

C57BL/6J mice 
(male)

Silibinin-loaded PLGA- 
nanoparticles

10 mg/kg Single dose Silibinin nanoparticles protected DTIC-induced liver injury more significant than i.v. 
administration of pure silibinin.

[106]

C57BL/6 mice 

(male); Sprague- 
Dawley rats (male)

Albumin-based silibinin 

nanocrystals/ silibinin

10 / 20 mg/kg Twice a week for 

2 weeks

Silibinin-albumin nanoparticles showed higher bioavailability than free silibinin and 

effectively reduced fibrosis in mice with hepatic fibrosis.

[165]

C57BL/6 mice 

(male)

Silibinin / silibinin-loaded core- 

polymeric micelles

4 mg/kg Twice a week for 

4 weeks

Silibinin-loaded polymeric micelles reduced both ALT and AST levels in serum. [166]

ICR mice (male) Silibinin / silibinin loaded 

PEGylated liposomes

12.5 mg/kg Once a day for 3 

days

Based on the ability to reduce serum levels of AST and ALT and improve histological 

findings after liver injury after CCl4-induced liver injury, silibinin loaded liposomes 

showed a stronger hepatoprotective effect than pure silibinin.

[167]

Kunming mice 

(male)

Collagenase I and/or silibinin 

multilayered nanoparticles

5 mg/kg Twice a week for 

2 weeks

Multilayered nanoparticles encapsulating collagenase and silibinin can break down dense 

collagen stroma, while inhibiting activated hepatic stellate cells or down-regulating 

production of type I collagen and are preferentially taken up by hepatic stellate cells.

[168]

(Continued)
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Table 2 (Continued). 

Model Drug Dosage Timeline Finding Ref

Kunming mice 
(male)

Human serum albumin 
nanoparticle loading silibinin- 

phospholipid complex

15 / 30 mg/kg Once a day for 10 
days

Human serum albumin nanoparticle loading silibinin-phospholipid complex showed 
longer retention time in the body. This complex reduced serum ALT and AST activities 

and improved hepatic histological findings in a mouse model of CCl4-induced liver 

injury.

[169]

Kunming mice Silibinin / silibinin nanosuspension 8 mg/kg Twice a week for 

2.5 / 4 weeks

In mouse models of CCl4/ bile duct ligation-induced hepatic fibrosis silibinin 

nanosuspensions decreased ALT and AST levels, downregulated expression of ColI, α- 

SMA, TGF-β and improved liver histological findings.

[170]

Swiss albino mice 

(male)

Silibinin liposomes 15 mg/kg Single dose during 

24 h

Silibinin liposomes preserved liver function following Act toxicity and lowered the levels 

of sera transaminases.

[34]

Swiss albino mice 
(female)

Silibinin sodium hemisuccinate salt 100 mg/kg Single dose Silibinin pre-treatment abrogated adverse histopathological changes in the liver, reduced 
ALT, AST, ACP and GUSB activities in a mouse model of toxin-induced hepatotoxicity.

[171]

Sprague-Dawley rats Silibinin-loaded hyaluronic acid 

micelles / silibinin-loaded micelles / 
silibinin

5 mg/kg Single dose/ twice 

a week for 2/3/ 
4 weeks

Silibinin-HA micelles selectively killed activated HSCs and have an excellent anti-hepatic 

fibrosis effect in vivo with sustained release and good biological safety.

[172]

Beagle dogs Silibinin nanosuspension 20 mg/kg Single dose Silibinin nanosuspensions reduced serum levels of AST, ALT, ALP, total bilirubin and 

GGT, elevated SOD content, and improved liver histological findings in a dog model of  
CCl4-induced hepatic injury.

[143]
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Figure 8 Effect of pure silibinin (grey dot) and modified silibinin (green dot: water-soluble silibinin; red dot: combination with phospholipids; blue dot: silibinin nanoparticles; 
yellow dot: the combination with other supplements) on the serum level of ALT and AST according to the published data. The values are expressed as the ratio of the treated to 
the untreated diseased animal (A and B). 100% - animal model of disease; 0% - healthy animal. Efficacy is expressed as the ratio of ALT or AST to the total administered dose of 
silibinin, normalized to per os pure silibinin as the smallest changes were detected compared to other routes of administration (C and D). Shapiro–Wilk normality test was 
used to test distribution. Statistical differences were calculated by Welch and Brown-Forsythe one-way ANOVA with Dunnett correction. *(p<0.05), **(p<0.01), ***(p<0.001), 
****(p<0.0001). The original findings and relevant citations are described in Table 2 and Supplementary Table 1.
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administration of silibinin, up to 48 hours following mushroom ingestion, was an effective measure in preventing severe 
liver damage.173 Since then, the use of silibinin has been recorded in the US database, where the National Library of 
Medicine currently registers 22 clinical trials related to silibinin, while another 8 trials have been registered in the EU 
Clinical Trials Register. These clinical studies focus apart from the main topic of liver protection on the treatment of 
other different diseases such as lung, brain, prostate, and kidney diseases that also could benefit from silibinin. For this 
review, only studies for the treatment of liver disease (n = 17) are included, and these can be divided into two groups: 

- studies that employed water-soluble derivate of silibinin as the drug (n = 11),
- studies that used the silibinin-phospholipid complex (n = 6). 

The water-soluble derivative of silibinin was represented by Legalon. Just for one study, Silibinin meglumine derivative 
was used.174 Interestingly, 9 out of 11 studies focused on the effects of silibinin derivative on hepatitis C virus 
infection175–178 and one study focused on the clinical testing of Legalon as an antidote for Amanita phalloides poisoning 
(NCT00915681).

Legalon treatment proved to be successful in hepatitis C virus-coinfected patients with previous peginterferon- 
ribavirin treatment failure. The treatment with 5, 10, 15, or 20 mg/kg/day of Legalon for 14 days showed no significant 
adverse events or drug–drug interactions, but importantly, viral load after the two highest dosages was undetectable. This 
suggested silibinin a promising option for patients with HIV/HCV-coinfection.175,176 Moreover, it displayed significant 
antiviral activity also in patients with established HCV recurrence on the graft who did not respond to standard therapies 
and was well tolerated by patients during the peri-transplant period.177,178

The study in which a silibinin derivative – silibinin meglumine – was used was performed in 2016 and involved 
patients with the drug-induced liver damage. Currently, there is no recommended therapy for the treatment of drug- 
induced liver injury, so the study aimed to compare the effect of silibinin meglumine versus patients with only supportive 
treatment or no treatment. In the silibinin group, patients received 450 mg silibinin meglumine oral tablets for 24 days. 
There was a significant resumption rate of ALT and AST in the silibinin group.174

Clinical studies based on silibinin-phospholipid complexes involve silibinin and phosphatidylcholine complex, known 
as Silipide or IdB1016 (Siliphos), or a complex of silibinin, phosphatidylcholine, and vitamin E acetate (α-tocopherol) 
(Realsil), which is in the phase III of clinical testing.73,74,179 Silibinin–phosphatidylcholine complex capsules were found 
to be more effective in providing superior bioavailability compared to conventional silymarin tablets, probably by 
facilitating the transit of the substance across the gastrointestinal mucosa.66,180

An interesting question about a maximum-tolerated dose despite very little to no adverse effects of silibinin treatment 
has not yet been answered. A Phase I study investigated the maximum tolerated dose per day of Siliphos in patients with 
advanced hepatocellular carcinoma and hepatic dysfunction. Three participants enrolled in the trial, consumed 2 g of 
Siliphos per day. By day 56, there was a significant improvement in the liver function abnormalities and inflammatory 
biomarkers of the one patient, but all of them died within 23 to 69 days of enrolling, likely due to hepatic failure. The 
maximum tolerated dose could not be established, and it is unclear whether the deaths were caused by the study drug.181

In a phase I/II study, the effects of Siliphos in patients with chronic hepatitis C and varying degrees of liver fibrosis 
were monitored. After 12 weeks of treatment with Siliphos (120, 240, or 360 mg of silibinin), body iron stores were 
reduced, particularly in patients with stage III or IV fibrosis.182

The effects of the second silibinin-phospholipid complex were investigated in patients with NAFLD. Oral adminis
tration of Realsil (303 mg of silibinin-phospholipid complex, 10 μg of vitamin D, and 15 mg of vitamin E) twice a day 
for 6 months significantly improved various factors estimated in patients such as glycemia, insulinemia, HOMA-IR, ALT, 
C-reactive protein, and thiobarbituric acid reactive substance.183

Different preparation of Realsil (silibinin 94 mg, phosphatidylcholine 194 mg, and vitamin E acetate 50% 89.28 mg) 
improved oxidant/antioxidant status and lipid composition in liver steatosis or steatohepatitis-diagnosed patients. NAFLD 
patients orally receiving Realsil twice a day for 12 months displayed improved steatosis, lobular inflammation, 
hepatocellular ballooning, plasma levels of AST, ALT, or γGT, and insulin level. This provides a solid base for further 
research and development of effective treatments for NAFLD or NASH employing silibinin.73,74
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Administration of Realsil also led to positive results in patients with chronic hepatitis C treated with Pegylated- 
Interferon-α2b and Ribavirin. Patients who received Realsil once daily for 12 months in addition to this conventional 
treatment showed improved liver function and reduced levels of liver scarring markers. The improvement has been 
attributed to the direct effect of Realsil on hepatic stellate cells and its antioxidant properties.179

Legalon is a drug that is currently used in medical practice. However, when it comes to clinical studies, Siliphos and 
Realsil are more commonly studied in non-alcoholic steatohepatitis, non-alcoholic fatty liver disease, and liver fibrosis, 
which are already involved in phase III studies. A list of all clinical trials with silibinin, but not silymarin is given in 
Table 3.

Adverse Effects of Silibinin
Silibinin is very well tolerated, and no serious side effects were observed in clinical or in vivo studies. On the other hand, 
milk thistle ingestion may cause gastrointestinal problems, headaches, skin reactions, neuropsychological events, 
arthralgia, rhinoconjunctivitis, impotence, and anaphylaxis. However, causality is rarely addressed in available reports. 
Adverse effects incidence was approximately equal in milk thistle and control groups in randomized trials.185 As 
mentioned below, the toxicity tests were conducted not only with pure silibinin, but also with Siliphos.

Based on the results of an acute toxicity study in adult female Wister rats, it can be inferred that the LD50 of orally 
administrated pure silibinin is higher than 2000 mg/kg. No signs of morbidity or mortality were observed in animals; 
however, some changes were observed in renal function test parameters and lipid profile (higher bilirubin, creatinine, 
cholesterol, triglycerides, ALT, and AST) and also a significant increase in the weight of rats after 14 days after being 
administered single oral doses of silibinin (2000 mg/kg).131 For the intravenous administration of silibinin, the LD50 dose 
was determined to be 1,056 mg/kg in mice.186

Table 3 List of Clinical Trials Involving Silibinin Therapies for Treating Liver Diseases

Conditions Intervention Phase Recruitment 
Status

Identifier/Reference

Hepatitis C; HIV Legalon 2 Completed ClinicalTrials.gov ID:NCT01816490175

Hepatitis C Legalon 2 Completed ClinicalTrials.gov ID:NCT00684268176,184

Hepatitis C Legalon 2 Prematurely Ended EudraCT number:2012–000281-38

Hepatitis C, chronic Legalon 2/3 Withdrawn ClinicalTrials.gov ID:NCT01871662
Hepatitis C virus recurrence Legalon 2 Terminated ClinicalTrials.gov ID:NCT01518933178

Hepatitis C, chronic Legalon 2 Prematurely Ended EudraCT number:2010–020146-10

Hepatic cirrhosis; hepatitis C Legalon 2 Completed EudraCT number:2012–004442-15
HCV infection Legalon 2 Prematurely Ended EudraCT number:2013–000245-39

HCV recurrence after liver 

transplantation

Legalon 2 Terminated ClinicalTrials.gov ID:NCT01535092177

Amatoxin poisoning Legalon 2 Terminated ClinicalTrials.gov ID:NCT00915681

Drug-induced liver injury Silibinin 

meglumine

Unknown status ClinicalTrials.gov ID:NCT02961413174

Hepatitis C, chronic Siliphos 1/2 Completed ClinicalTrials.gov ID:NCT00055445182

Advanced Hepatocellular Carcinoma Siliphos 1 Completed ClinicalTrials.gov ID:NCT01129570181

Non-alcoholic steatohepatitis Siliphos 2 Completed ClinicalTrials.gov ID:NCT00443079
Non-alcoholic fatty liver disease Realsil Not 

Applicable

Completed ClinicalTrials.gov ID:NCT04640324183

Liver fibrosis Realsil 3 Completed ClinicalTrials.gov ID:NCT01935817179

Steatosis or non-alcoholic 

steatohepatitis

Realsil 3 Completed EudraCT number:2005–000860-2473,74

Abbreviations: ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; BSA, bovine serum albumin; CCl4, carbon tetrachloride; GGT, 
gamma-glutamyltransferase; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HSC, hepatic stellate cells; Legalon, silibinin-C-2’,3-dihydrogen succinate, 
disodium salt; NAFLD, nonalcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PEG, polyethylene glycol; PLGA, poly(lactic-co-glycolic acid); Silipide, 
silibinin-phospholipid complex.
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Toxicology tests performed with Siliphos revealed oral acute toxicity to be >5,000 mg/kg in rats, dogs, and monkeys. 
The 26-week chronic toxicity study confirmed that Siliphos at a dose of 2,000 mg/kg/day was safe in both rats and 
monkeys. Converted, this would be equivalent to a daily dose of 160 g for an adult person (80 kg).72

The Future in Silibinin Nanomaterials
A promising approach for the treatment of liver diseases apart from the water-soluble derivatives of silibinin and 
silibinin-lipid complexes is the use of silibinin nanomaterials.187 Nanomaterial properties offer a favorable platform for 
the improvement of silibinin biocompatibility and targeted tissue enrichment given by higher surface-to-volume ratio or 
amendment of the solubility. Interestingly, it has been shown that silibinin nanoparticles reach almost 2000 times higher 
solubility than pure silibinin at pH 6.8. Moreover, silibinin nanoparticles inhibited the proliferation of HepG2 cells more 
effectively than free silibinin.88 This may be associated to higher accumulation of silibinin - approximately a 100 times 
higher level of silibinin was detected in the liver when administered in the form of nanoparticles.100 Surely, silibinin 
nanoparticles can also be functionalized with another molecule, which can further improve therapeutical effect. For 
example, silibinin-loaded bovine serum albumin nanoparticles resulted in a higher silibinin concentration with a longer 
duration in rat plasma than pure silibinin.164,188 In addition, after intravenous application of albumin-based silibinin 
nanoparticles, there is a significantly higher uptake into activated hepatic stellate cells than inactive ones.165 Other types 
of nanoparticles with confirmed hepatoprotective effects are dextran-phenylboronic acid-silibinin nanoparticles, carboxy
lated multiwalled carbon nanotubes or PLGA nanoparticles.89,106,189 The biodistribution of silibinin nanoparticles is 
primarily directed to the liver, where 50% of the administered dose has been detected after half an hour. After 3 hours, 
around 45% of the administered dose of silibinin nanoparticles was still in the liver.106 A high amount of nanoparticles in 
the liver is a consequence of their natural biodistribution. In mice, usually 23% of nanoparticles from the administered 
dose were found in the liver, 27% in the spleen, 7% in the lungs, 5% in the kidneys, 4% in the heart and 4% in the blood 
following the intravenous application.33 For in vivo models of liver diseases, this is an indisputable benefit, allowing 
passive targeting of the nanoparticles to the organ.

Among all nanomaterials, silibinin-coated gold nanoparticles may represent a suitable approach for the treatment of 
liver diseases. The neutral spherical gold nanoparticles alone were thought to mediate hepatoprotective effects, which 
were confirmed in alcohol-methamphetamine-induced liver injury. Reduction of pro-inflammatory factors, oxidative 
stress, the activity of Kupffer and hepatic stellate cells leading to slowing down of fibrogenesis through modulation of 
signaling pathways AKT/PI3K and MAPK as a result of exposure to gold nanoparticles was confirmed in a rat model.190 

Given that silibinin coating could importantly increase the therapeutic potential of these nanoparticles, silibinin-gold 
nanoparticles might be a promising tool for more effective combating of liver fibrosis. Actually, similar outcome has 
been recently reported for silymarin – gold nanoparticles revealing stronger hepatoprotective effect of silymarin-gold 
nanoparticle platform compared to silymarin and gold nanoparticles alone.31

Conclusion
Silibinin, a major bioactive component of silymarin, has drawn increasing interest from medical scientific fields for its 
potential to meaningfully extend available tools for the prevention and treatment of liver diseases. The disadvantage 
concerning its poor solubility in water and consequent poor bioavailability can be improved by the water-soluble 
derivatives or the complex formation with phosphatidylcholine. The water-soluble Legalon is already approved in 
many European countries. The silibinin-phosphatidylcholine complex Siliphos is recently in Phase 3 testing, confirming 
its significant capability in liver protection and cancer prevention. Moreover, water-soluble derivatives are 5 times more 
effective after intraperitoneal administration and 25 times more effective after intravenous administration than the orally 
administered pure silibinin in reducing ALT and AST levels. This modified silibinin demonstrates higher efficacy even at 
lower total doses. With intraperitoneal administration, on average 10 times lower dose is needed, and with intravenous 
administration, around 100 times less total dose is required to reach the same effect as with oral administration.

Silibinin gold nanoparticles show enormous potential in increasing the biodistribution of silibinin into the liver. In 
some cases, this led to a more effective reduction of ALT and AST levels in rodents than by silibinin-phosphatidylcholine 
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complexes. Such synergistic effects of silibinin and gold nanoparticles could be favorably used for highly efficient 
management of liver disease in future.

Abbreviations
ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; BSA, bovine serum albumin; CCl4, 
carbon tetrachloride; GGT, gamma-glutamyltransferase; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HSC, 
hepatic stellate cells; Legalon, silibinin-C-2',3-dihydrogensuccinate, disodium salt; NAFLD, nonalcoholic fatty liver 
disease; NASH, non-alcoholic steatohepatitis; PEG, polyethylene glycol; PLGA, poly(lactic-co-glycolic acid); Silipide, 
silibinin-phospholipid complex.
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