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Abstract
Geoffrey Burnstock made groundbreaking discoveries on the physiological roles of purinergic receptors and led on P2
purinergic receptor classification. His knowledge, vision and leadership inspired and influenced the international scien-
tific community. I had the privilege of spending over 10 years (from 1985) with Geoff at the Department of Anatomy
and Developmental Biology, initially as a PhD student and then as a postdoctoral research fellow. I regarded him with
enormous admiration and affection. This review on purinergic signalling in the cardiovascular system is a tribute to
Geoff. It includes some personal recollections of Geoff.
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Classification of purine receptors

Geoffrey Burnstock is immortalized in purinergic receptor
classification which he drove through his research and con-
ceptualisation of the functional and molecular evidence. Geoff
recognized the importance of research in the adenosine recep-
tor field and functional differences compared with ATP/ADP
to propose that there are two main families of purinergic re-
ceptors: P1 receptors for adenosine and P2 receptors which can
be activated by purine nucleotides (ATP, ADP) [1]. Geoff fur-
ther proposed that P2 receptors are divided into two function-
ally distinct classes: P2X and P2Y receptors [2]. P2 receptors
are also activated by pyrimidine nucleotides and nucleotide
sugars (UTP, UDP, UDP-glucose) [3]. Adenosine P1 receptors
are divided into A1, A2A, A2B, andA3 subtypes which belong
to the G protein-coupled receptor (GPCR) superfamily [4–6].
The 1990s were a vibrant time in Geoff’s laboratory as Geoff,
together with Eric Barnard and colleagues, cloned the P2Y1
receptor [7] and news emerged about the cloning of the P2Y2

receptor [8] and first P2X receptors [9, 10], which contributed
to the feeling of a gathering momentum in purinergic research.
Adenosine receptors had already been cloned (see [4, 5]).
Geoff’s excitement was palpable and infectious. Based on the
molecular and functional evidence, Geoff proposed that P2
receptors are divided into two structurally and functionally dis-
tinct classes, ligand-gated ionotropic P2X receptors and G
protein-coupled P2Y receptors [11].

There are seven subtypes of P2X receptors (P2X1–7) and
these ligand-gated ion channels are activated by extracellular
ATP. P2X receptors are permeable to cations leading to depolar-
ization and Ca2+ influx through voltage-gated calcium channels
or slower Ca2+-dependent responses [12, 13]. There are eight
subtypes of G protein-coupled P2Y receptors: P2Y1, P2Y2,
P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14. P2Y recep-
tors are activated by a variety of nucleotides including ATP,
ADP, UTP, UDP, and UDP glucose [14–16]. P2Y1, P2Y2,
P2Y4, and P2Y6 receptors couple to Gq proteins and activate
phospholipase C (PLC), leading to an increase in inositol triphos-
phate (IP3) and intracellular Ca2+ levels and activation of protein
kinase C (PKC); P2Y12, P2Y13, and P2Y14 receptors are
coupled to Gi proteins and cause inhibition of adenylyl cyclase
(AC) activity resulting in a reduction in intracellular cyclic aden-
osine monophosphate (cAMP); P2Y11 receptors couple to both
Gs and Gq proteins to activate PLC and AC [15–18].

Purinergic receptors can undergo heteromeric complex for-
mation between the families, e.g. P2Y1 and P2Y2 heteromeric
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association with A1 receptors [19, 20], within the families, e.g.
P2Y1–P2Y12 complex formation [21], and also with other re-
ceptors, e.g. A1 receptors with β1 and β2 adrenoceptors [22].
P1 and P2 receptors are also functionally linked via the actions
of cell surface ectonucleotidases which generate adenosine
from the metabolism of nucleotides released from cells, permit-
ting sequential activation of P2 and then P1 receptors. For ex-
ample, in sympathetic cotransmission, ATP constricts blood
vessels via smooth muscle P2X1 receptors, and its metabolite
adenosine acts as a brake at prejunctional P1 (A1 subtype)
receptors to inhibit neurotransmitter release [15]. Extracellular
nucleotide levels are controlled through their hydrolysis by
families of ectonucleotidases including the ectonucleoside tri-
phosphate diphosphohydrolase (ENTPDase) family which rap-
idly hydrolyses extracellular tri - and diphosphate nucleotides
(includingATP andADP toAMP;UTP andUDP toUMP) and
ecto -5’ -nucleotidase, the main enzyme responsible for the
conversion of AMP to adenosine [23, 24], and also by their
cellular reuptake via plasmamembrane nucleoside transporters.

P1 and P2 receptor expression
in the cardiovascular system

P1 and P2 receptors are widely expressed throughout the car-
diovascular system, and their effects include modulation of
heart function, vascular tone, angiogenesis, and inflammation.
P1 adenosine receptors expressed on the vascular smooth
muscle, endothelium, and heart are generally vasodilator and
cardioprotective [4, 5, 15, 16]. P2X and P2Y receptors are
expressed in the heart and in general have ionotropic effects,
amplify sympathetic neurotransmission, and increase
myocyte contractility [15, 25–28]. The vascular smooth mus-
cle expresses P2X1 receptors which mediate vasocontractile
responses to ATP released as a co-transmitter with noradren-
aline from sympathetic nerves. Pre-junctional purine receptors
include A1 adenosine and P2Y receptors on sympathetic
nerves and P2X2/3 receptors at the central terminals and
axons of sensory nerves [15]. Vasocontractile P2Y2, P2Y4,
and P2Y6 receptors, and in some vessels P2Y14 receptors, are
also expressed in vascular smooth muscle, and vasorelaxant
P2Y1, P2Y2, P2Y4, and P2Y6 receptors are expressed on the
vascular endothelium [15, 16, 29–34]. Endothelial cells also
express P2X4 receptors which contribute to vasodilation dur-
ing shear stress and vascular remodelling [35]. P1 and P2
receptors are also expressed on erythrocytes, platelets, and
immune cells [4, 15, 25].

Roles of purines in the cardiovascular system

Vascular tone regulation: ATP neurotransmission It is now
accepted that ATP is a vasocontractile cotransmitter in

sympathetic nerves in most blood vessels and a vasodilator
non-adrenergic non-cholinergic (NANC) cotransmitter in
some blood vessels. Geoff had discovered that ATP is an
inhibitory neurotransmitter in NANC nerves in gut, and he
later called these and other nerves found to utilize ATP as a
neurotransmitter “purinergic nerves” [36, 37]. This discovery
was important because it provided evidence for physiological-
ly relevant signalling by endogenous extracellular nucleo-
tides. Geoff also proposed that a single nerve may utilize mul-
tiple neurotransmitters including ATP; cotransmission [38].
The relevance of these concepts for the cardiovascular system
is evident in sympathetic cotransmission of ATP with nor-
adrenaline and neuropeptide Y as shown by Geoff and other
researchers in many different blood vessels (see [39, 40]) and
for NANC cotransmission of ATP with nitric oxide in rabbit
portal vein [41, 42].

The receptors involved in sympathetic neurogenic vaso-
constriction to ATP were pharmacologically characterized as
P2X receptors [2]. The use of tissue from P2X1 receptor-
deficient mice later confirmed an involvement of P2X1 recep-
tors, and by implication ATP, in sympathetic cotransmission
[43]. It is now accepted that P2X1 receptors are widely
expressed in vascular smooth muscle and mediate excitatory
junction potentials and vasoconstriction induced by ATP re-
leased during sympathetic cotransmission. There is an in-
creased density of P2X1 receptors at the neuroeffector junc-
tion in arterial smooth muscle and cardiac myocytes; they are
clustered in lipid rafts and adjacent to sympathetic nerve var-
icosities from which neurotransmitter is released by exocyto-
sis [44–46]. At high pressure ATP is the predominant sympa-
thetic neurotransmitter in resistance arteries [47], and elevated
tone of blood vessels also increases the purinergic component
of sympathetic vasoconstriction [48]. The P2X1 receptor rap-
idly desensitizes which terminates the purinergic
vasocontractile response, and receptor sensitivity can be re-
stored following the removal of ATP by its rapid metabolism
by ectonucleotidases. Smooth muscle P2Y receptors may be
involved in noradrenaline-mediated vasoconstriction involv-
ing ATP release via pannexins complexed with α1-
adrenoceptors [49].

Vascular tone regulation: hypoxia, shear stress, and tonic re-
lease of purines Endothelial cells form the innermost layer of
blood vessels and, in healthy tissues, provide an ongoing va-
sodilator tone and inhibit platelet aggregation through the re-
lease of factors including nitric oxide, prostacyclin, and
hyperpolarising factors. Geoff was interested in the dual con-
trol of blood vessel contractility involving perivascular nerves
in the adventitia (outermost layer) and endothelial cells adja-
cent to the vascular lumen. He, with colleagues, showed that
ATP is released from endothelial cells and acts as an auto/
paracrine signalling molecule at vasodilator endothelial P2Y
receptors; the most common are P2Y1 receptors sensitive to
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ADP and ATP, P2Y2 receptors sensitive to ATP and UTP,
and P2Y6 receptors sensitive to UDP. Measurement of phys-
iologically relevant ATP release from cells is challenging be-
cause its extracellular concentration is normally kept low
(subnanomlar levels) in tissues by rapid degradation by cell
surface ectonucleotidases. Another hurdle was that the high
intracellular concentration of ATP (mM), which provides a
gradient for its release from cells given the appropriate stimuli,
meant that high background levels of ATP were an issue due
to inadvertent release of ATP by mechanical stimulation and
from damaged cells. It sometimes felt that just looking at the
preparations caused ATP to pour out. Geoff and colleagues
were tenacious and measured an increase in extracellular ATP
levels during hypoxia in the heart, concomitant with coronary
hypoxic vasodilatation, and also showed that exogenous ATP
is a coronary vasodilator [50–52], thus providing evidence
that ATP as well as adenosine [53, 54] is a local mediator of
hypoxic vasodilatation in the coronary vasculature. Since the
in vitro heart preparation was perfused with physiological so-
lution the source of the released ATP was likely the coronary
vascular endothelium and there is evidence that hypoxic re-
lease of ATP from endothelial cells may be vesicular [55, 56].
Hypoxia also induces ATP release from erythrocytes [57, 58]
which can contribute to vasodilatation during hypoxia and
ischaemia in vivo.

ATP release from endothelial cells is also stimulated by
shear stress. The concept of ATP as a local vasodilator during
shear stress has gained considerable support since Geoff and
colleagues measured an increase in extracellular ATP and
UTP levels during an increase in perfusion flow rate in vas-
cular beds and cultured endothelial cell preparations [55,
59–62]. Investigations using mice deficient in endothelial
P2Y2 receptors showed that endothelial P2Y2 receptors are
involved in flow-induced vasodilatation, eNOS activation,
and blood pressure control—the mice developed hypertension
[63]. Experiments using P2X4 receptor-deficient mice
showed that P2X4 receptors in vascular endothelial cells con-
tribute to vasodilation during shear stress and in vascular re-
modelling [35]. P2Y1 receptors were shown to be involved in
the increase in coronary blood flow following a period of
ischaemia in pig hearts implying an auto-/paracrine role for
locally released ATP/ADP, possibly from endothelial cells,
cardiomyocytes, erythrocytes, and platelets [64].

Shear stress, mechanical deformation, hypoxia, and low pH
release ATP from erythrocytes which causes vasodilatation
via endothelial P2Y receptors [57, 58, 65–67].

Myogenic tone involves contractile P2Y6 receptors, tonic
release of endogenous pyrimidine nucleotides and possibly
connexin hemichannels and P2X7 receptors in mouse mesen-
teric resistance arteries [68]. Myogenic tone of cerebral arteri-
oles is mediated via direct mechanical activation of
vasocontractile P2Y4 and P2Y6 receptors rather than the re-
lease of endogenous pyrimidine nucleotides [69]. ATP is

tonically released from glial cells in rat retinal arterioles
in vivo and acts on P2X1 receptors on vascular smoothmuscle
cells to maintain basal contractile tone [70].

Cardiovascular diseases, cell damage, inflammation and inju-
ry, and trophic signalling Damage to cells leads to high extra-
cellular levels of nucleotides which can act at smooth muscle
vasocontractile P2X1 and P2Y receptors to contribute to va-
sospasm [15]. ATP can be released from endothelial cells,
smooth muscle cells, cardiomyocytes, and erythrocytes by
mechanical stimuli including shear and osmotic stress, via
mechanisms which include connexin and pannexin channels,
which may be relevant in cardiovascular physiology and path-
ophysiology [71–74]. Nucleotides are released from other cell
types including leucocytes and platelets during inflammation
and injury [15, 72, 75].

Geoff was interested in purinergic long-term trophic and
inflammatory signalling which occurs in vascular remodelling,
restenosis, and atherosclerosis and the evidence for dysfunc-
tional purinergic signalling in cardiovascular diseases including
hypertension, diabetes, and thrombosis and in heart conditions
[15, 25, 27, 76]. Adenosine receptors are involved in angiogen-
esis through regulating levels of pro- and antiangiogenic factors
including VEGF and basic fibroblast growth factor; the process
is influenced by the relative expression levels of the four aden-
osine receptors which can vary depending on the inflammatory
conditions [77]. A2A receptors are involved in angiogenesis in
the retina and deletion of the receptors reduced neovascularisa-
tion in mice [78]. Ectonucleotidases (ENTPDase1 and ecto-5’-
nucleotidase) have roles in angiogenesis [79]. P2Y2 receptors
are involved in endothelial cell sprouting and blood vessel
growth [80, 81]. Tumour hypoxia in cancer activates
proangiogenic signalling and generates a chaotic and leaky tu-
mour vasculaturewhich promotes tumour growth and dispersal.
Hypoxia in tumours can generate increased extracellular levels
of ATP within tumours [82]. Roles for P2X7 and P2Y11 re-
ceptors have been described in ATP-mediated inhibition of
tumour endothelial cell migration [83].

Deletion of P2Y2 receptors on endothelial cells promotes
atherosclerotic plaque stability [84]. P2X1 receptor activation
can inhibit smooth muscle cell proliferation [85]. Individuals
with type 2 diabetes have reduced tissue perfusion, lower plas-
ma ATP concentrations and lower blood flow during exercise
and hypoxia and impaired endothelium-dependent vasodilata-
tion compared with controls [86]. Release of ATP from cells by
mechanical stimulation (including shear stress, osmotic pres-
sure, strain and compression) is elevated in inflammation and
injury and is attenuated in hereditary and metabolic conditions
including erythrocytes in cystic fibrosis [74].

Perivascular adipose tissue (PVAT), a layer of fatty tissue
which surrounds blood vessels, is now known to release a
variety of adipokines and other factors which regulate vascu-
lar tone [87, 88]. Adipose tissue expresses P2 receptors which
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can be activated by ATP released from perivascular sympa-
thetic nerves to regulate lipolysis [89–91], and there is evi-
dence for constitutive release of nucleotides from adipocytes
in regulation of lipolysis [92]. In obesity, the increase in adi-
pocyte area and mass leads to hypoxia [88]. Since hypoxia
stimulates purine release from cells, the role of purinergic
signalling in PVAT in vascular tone regulation and remodel-
ling requires further investigation.

Platelets express P2Y1, P2Y12, and P2X1 receptors [93].
The P2Y12 receptor antagonists clopidogrel, prasugrel, and
tricagrelor are used in the treatment of thrombosis, stroke,
and myocardial infarctions in patients. Purine receptors,
ectonucleotidases, and purinergic release and uptake mecha-
nisms are potential therapeutic targets in cardiovascular
disease.

Memories of Geoff’s laboratory at UCL
(~1985—1997)

Geoff was a positive force at the Department of Anatomy,
UCL where he and his team of dedicated postdocs and PhD
students made discoveries on the expression and roles of pu-
rine receptors in the cardiovascular and other systems. Geoff
understood the need for collaboration and translational re-
search in science—his office was a hub for meetings with
clinicians and leaders in the field—and the importance of be-
ing abreast of new scientific research techniques, which he
achieved by bringing the expertise to his laboratory or through
external collaborations. Geoff travelled frequently to confer-
ences throughout the world where he appeared to adopt
scientists—each trip seemed to be followed by the addition
of a new visiting scientist or PhD student to the group. This led
to a very eclectic, multicultural, and multinational team which

contributed to the group’s vibrancy and promoted ideas and
collaborations. The camaraderie was great. Geoff supported
and looked after his team. There were frequent seminars with,
importantly, post-seminar food and wine to facilitate discus-
sions. We had fun. Geoff recognized the importance of young
scientists and encouraged them. A student’s first accepted
paper or successful completion of their PhD was celebrated
(more food and wine) and Geoff would seek out the student to
give them his warm congratulations.

Individual research meetings were held monthly in
Geoff’s magnificent high-ceilinged office at UCL. Banks
of filing cabinets lined the walls and held thousands of re-
search articles (photocopying journal articles in the library
in the days before the internet was a way for PhD students to
earn extra funds); Geoff knew exactly the location of each
publication and its content and would pull out articles to
illustrate a point. Typically Geoff would chat about news
about himself or others before discussing lab results and his
openness fostered trust and engagement. He made each one
of us feel valued. Geoff jotted down ideas in handwriting
that was as exuberant as he was but not always easy to read.
He expected full commitment which he generally achieved
through his enthusiasm, praise, and encouragement. At one
research meeting I mentioned an interest in visiting
Australia and Geoff later facilitated this by encouraging
me to apply for a Royal Society Travel Fellowship and
identified colleagues of his in Melbourne as potential hosts.
I thank him also for his support in my application to the
Royal Society for a University Research Fellowship, which
led to us collaborating with Professor Mike Spyer to inves-
tigate purinergic signalling in central nervous system con-
trol of the cardiovascular system at the Royal Free Hospital
School of Medicine, London [94, 95]. Geoff was a great
mentor.

Fig. 1 Geoff Burnstock with
Maria Teresa Miras-Portugal at
the 6th International Symposium
on Adenosine and Adenine
Nucleotides, Ferrara, Italy,
May 1998
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Conclusion

Geoff championed the role of ATP as an extracellular signal-
ling molecule despite opposition to the concept that ATP was
other than an intracellular energy source, and he was fearless
and unshakeable in his conviction [39, 40]. Our understanding
of purinergic signalling in the cardiovascular system has been
shaped by Geoff Burnstock through his groundbreaking dis-
coveries. Geoff thrived on interactions with the international
scientific community, and he promoted communication and
collaboration through his initiation of the Purine Clubs and his
journal Purinergic Signalling. A photograph of Geoff which I
took at the 6th International Symposium on Adenosine and
Adenine Nucleotide in Ferrara, Italy (1998) (Figure 1) is one
of my favourites and is how I like to remember Geoff—ani-
mated, engrossed in conversation (here with Maria Teresa
Miras -Portugal) and always chatting about purines. Geoff
shone. Geoff lives on through his enormous scientific contri-
bution and in our memories.
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