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Abstract: The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic 
microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, 
E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have 
been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti- 
infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. 
Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red 
Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis 
mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic 
oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & 
Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative 
treatment for oral infections that is more effective and can meet global needs. 
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Introduction
Infections in the oral cavity can be caused by various pathogenic microorganisms such as bacteria, fungi and viruses. 
Oral infections are caused by pathogenic bacteria such as S. mutans, S. sanguinis and E. faecalis that are common in 
society, one of which is dental caries.1,2 In 2017, the prevalence of dental caries in permanent teeth per 100,000 
population in each country ranged from 20% to more than 50%,3 while in 2018, the prevalence of dental caries in 
Indonesia reached 88.8% with root caries at 56.6%. In addition, children aged 5 to 9 years have a prevalence of up to 
92.6%.4 The infection of the oral cavity by pathogenic fungi such as C. albicans, which is common in the community, is 
called candidiasis. The prevalence of candidiasis in Indonesia is around 20–25% and can affect the hair, skin, nails, 
mucous membranes and other organs such as the oral cavity and oesophagus.5,6

Currently, many strategies to treat oral infections are carried out using a synthetic anti-infective agent. However, the 
use of synthetic anti-infectives has been reported to cause side effects and resistance, such as resistance to the antibiotics 
ampicillin, amoxicillin, penicillin, cefotaxime, cefazolin, methicillin, erythromycin, lincomycin, clindamycin and vanco-
mycin against S. mutans, with the greatest resistance in 87 adults being to amoxicillin (14.8%) and lincomycin (28.7%), 
and the greatest resistance in 87 children being to penicillin (27.6%) and vancomycin (42.5%).7–9 With regard to the 
resistance of several antifungal agents to C. albicans, it has been reported that C. albicans has a relatively high level of 
resistance to several antifungal agents, such as nystatin, fluconazole, flucytosine and echinocandin.10–13

The ongoing development of anti-infective drugs underscores the paramount importance of efficacy and safety in 
identifying compounds with no adverse effects. Indonesia’s diverse plant life, meantime, affords ample potential as 
a source of active oral anti-infective compounds.14 Betel leaf has shown several activities such as antibacterial, antifungal 
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and antiviral.15–17 Ethnobotanical and ethnopharmacological studies have shown that P. crocatum Ruiz & Pav has the 
potential to be exploited as a raw material for oral anti-infective purposes.18–20

Anti-Infections
Anti-infective is a broad term that refers to any type of drug that can inhibit or kill the spread of infectious microorgan-
isms. Viruses, bacteria, parasites, and fungi are the four organisms that cause infection. Each organism can cause 
different health problems. To treat infections, the use of anti-infectives must be adjusted to the organisms that cause 
infections in certain parts of the body. Anti-infective agents that target the microorganism that causes the infection, such 
as including antibacterial, antifungal and antiviral.

Antibacterial
Antibacterials are substances that can both inhibit and kill pathogenic bacteria.21 Antibacterials are classified into two 
types: those that restrict bacterial growth (bacteriostatic) and those that kill bacteria (bactericidal).18 Bacterial inhibition 
take place via a variety of synthetic pathways, including the DNA replication pathway, the transcription, the protein 
biosynthesis pathway, and the bacterial cell wall biogenesis pathway.22 Bacterial cell death is caused by the destruction of 
the peptidoglycan layer. Antibiotics that target the peptidoglycan synthesis pathway are β-lactams and glycopeptides.23 In 
addition, the cytoplasmic membrane can also be a viable target for inhibiting bacterial activity. Damaged membranes are 
usually very difficult to repair. Cationic polymers inhibit many bacteria through electrostatic interactions to the cell 
membrane followed by hydrophobic bonds to the lipid tails which cause membrane lysis. DNA synthesis is the basis for 
bacterial replication, DNA damage will have a negative impact on DNA synthesis and replication. Furthermore, protein 
synthesis occurs in bacterial ribosomes, making ribosomes become one of the targets for inhibitory compound 
inhibition.24

But today some bacteria have developed various strategies to damage or tolerate attacks from an antibiotic, where 
bacteria work directly to damage or modify the structure of antibiotics so that it can avoid inhibition of growth and 
bacteria can carry out their lives. One of them is through degradation and enzymatic modification, this enzymatic 
degradation and modification becomes an effective means of antibiotic resistance and has caused resistance to several 
main classes of antibiotics that exist today, including β-Lactam and Aminoglycoside antibiotics. The hydrolysis process, 
carried out by a variety of hydraulics, is known to be able to deactivate some antibiotics. Co-evolution of β-Lactamase 
and β-Lactam antibiotics is an example of the portrayal of competition between antibiotics and antibiotic resistance. In 
the process β-Lactamase acts as a weapon to degrade β-Lactam type antibiotics, for example such as penicillin, 
carbapenem, and cephalosporin. β-Lactamase works by breaking the β-Lactam core ring, both through serine nucleo-
philic attacks or through metal-based activation from water molecules.25

Anti-Fungal
Fungal infections can occur in people who have been exposed to any circumstances in their lives. Predisposing factors for 
this infection can occur for no apparent reason. However, people are often exposed because of their environment, 
behaviour, or a weakened immune system. Clinically, fungal infections can be classified according to the site of 
infection,26 that is:

Systemic mycoses (systemic fungal infections) include deep mycoses (eg aspergillosis, blastomycosis, coccidioido-
mycosis, cryptococcosis, histoplasmosis, mucormycosis, paracoccidioidomycosis and candidiasis) and subcutaneous 
mycoses (eg chromomycosis, mycetoma and sporotrichosis).27–29

Dermatophytes, fungal infections of the skin, hair and nails, usually caused by Epidermophyton and 
Microsporum.30–33

Mucocutaneous mycoses, which are fungal infections of the mucous membranes and moist skin folds, usually caused 
by Candida.34–36

Antifungals, also known as antimycotics, are commonly used to kill/deactivate fungi and treat fungal infections. 
According to clinical indications, antifungal drugs are classified into two groups, the first group is antifungals for 
systemic infections, including: amphotericin B (1), flucytosine (2), ketoconazole (3), fluconazole (4), miconazole (5), and 
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hydroxystilbamidine (6),27 the structure of the compounds are as shown in Figure 1. The second group of antifungals for 
dermatophyte and mucocutaneous infections includes griseofulvin (7), clotrimazole (8), econazole (9), isoconazole (10), 
tioconazole (11), bifonazole (12), nystatin (13), tolnaftate (14) and other topical antifungals candicidin (15), undecylenic 
acid (16) and natamycin (17),37 the structure of the compounds is shown in Figures 2–3.

The azole group can be separated into two categories depending on the number of nitrogens in the azole ring. The 
imidazole group, comprising ketoconazole, miconazole, and clotrimazole, has two nitrogens, while the triazole group, 
including itraconazole, fluconazole, voriconazole, and posaconazole, has three nitrogens.38,39 Both groups share the same 
range and mode of action. Triazoles are metabolised at a slower rate and result in fewer side effects compared to imidazoles. 
Due to this advantage, researchers are attempting to develop a new class of triazoles instead of imidazole.40–42 In general, 
the azole group serves to inhibit the biosynthesis of ergosterol, which is the primary sterol responsible for maintaining the 
integrity of the fungal cell membrane. Azole group antibiotics function by inhibiting the cytochrome P 450 enzyme, C-14- 
α-demethylase. This particular enzyme is responsible for converting lanosterol into ergosterol, as shown in Figure 4. This 
makes the fungal cell wall permeable, leading to fungal damage.43

Polyene molecules contain numerous conjugated double bonds. Macrocyclic polyenes with hydroxylated ring 
components in a conjugated system are known as polyene antifungals.45–47 These antifungals bind to sterols in the 
fungal cell membrane, specifically ergosterol. This results in a decreased fluidity of the inner membrane and a more 
crystalline state due to an alteration in the transition temperature of the fungal cell membrane. Conversely, in its typical 
state, the sterol membrane enhances the toughness of the phospholipid bilayer, making the plasma membrane denser. 
Nevertheless, the sterol-polyene group antifungal bond induces a reduction in the stickiness of the phospholipid 
bilayer.40–42,48 Thus, the fungal cell contains monovalent ions, such as K+, Na+, H+, and Cl−. Organic molecules exit 
the cell due to membrane permeability, resulting in cell death.45,49 It is important to note that this process occurs due to 
a leaky membrane and is not a voluntary act of the cell.

A new class of synthetic antimycotics referred to as allylamines are identified by their capacity to function as 
squalene epoxidase inhibitors.51–53 Naftifine serves as an exemplar of an allylamine antifungal and was the first 

Figure 1 Structure of an antifungal compound with a mechanism of systemic infection Amphotericin B (1), Flucytosine (2), Ketoconazole (3), Fluconazole (4), Miconazole 
(5), and Hydroxystilbamidine (6).27
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substance discovered in 1974, during routine research, to possess antifungal properties. Naftifine’s potent antifungal 
activity both in vitro and in vivo led to its clinical development as a topical antimycotic.54 Naftifine is the basis of 
a significant project which aims to enhance the effectiveness of antifungals, especially for oral administration. 
Allylamine antifungals work akin to azoles, but they act earlier on the ergosterol production pathway.53,55,56 They 
impede squalene epoxidase, an enzyme responsible for converting squalene to ergosterol, therefore disrupting the 
development of the fungal cell wall.57

Semisynthetic cyclic lipopeptides known as echinocandins prevent cell wall formation by non-competitive inhibition 
of the (1,3)-β-D-glucan synthase complex, as shown in Figure 5.58–60 The target inhibition of 1,3-β-D-glucan synthase is 
specific for fungi because the enzyme 1.3-β-D-glucan synthase is absent in humans, this demonstrates the good 
tolerability and safety of echinocandins compared to other antifungal classes.61 Most Candida species are killed by 
echinocandins both in vitro and in vivo, whereas Aspergillus species are only inhibited. Globally, the MIC necessary to 
prevent the growth of 90% of bacteria (MIC90) is 2 g/mL. Additionally, the MIC required to inhibit the development of 
50% of microorganisms, including echinocandins to the Candida group of fungi, is 0.5 g/mL. It should be noted that the 
MICs for C. lusitaniae and C. parapsilosis were higher than those for C. albicans.23,26,62

Figure 2 Structure of an antifungal compound with a mechanism of systemic infection: Griseofulvin (7), Clotrimazole (8), Econazole (9), Isoconazole (10), Tioconazole (11), 
Bifonazole (12), Nystatin (13), and Tolnaftate (14).37
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Piper crocatum Ruiz & Pav as Anti-Infection Herbal
Piper crocatum Ruiz & Pav
Numerous research studies have reported the effectiveness of Red Betel leaf in both ethnobotanical and ethnopharma-
cological contexts. Red Betel has been applied in numerous traditional treatments, including but not limited to treating 
toothaches, vaginal discharge caused by fungi, ulcers, diabetes, sore eyes, and shortness of breath, as well as other 
traditional remedies.64,65 Ethnopharmacological studies have shown that Red Betel exhibits a range of activities, 
including antifungal, antibacterial, antioxidant, antihyperglycemic, antiinflammatory, and others.66–69 These findings 
led to the reclassification of Red Betel from an ornamental plant to a medicinal plant.70 The phytochemical analysis 
revealed that P. crocatum Ruiz and Pav contain secondary metabolites, such as flavonoids, essential oils, alkaloids, 
saponins, tannins, terpenoids, and phenolic compounds, which substantiated the various bioactivities previously reported. 
The shape and characteristics of the Red Betel leaf are shown in Figure 6.

Several experiments isolated the components of bioactive compounds from Red Betel were carried out by Emrizal 
et al, (2014), Arbain et al, (2018), Li et al, (2019), and Chai et al, (2021), where each of these researchers has succeeded 
and reported the results of their isolation, namely in the study of Emrizal et al, 2014 two compounds were obtained from 
the Red Betel plant which were later identified and known as β-sitosterol (18) and compound 2 -(5’),6’- dimethoxy-3’, 
4’-methylenedioxyphenyl)-6-(3’,4’,5 trimethoxyphenyl)-dioxabiclo [3,3,0] octane (19). In the n-hexane, ethyl acetate, 
butanol, and methanol fractions, the IC50 values of both of these compounds were reported to be 2.04; 1.34; 2.08; and 
27.40 g/mL, respectively.71 According to a study done by Arbain et al, (2018) isolated and reported the biclo [3.2.1] 
neolignan octanoid compounds of the guianine type, (1’R, 2’R, 3’S, 7S, 8R)-Δ5’,8’-2’-acetoxy-3,4,5,3’, 5’-pentamethoxy 
-4’-oxo-8’.1,7.3-neolignan (20) and (1’R, 2’R, 3’S, 7S, 8R)-Δ5’, 8’-2’-hydroxy-3, 4, 5, 3’, 5’-pentamethoxy-4’-oxo-8.1’, 
7.3’-neolignan (21).72 Whereas in the study of Li et al, (2019) it was reported that seven compounds had been isolated 
consisting of four phenolic compounds (22, 23, 24, 25), one mono-terpene compound (26), one sesquiterpene compound 
(27), one flavonoid compound C-glycosides (28) of the species Red Betel.73 In addition, in a study by Chai et al, (2021) 

Figure 3 Structure of an antifungal compound with a mechanism of dermatophyte and mucocutaneous infections: Candicidin (15), Undecylenic acid (16), and Natamycin (17).37
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reporting the results of isolating MeOH extract from P. crocatum Ruiz & Pav, a macrophylline-type neolignan compound 
was found, namely pipcroside A (29), pipcroside B (30), pipcroside C (31), and crocatin B (32).74 The structures of the 
isolated compounds in previous studies are illustrated in Figures 7 and 8 respectively.

Anti-Infection Activity of Red Betel Extract
Infections can be caused by various microorganisms, including bacteria, fungi, and viruses. Such infections can cause 
long-lasting health problems due to pathogenic microorganisms that are never fully resolved. The variety of infectious 
agents highlights the seriousness of this problem. Furthermore, the lack of strategic planning in treatment can lead to 
resistance and side effects, emphasizing the need to find new, effective, and efficient oral anti-infective agents. Red betel 
leaves have been used to treat various infections caused by bacteria, fungi, and viruses. Several research reports have 
identified the potential of red betel leaves as antifungal, antibacterial, and antiviral, as discussed in more detail in their 
respective sections.

Figure 4 Summarized synthesis of ergosterol, the fungal sterol, and detailed steps of CYP51 conversion of lanosterol to 14α-demethyl lanosterol.44
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Anti-Fungal Activity of Red Betel Extract
Several bioactivities of Red Betel leaf extract have been reported, including the inhibition of several species of 
pathogenic fungi. This demonstrates the potential for Red Betel leaf as an anti-fungal agent. The anti-fungal activity 
of P. crocatum Ruiz & Pav is derived from the secondary metabolite compounds contained therein,75 as reported by 
multiple previous studies listed in Table 1.

The anti-fungal activity of secondary metabolites in Red Betel leaves has also been demonstrated in the study 
conducted by Golam et al (2022). This study tested several secondary metabolites from Red Betel leaves, listed in 
Table 2, via molecular docking at the Sap 5 (Secreted Aspartyl Proteinase) receptor, which is one of the virulence factors 
of the fungus C. albicans.

The researchers used pepstatin ligand (CID_5478883) as a standard inhibitor, which has a binding energy of 9.484 
kcal/mol. Molecular docking results indicate that two test ligands, CHEMBL216163 (CID_44418672) and 
MLS000557666 (CID_1077234), have binding energies above pepstatin. The binding energies of the two test ligands 
are −9.644 kcal/mol (CID_44418672) and −9.525 kcal/mol (CID_1077234). The CHEMBL216163 ligand 

Figure 5 Mechanism of inhibition by antifungal echinocandins by inhibiting the synthesis of beta-1,3 glucan synthase. 
Notes: Data from De Cândido et al.63

Figure 6 Red Betel leaves.
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(CID_44418672) interacts with the Sap 5 receptor through hydrogen bonds, electrostatic bond type salt bridges, and 
attractive charges on the amino acid residue Asp303. Electrostatic bonds form at amino acid residues Asp86, Asp218, 
and Tyr225. Hydrogen bonds also form at amino acid residues Gly85, Asp86, Tyr225, and Gly34, with bond distances of 
2.31, 2.96, 2.42, and 2.28 Å, respectively. Additionally, ligand MLS000557666 (CID_1077234) binds to the Sap 5 
receptor, forming a hydrogen bond with the Gly3 amino acid residue (2.86 Å). Apart from hydrogen bonds, two 
electrostatic bonds are also formed on the amino acid residue Asp86, with distances of 3.53 and 3.86 Å. Hydrophobic 
interactions occur at amino acid residues Tyr84, Ile305, Lys193, and Tyr225.

Additionally, a small Kd value indicates a stronger bond between the ligand and the receptor.80 The ligand efficiency 
of CHEMBL216163 and MLS000557666 is 0.2922 and 0.3528 respectively, while that of pepstatin is 0.1976 (crystal-
lographic ligand). The ligand efficiency range for pepstatin (based on binding energy) is 0.2506 to 0.7214. The research 
results indicate that Red Betel leaf extract contains several components, including CHEMBL216163 and 
MLS000557666, which have potential as Sap 5 inhibitors, thereby reducing the virulence of C. albicans.81 The presence 
of Sap 5 plays a crucial role in supporting the dimorphic nature of C. albicans. Sap 5 is involved in the adhesion 
mechanism.

The results of the isolation of antifungal compounds from P. crocatum leaves will be reported by Tessa et al, 2023. 
The isolated compounds include two new active compounds, 33 and 34, as well as the previously known compound 35. 
The structures of these compounds were identified using spectroscopic methods, and their bioactivity was studied in vitro 
against the fungus C. albicans ATCC 10231 and in silico against the ergosterol enzyme, which is an important 
component of fungal cell membranes. In vitro antifungal studies were conducted against C. albicans ATCC 10231 
using ketoconazole as a positive control, while methanol and sterile water were used as negative controls. The inhibition 
zone test results for compounds 33, 34, 35 and ketoconazole at a concentration of 2.5% (w/v) were 8.9, 9.4, 9.7 and 
30.0 mm, respectively. At a concentration of 5% (w/v), the inhibition zones of compounds 33, 34, 35 and ketoconazole 
were 10.0, 12.4, 12.8 and 31.3 mm, respectively. Inhibition zones of 11.9, 13.0, 14.5 and 32.2 mm were produced by 

Figure 7 Structure of the compound β-Sitosterol (18), 2 -(5’),6’-dimethoxy-3’, 4’-methylenedioxyphenyl)-6-(3’,4’,5 trimethoxyphenyl)-dioxabiclo [3,3,0] octane (19).71 

Structure of (1’R, 2’R, 3’S, 7S, 8R)-Δ5’,8’-2’-acetoxy-3,4,5,3’, 5’-pentamethoxy-4’-oxo-8’.1,7.3-neolignan (20) and (1’R, 2’R, 3’S, 7S, 8R)-Δ5’, 8’-2’-hydroxy-3, 4, 5, 3’, 5’- 
pentamethoxy-4’-oxo-8.1’, 7.3’-neolignan (21).72
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concentrations of 10% (w/v) compounds 33, 34, 35 and ketoconazole. Compound 35 exhibited the best potential in 
inhibiting C. albicans compared to compounds 33 and 34, with a strong inhibitory category at a concentration of 10%, as 
seen from the results of the inhibition zone test.

The MIC/MFC testing of each compound resulted in 0.46/1.8, 0.62/2.5, 0.31/1.2 and 0.00005/0.0001% b/v for 
compounds 33, 34, 35 and ketoconazole, respectively. The results of the inhibition zone tests indicate that antifungal 
compound 35 is the most active compared to 33 and 34. In addition, in silico research showed that compound 35 had 
a higher ΔG than the positive control, with compounds 33 and 34 having values of −11.14, −12.78, −12.00 and −6,89 
Kcal/mol for ERG1, ERG2, ERG11 and ERG24, respectively. Compound 35 also has the best Ki values of 6.8x10−3, 
4x10−4, 1.6×10−3 and 8.88 µM. This occurs because ligand 35 interacts with the receptor, specifically on thirteen residues 
with the same amino acids as ketoconazole leucine B: 376 on π-alkyl. Van der Waals bonds bind phenylalanine B:233, 
B:380, and B:228, proline B:230, serine B:378 and B:507, histidine B:310, threonine B:311, leucine B:121, glycine B:65, 
tyrosine B:505, and serine B:506.

Furthermore, the research conducted by Tessa et al, 2023 is supplemented by ADMET analysis of compounds 33–35, 
which are predicted to be safe as a potential new drug candidate and meet the five Ro5 parameters. Based on the reported 
data, P. crocatum shows promising potential as an antifungal agent. It can be considered as a new treatment option for 
C. albicans infections, with a mechanism of action similar to that of azole antibiotics, by inhibiting fungal ergosterol.82 

The three components’ structure is as illustrated in Figure 9.

Figure 8 Structure of the compound β-phenylethyl β-D-glucoside (22), Benzyl-β-D-glucoside (23), hydroxytyrosol-1glucopyranoside (24), Gentisic acid (25), Loliolide (26), 
(6S,9S)-roseoside (27), Vitexin 2″-O-rhamnoside (28),73 and structure of Pipcroside A (29), Pipcroside B (30), Pipcroside C (31), Crocatin B (32).74
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Table 1 Anti-Fungal Activity of Several Groups of Secondary Metabolites in Red Betel Leaves

No. Secondary 
Metabolite

Types of Fungi Result References

1 Alkaloids 

Flavonoids 

Polyphenols 
Quinones 

Saponins

C. albicans MIC and MBC values ranged as follows C. albicans (1.25–2.5% w/v). Kusuma et al, 201776

2. Alkaloids 

Tannins 

Saponins 
Flavonoids

C. albicans P. crocatum Ruiz & Pav leaf extract was able to inhibit of C. albicans 
with MIC at a concentration of 25% and MBC at a concentration of 

100% of P. crocatum Ruiz & Pav extract.

Rezeki et al, 201777

3. Essential Oil 

Flavonoids 

Tannins 
Saponins

C. albicans At 50, 60, and 70% concentrations, a methanol extract of Red Betel 

leaves was able to inhibit with inhibition diameters of 12.17, 13.17, 

and 21.17 mm, respectively. 
At 30, 40, 50, 60, and 70% concentrations, the inhibition zone 

diameters were 7.83, 8.40, 9.00, 9.87, and 7.87 mm, respectively.

Rachmatiah et al, 201878

4. Flavonol 

Chalcone 

Anthocyanin

C. albicans ATCC 

10231

The ethanol extract of red betel leaves at a concentration of 40% v/v 

had the most effective inhibition against the growth of the fungus 

C. albicans ATCC 1023, with a maximum diameter of the inhibition 
zone of 13.3 mm.

Suri et al, 202179

Table 2 The Test Ligand Used Was Compounds of Red Betel (Piper crocatum Ruiz & Pav)

Compounds (Ligand Test) PubChem ID

Glabrescione 44,257,338

Catechin 73,160

Caryophyllene 5,281,515

Germacrene 5,317,570

Elemicin 10,248

Propionic acid 1032

Neophytadiene 10,446

Butyl ethanoate 31,272

Alfa pinene 82,227

Limonene 22,311

Cineole-1,8 2758

Terpinene-4-ol 11,230

6XO32ZSP1D 75019

Ethyl L-serinate hydrochloride (1:1) 2,729,185

Schisandrin B 108130

Columbin 188,289

(Continued)
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Antibacterial Activity of Red Betel Extract
Many studies have highlighted the ethanol and methanol extracts of Red Betel leaves as a potent antibacterial source 
against several gram-positive and gram-negative bacteria. Some reports on the antibacterial potential of red betel leaf 
extracts are summarised in Table 3 below.

Table 2 (Continued). 

Compounds (Ligand Test) PubChem ID

ZINC8756459 6,070,252

MLS000557666 1,077,234

Oprea1_462146 2,865,476

CHEMBL216163 44,418,672

1,1’-(1,4-Butanediyl) bis (2,6- dimethyl-4-[(3-methyl-1,3- benzothiazole- 

2(3H)- ylidene)methyl]pyridinium)

3,414,657

Methyl eugenol 7127

4-methoxyindole 138,363

Leucylleucinamide hydrochloride (1:1) 16,219,591

5-isopropyl-3- pyrazolidinecarbohydrazide hydrochloride (1:1) 61,440,504

1H-pyrazole-1- carboximidamidmidhydrochloride 2,734,672

Protocatechuic acid 72

N1-(5-methylisoxazole-3- yl)ethanediamide 2,805,645

CHEMBL3217136 90,665,169

2-(4-morpholinylmethyl)aniline sulfate hydrate 45,595,316

SCHEMBL569003 14,839,452

L-Arginine hydrochloride 66,250

1-(1,4-Dithian-2-ylmethyl)-3- (3-methoxypropyl)thiourea 116,510,220

ALBB-026042 1,511,955

Figure 9 Structure of antifungal constituents of P. crocatum, Piperyamide A (33), Piperyamine A (34), and Stigmasterol (35).82
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Table 3 Antibacterial Activity of Several Groups of Secondary Metabolites in Red Betel Leaves

No. Extract Secondary 
Metabolite

Bacteria Result References

1 Red Betel ethanol 
extract

Flavonoids Tannins 
Alkaloids Essential oils

Staphylococcus 
epidermidis

Red Betel leaf extract (P. crocatum Ruiz & Pav) at concentrations of 20%, 40% and 80% were 
able to inhibit the growth of Staphylococcus epidermidis which causes urinary tract infections.

Sawitri et al, 202283

2. n-hexane fraction Tannins Escherichia coli 
pBR322

The best antibacterial activity was produced by the n-hexane fraction at a concentration of 
1000 ppm with an inhibition zone of 2.40 mm ± 0.14. The best minimum inhibitory 

concentration was produced by the n-hexane fraction at a concentration of 100 ppm with an 

inhibition zone of 0.60 mm ± 0.56

Chairunisa et al,202284

3 Red Betel ethanol 

extract

Tannins Flavonoids 

Saponins Triterpenoids

Fusobacterium 
nucleatum ATCC 
25586

Red Betel leaf ethanol extract appeared to have weak inhibition at 10 and 15% concentrations 

and strong inhibition at 20, 25, and 30% concentrations (11.4, 15.6 and 19.3 mm) against 
F. nucleatum 
ATCC 25586.

Ramadhan et al, 202285

4 Red Betel ethanol 

extract

Alkaloids Steroid 

Tannins

B. Subtilis 
P. aeruginosa

The best zone of inhibition at a concentration of 100 mg/mL is 1.12–1.32 mm (B. subtilis) and 

1.03 mm (P. aeruginosa).

Puspita et ai., 201986

5 Red Betel ethanol 

extract

Alkaloids Tannins 

PolyphenolEssential 

Oils

Staphylococcus 
aureus

Red Betel leaf extract concentration of 12.5% improved histopathology infected with 

S. aureus.
Wurlina et al, 201987

6 Red Betel 

methanol extract

Tannins Staphylococcus 
aureus

Methanol extract at 100% concentration inhibited 12.3 mm Soleha, 201888

7 Red Betel ethanol 

extract

Alkaloids Flavonoids 

Polyphenols Quinones 
Saponins

E. coli 
P. aeruginosa 
S. aureus

Concentrations of 60 and 80% inhibited 

E. coli 12.33 and 13.17 mm, P. aeruginosa 15.33 and 17.23 mm and S. aureus 14.73 and 
17.33 mm, respectively.

Kusuma et al, 201776

8 Red Betel 
methanol extract

Alkaloids Tannins 
Essential Oils 

Flavonoids

S. viridans and 
Porphyromonas 
gingivalis

Red betel leaf extract was able to inhibit the growth and infection of S. viridans and P. gingivalis 
at concentrations of 8.42 and 10.34 mm respectively

Pujiastuti et al, 201589
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Ramadani’s research (2018) states that red betel leaves have total tannins containing active compounds, namely 
methyl eugenol, L-(+)-arginine hydrochloride and protocatechuic acid. Eugenol can function as an antimicrobial, 
antiseptic, and other medicinal raw materials.84 Arginine is one of the amino acids that has a great influence on peptide 
activity for antibacterial.90 Tannin is a type of polyphenol compound that is soluble in water and organic solvents and is 
widely found in plants. Tannins act as antibacterial agents by inhibiting the enzymes reverse transcriptase and DNA 
topoisomerase so that bacterial cells cannot form. Tannins also target cell wall polypeptides so that the cell wall becomes 
less perfect.91,92 In addition, tannin compounds can damage bacterial cell membranes by disrupting extracellular proteins 
and forming complex compounds. Microorganisms growing under anaerobic conditions require iron for various func-
tions, including the reduction of DNA ribonucleotide precursors. The strong iron binding capacity of tannins may also 
interfere with the iron binding process required by bacteria.93

The mechanism of antibacterial action of the flavonoid compounds found in red betel leaf works by inhibiting the 
synthesis of nucleic acids so that bacterial cells cannot form, as well as inhibiting the function of the cytoplasmic 
membrane and the energy metabolism of bacteria.94 In addition, flavonoids that are lipophilic can also act as antibacter-
ials by forming complexes with extracellular proteins and bacterial cell walls that interfere with the permeability of 
bacterial cell walls.95

Red betel leaf extract contains steroidal compounds. Steroid compounds inhibit bacterial growth through their role in 
binding to lipid membranes, disrupting membrane sensitivity and causing leakage in bacterial liposomes.96 Alkaloid 
compounds are also found in red betel leaf extract. Alkaloids are compounds containing one or more nitrogen atoms that 
are formed and usually exist in combined form as part of a cyclic system. Alkaloid compounds can inhibit the growth of 
gram-positive and gram-negative bacteria by inducing cell lysis and changes in bacterial morphology.97

The mechanism of saponin as an antibacterial is that it can associate with lipopolysaccharide in the bacterial cell wall, 
thereby increasing the permeability of the cell wall and reducing the surface tension of the cell wall, causing the wall to 
lyse and the antibacterial substance to easily enter the cell, resulting in the death of the bacteria.98 The mechanism of 
action of triterpenoid compounds as antibacterial agents is to react with porins, which are transmembrane proteins in the 
outer membrane of the bacterial cell wall, forming strong polymer bonds and damaging the porins. Damage to the porins, 
which are the entry and exit points for the compounds, reduces the permeability of the bacterial cell walls and causes the 
cells to lack nutrients, so that bacterial growth is inhibited or killed.99

Furthermore, this study specifically tries to summarise the antibacterial potential of P. crocatum Ruiz & Pav, focusing on 
the impact of Red Betel on S. mutans, S. sanguinis, and E. faecalis, bacteria that cause oral infections. Rizkita et al (2017) 
distilled green and red betel leaf oil, identified its components, and tested its activity against S. mutans bacteria. The gas 
chromatography analysis of green betel oil revealed 16 compound peaks, including camphena (36), Sabinene (37), cario-
phyllen (38), α-Humulen (39). The gas chromatography analysis of red betel oil revealed the presence of 35 compound peaks. 
Two main peaks were identified as belonging to the terpenoid group, namely Sabinene (37) and Mirsen (40).

Antibacterial activity test was conducted on Red and Green Betel Oil against Streptococcus mutans using varying 
concentrations of 100, 75, 50, and 25%. Propylene glycol solvent was used as a negative control, and amoxicillin was 
used as a positive control. Research has demonstrated that red betel leaf oil can effectively inhibit the growth of 
S. mutans bacteria. The diameter of the inhibition zone decreases as the concentration of the oil decreases, with values of 
7.1, 6.2, 4.3, and 3.6 mm for the highest to the lowest concentrations, respectively. The active compound’s structure is 
illustrated in Figure 10.

Figure 10 Structure of the compound camphene (36), sabinene (37), caryophyllene (38), α-Humulen (39), Mirsen (40).100
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The inhibitory effect of green betel leaf oil was observed, with inhibition zones ranging from 7.1 mm to 10.5 mm for 
the smallest to largest concentrations, respectively. Piper betle and Piper crocatum have similar content, but the yield 
difference between green betel oil (Piper betle L.) and red betel oil (Piper crocatum) is 0.8 and 0.3%, respectively. It is 
suggested that Piper betle has a higher concentration of active substances than Piper crocatum, which may contribute to 
its superior effectiveness against Streptococcus mutans.

The compounds identified in the GC-MS analysis, namely Sabinene, Kamfen, β-Kariophyllen, β-Salinen, α-Salinen 
and Mirsen, belong to the monoterpene and sesquiterpene groups and possess antimicrobial properties. Sesquiterpene 
compounds are hydrophobic and can disrupt bacterial cell integrity by reducing intracellular ATP reserves and lowering 
cell pH. These compounds are absorbed and penetrate into bacterial cells, causing bacterial cell death. The deposition and 
denaturation of proteins cause lysis of bacterial cell membranes. Compounds found in red and green betel leaf oil are 
believed to inhibit bacterial growth by destroying and inhibiting bacterial cell walls. Gram-positive bacteria are more 
susceptible to penetration by antibacterial agents as they do not have an outer membrane in their cell walls. Bacteria, 
including S. mutans, which is a Gram-positive bacterium, have simple cell walls consisting of 60–100% peptidoglycan, 
which is made up of N-acetyl glucosamine and N-acetyl muramic acid. The report suggests that red betel leaves, 
particularly red betel leaf oil, have potential as an antibacterial agent with moderate inhibition criteria against S. mutans. 
It is important to note that this evaluation is based on objective criteria and not subjective opinions.

Antiviral Activity of Red Betel Extract
Red betel plants (Piper crocatum Ruiz & Pav) have been proven to inhibit the growth of pathogenic bacteria and fungi. 
According to Akbar et al (2022), in silico testing of Red Betel leaf components against the SARS CoV-2 virus showed 
anti-viral activity. This research used four receptors from SARS CoV-2, including 5R7Y, 7JKV, 7TLL, and 7VH8. The 
5R7Y receptor has 12 test compound ligands with lower docking scores than natural ligands, including Proanthocyanidin, 
Catechin, Asiaticoside, Myricetin, Quercetin, Fisetin, Rhamnazin, Isorhamnetin, Pachypodo, Kaempferol, Linalool, and 
Aurone. This shows that the test compound’s ligand for the 5R7Y receptor has high potential to be a candidate for anti- 
SARS CoV-2.

None of the tested ligands for the 7JKV receptor had lower docking values than the natural ligands. When compared 
to the docking scores of comparator drugs, the scores are still far behind, especially for remdesivir, nirmatrelvir, and 
molnupiravir. However, the docking scores for favipiravir were much better. Because there is no ligand of the test 
compound that has a lower docking score than the natural ligand of the 7JKV receptor, it is unlikely that the ligand of the 
test compound will be a candidate for anti-SARS CoV-2 at the 7JKV receptor. On the other hand, only one ligand of the 
test compound, Asiaticoside, had a lower docking score than the natural ligand at the 7TLL receptor. The results suggest 
that the test compound ligand is unlikely to be a strong candidate for anti-SARS CoV-2 treatment at the 7TLL receptor. 
Additionally, only one ligand in the test compound, Asiaticoside, had a lower docking score than the natural ligand at the 
7VH8 receptor. The ligand docking score of the test compound on the 7VH8 receptor was smaller than that of the natural 
ligand, indicating that the ligand is unlikely to be a viable anti-SARS CoV-2 candidate. Research reports show that 
compounds contained in the red betel plant (Piper crocatum Ruiz & Pav) show antiviral activity, especially at the 5R7Y 
receptor.101

Diniatik et al (2011) reported that the ethanol extract of Red Betel leaves inhibited infections caused by the Newcastle 
Disease virus at a concentration of 10 µg/mL. The mechanism of action of the virus suggests that the ethanol extract of 
red betel leaves interferes with viral mRNA, inhibiting the formation of viral capsids. This is because the Newcastle 
Disease virus is an RNA virus. Flavonoids, saponins, and tannins are compounds that function as antivirals. Flavonoids 
are a group of natural phenolic compounds that have antiviral activity, specifically as reverse transcriptase. It is important 
to note that this text already meets the desired characteristics and is free from errors. Flavonoids cause protein 
denaturation at low levels and protein coagulation at high levels, leading to cell death. Flavonoids are believed to act 
as antivirals by inhibiting the viral reverse transcriptase enzyme, preventing the synthesis of viral RNA into cDNA and 
the replication of the virus. This, in turn, prevents the production of necessary viral proteins and enzymes, ultimately 
leading to the death of the virus.102 Similarly, saponin compounds exhibit antiviral activity by inhibiting the formation of 
capsids in viruses and increasing the resistance of host cells. Meanwhile, tannin compounds in plants can inhibit the 
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interaction between host cell surface proteins and viral proteins, thereby preventing virus attachment and penetration into 
the plasma membrane. In other words, tannins bind to both viral and host cell proteins to form a complex, which prevents 
the virus adsorption process. This extract has potential antiviral properties.103

Although some compounds in betel leaf have been shown to have antiviral activity against certain viruses, there are 
no reports on the activity of betel leaf constituents against viruses that cause oral health problems.

Pathogenic Bacteria That Cause Oral Infections
Streptococcus mutans
Streptococcus mutans is a bacterium belonging to the Streptococcaceae family and the Streptococcus genus. Its 
name is derived from the change in coccal morphology to cocco-bacilli. S. mutans is a gram-positive bacterium 
with facultative anaerobic properties. During growth, this spherical bacterium typically forms pairs or chains with 
a cell diameter of 0.5–0.7 µm. Additionally, S. mutans possesses a thick cell wall structure (15–80 nm) and 
a single coat. This bacterium is capable of surviving in low pH environments and thrives at temperatures ranging 
from 18 to 40°C. The primary habitat of S. mutans bacteria is the tooth surface, particularly near the gums and in 
dental carious lesions. A conducive environment for S. mutans can facilitate population growth and 
pathogenicity.104

One of the health issues caused by S. mutans is dental caries, which takes 6–24 months to develop. In the oral cavity, 
S. mutans bacteria can organize themselves in the bacterial community through cell-cell contacts and connections with 
other medium components, including polysaccharides, proteins, and DNA, leading to the formation of biofilms in the 
mouth. Technical terms such as biofilms will be explained when first used to ensure comprehensibility. The objective 
language used herein aims to avoid biased expressions. The cariogenicity of S mutans can be impacted by various factors 
such as diet, sucrose, antibiotics use, mouthwashes with antiseptics, and overall oral hygiene conditions or oral cavity 
area.105,106

During dental caries, S. mutans bacteria produce enzymes that actively ferment carbohydrates, including glucosyl-
transferase, dextranase, and fructosyltransferase.107 These molecules break down sucrose, converting it into glucan, 
dextran, and fructan. Sucrose is a disaccharide linked by β-2,1 consisting of glucose and fructose. Research has 
revealed it to be the most cariogenic carbohydrate.108 Virulence significantly relies on glucan production because it 
fosters biofilm formation and generates a polysaccharide matrix. Fructans constitute a type of extracellular carbohy-
drate, which is metabolized through the action of FruA fructanase enzyme that produces fructose as a source of 
energy.109,110

ATP-binding cassette (ABC) transporters, like the Msm and MalXFGK transport systems, have the primary respon-
sibility of transporting oligosaccharides into cells. On the other hand, phosphoenolpyruvate and phosphotransferase 
(PTS) sugars are responsible for transporting monosaccharides and disaccharides. Several PTS can transport the same 
carbohydrate in S. mutans, with at least three PTS involved in fructose transport and numerous PTS and permeases 
involved in glucose transport.111 Carbohydrates are phosphorylated and converted into fructose-6-phosphate (Fru-6-P) 
within cells, where they are fermented by glycolysis to produce organic acids, particularly lactic acid.112 Moreover, Fru- 
6-P is transformed into glucosamine-6-phosphate (GlcN-6-P), which acts as the primary precursor for the synthesis of 
cell walls. When additional carbohydrates are stored as intracellular granules and utilised as a reserve energy source 
during times of hunger, cells have the ability to generate intracellular polysaccharides (IPS), which are polymers of the 
glycogen-amylopectin kind.

Streptococcus sanguinis
Streptococcus sanguinis is a Gram-positive bacterium that is a facultative anaerobe and lacks spores. It is part of the 
pathogenic bacteria that can cause infections in the oral cavity, with the most frequent being the creation of biofilms that 
could eventually result in dental health issues such as dental caries. S. sanguinis undergoes cell division along a single 
axis, leading to the production of chains or pairs of cocci. The circular DNA molecule of S. sanguinis SK36 has 2274 
protein codes and 2,388,435 base pairs, obtained from dental plaque in humans.113,114 tRNA has 61 genes, expected to 
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generate 50 carbohydrate transporters and 20 amino acids, including the phosphotransferase enzyme. This enzyme is 
capable of transporting fructose, glucose, mannose, lactose, cellobiose, glucosides, maltose and trehalose. S. sanguinis 
can grow using different carbohydrate sources.

The initial stage in producing an oral biofilm involves the attachment of S. sanguinis and other primary colonies to the 
large molecular complex created on the tooth surface coated with saliva.115,116 Apart from S. mutans, S. sanguinis is also 
a significant contributor to biofilm development and serves as a fundamental species in the ecology of oral biofilms.117–119 

S. sanguinis bacteria, in contrast, may have advantageous effects by generating H2O2 as a mechanism for producing extra 
O2 and performing as a broad-spectrum antibacterial agent to hinder the expansion of S. mutans and other anaerobic bacteria 
that contribute to periodontal disease.120

Bacterial adhesion to the tooth surface is crucial to the formation of the Acquired Enamel Pellicle (AEP). This process 
is aided by negatively charged residues and electrostatic interactions with hydrophilic areas of salivary proteins.121 While 
S. sanguinis can adhere to salivary-free hydroxyapatite, the initial attachment is probably due to surface interactions 
between streptococci and salivary components.122 The mechanism for salivary protein binding is mediated through 
interactions between compounds of protein-carbohydrate or protein-protein and receptors present on the bacteria’s 
surface. The dental plaque and AEP show the detection of amylase, which is the most common salivary protein, to 
which S. sanguinis attaches via long filamentous pili in a specific manner.123,124

Enterococcus faecalis
Enterococcus faecalis is a gram-positive, non-motile bacterium with a spherical shape. These bacteria are facultative 
anaerobes with a fermentative and non-sporadic metabolism.125 The ovoid cells of E. faecalis exhibit characteristics of 
single, paired, or short chain formations and typically elongate in the direction of the chain. The bacteria have a diameter 
of 0.5–1µm45 and are commonly found in the root canal region of teeth. E. faecalis bacteria demonstrate the capacity to 
exist in highly extreme surroundings, such as those that possess very alkaline pH and elevated salt concentrations.126,127 

Additionally, the resistance of E. faecalis to several antimicrobial agents poses a serious concern, as it enables survival 
within root canals following treatment procedures.50

The pathology of E. faecalis bacteria commences when these bacteria invade the dental pulp tissue either by direct 
invasion (caries), crown or root fractures, attrition, abrasion, erosion and cracks in the crown, invasion of blood vessels 
(open lymphatics linked with periodontal disease) or through infectious disease (transient bacteremia).128,129 The said 
bacteria then infiltrate the root canal and produce metabolic products that may incite reactions in the periapical tissues. 
There are numerous virulence factors responsible for the survival of E. faecalis in the dental canal, including the 
Aggregation substance factor, which binds leukocytes and the extracellular matrix, conferring immunity protection.130

Adhesive surface factors, including attachment to dentine collagen or body tissue and biofilm formation, have been found 
to have an impact.130 Lipoteichoic acid factor, with its attachment to body tissues, is found to stimulate cytokine production 
from monocytes, leading to inflammation and resistance to root canal medication. Additionally, extracellular factors have 
contributed to the production of superoxide, which has had a detrimental effect on cells and tissues during the inflammatory 
process.131 Gelatinase factor is an extracellular zinc metalloprotease capable of hydrolysing collagen and hyaluronidase lysis 
enzymes present in damaged dentine and periapical tissue. Finally, the ability to produce toxins and suppress the growth of 
other bacteria is exhibited by Cytolysin, AS-48, and bacteriocins.131–133

Pathogenic Fungi That Cause Oral Infections
Candida albicans
The fungus C. albicans naturally resides in both the digestive tract and vagina. It coexists in harmony with the flora that 
also dwells in the intestines under usual circumstances. As long as the body remains healthy, the fungus does not cause 
any issues since it is counterbalanced by the probiotic bacteria that also inhabit these regions. The Candida albicans 
microorganism can become pathogenic, causing disease under certain circumstances, and is therefore considered an 
opportunistic pathogen, as seen in cases of candidiasis.134 It is typically found in the oral cavity, on the skin surface, 
within the genitourinary tract, and also in the gastrointestinal tract. Candidiasis is a mucocutaneous infection that triggers 
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physiological alterations and tissue harm that can be similar to thrush, but it is characterised by symptoms such as 
irritation, itching and discharge.135 Formation of C. albicans in oral biofilms illustrated in Figure 11.

The morphology of C. albicans comprises shapes ranging from oval, round, to elliptical, with sizes that vary from 
2–5μ x 3–6μ to 2–5μ x 5–28.5μ.137 Clamydospora is an infrequently found species that distinguishes C. albicans from 
other Candida species. Clamydospores, which are spores formed by hyphae, exist on the lateral or terminal part of the 
hyphae, and have enlarged, rounded, and thick walls.137,138 C. albicans has a cell wall structure that is complex. The 
cell wall of C. albicans has a thickness ranging from 100 to 400 nm. Its essential functions include shaping and 
safeguarding the cell from the surrounding environment, comprising glucan, mannan and chitin as the primary 
components.139 The multiplication of C. albicans occurs via blastospores that emerge from shoots. Blastospores are 
generally round or oval in shape and located around the septum. They exist in small numbers and continue elongating, 
subsequently developing pseudo-hyphae or chlamydospores with thick walls that measure approximately 8–12μ in 
diameter. Technical abbreviations such as “μ” will be explained upon first use.140

Candida albicans is capable of growth over a broad pH range, however, it exhibits optimal growth between pH 4.5 and 6.5. 
The yeast can also flourish in temperatures between 28–37°C. Organic compounds are an essential carbon and energy source 
for C. albicans metabolic processes and growth.141–143 As a facultative anaerobic organism, it can perform cell metabolism 
during both anaerobic and aerobic conditions. The virulence factor in C. albicans commences with the attachment process, 
hyphae formation, thigmotropism, protease secretion, and phenotypic changes. Its ability to produce and secrete the enzyme, 
aspartyl protease, to activate the virulence factor is one of the crucial factors contributing to C. albicans virulence.144–147

Candida albicans is capable of infecting through interactions with multiple microorganisms present in the oral cavity, 
resulting in the development of several oral health issues over several years. These health problems include oral 
candidiasis, endodontic disease, dental caries, periodontitis, and biofilm-associated oral diseases.148 The cross-kingdom 
interactions between these microorganisms play a crucial role in the development of such diseases. Technical term 
abbreviations will be explained upon first use. Physical attachment to the fungal cell wall (eg surface proteins and EPS), 
cross-feeding of metabolites, extracellular signalling, and changes in the environment enable C. albicans to interact with 
oral bacteria. Figure 12 provides an illustration of the interaction of C. albicans with various inhabitants of the oral 
cavity.

Figure 11 Biofilm formation by Candida albicans. 
Notes: C. albicans biofilm formation is divided into four main stages: the first begins with the attachment of the round yeast-shaped cells to the surface; thesecond stage of 
initiation of biofilm formation; the third stage of maturation of complex structured biofilms; and the fourth stage dispersion of the yeast-forming cells from the biofilm to the 
new seed bed (a). Candida albicans stained with Gram stain (b). Data from Lohse et al.136
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Conclusion
The conclusion that can be drawn from several literatures is that the Red Betel plant has significant potential for use in 
the development and application of medicine. It can be used as a candidate for herbal medicine or a raw material for 
medicinal mixtures to treat infections caused by bacteria, fungi or viruses. The anti-infective potential of Red Betel 
leaves is mainly determined by the quantity and composition of its secondary metabolites. This has been proven through 
in vitro and in silico testing. These factors also collectively contribute to the bioactivity of Red Betel, resulting in anti- 
infective effects. This review highlights the inhibition of pathogenic oral bacteria and fungi responsible for oral 
infections. The components in Red Betel have been proven to be able to inhibit the growth of S. mutans bacteria, 
which are pioneer bacteria in oral health problems. In addition, the active compounds in Red Betel leaves can inhibit 
C. albicans, the dominant fungus in the oral cavity, as shown by in vitro, in silico, and ADMET evidence. This scientific 
article presents valuable data that can contribute to the advancement of drug research and development, as well as the 
exploration and identification of potential new anti-infective agents.
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