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Abstract
We introduce a cognitive brain–computer interface based on a continuous performance task for the monitoring of vari-

ations of visual sustained attention, i.e. the self-directed maintenance of cognitive focus in non-arousing conditions while

possibly ignoring distractors and avoiding mind wandering. We introduce a visual sustained attention continuous per-

formance task with three levels of task difficulty. Pairwise discrimination of these task difficulties from electroen-

cephalographic features was performed using a leave-one-subject-out cross validation approach. Features were selected

using the orthogonal forward regression supervised feature selection method. Cognitive load was best predicted using a

combination of prefrontal theta power, broad spatial range gamma power, fronto-central beta power, and fronto-central

alpha power. Generalization performance estimates for pairwise classification of task difficulty using these features reached

75% for 5 s epochs, and 85% for 30 s epochs.

Keywords Brain–computer interface � EEG � Attention � CPT � Cognitive BCI

Introduction

Since its first definition by William James a century ago

(James 1890), attention has been generally defined by its

cognitive role in the information processing occurring in

the brain, rather than by its neuronal substrate or physio-

logical function. This way of defining attention is what

makes it so complex and difficult to study (Richard 1980).

The first cognitive models of attention describe it in

terms of filters (Treisman 1964; Deutsch and Deutsch

1963; Norman 1968). In these models, percepts are filtered

according to their relevance to the organism to be driven

towards working memory for conscious processing and

possibly long-term storage. Afterwards, the notion of

attentional load emerged: attention was modeled as a

limited capacity system (Kahneman 1973), where limited

mental resources are shared between the different infor-

mation-processing tasks the brain has to run. Attention

becomes responsible not only for selection of relevant

activities, but also for inhibition of distracting stimuli. This

model includes every cognitive task the brain has to run in

his theory of attention and not simply the process of

selecting between competing simultaneous stimuli, on

which the earlier bottleneck theories had focused. The

attentional capacity of a person can vary depending on his

arousal (Berlyne 1960), which, in turn, can be influenced

by the attended tasks—this is for instance one explanation

of driver’s drowsiness (Chen et al. 2018; Zeng et al. 2018).

Later on, attention models became modular and more

executive (Johnston and Heinz 1978; Posner and Snyder

1975): attention is considered as a flexible mental process,

where voluntary control of attention requires more

resources than automatic attentional discrimination.

Attention was finally modelled from a neurocognitive

perspective (Posner and Petersen 1989; Petersen and Pos-

ner 2012), as a unified system for the control of mental

& François-Benoı̂t Vialatte

francois.vialatte@espci.fr

Antoine Gaume

antoine.gaume@epf.fr

Gérard Dreyfus

gerard.dreyfus@espci.fr

1 ESPCI Paris, PSL Université Paris, Paris, France
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3 EPF École d’ingénieur, Sceaux, France

123

Cognitive Neurodynamics (2019) 13:257–269
https://doi.org/10.1007/s11571-019-09521-4(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-019-09521-4&amp;domain=pdf
https://doi.org/10.1007/s11571-019-09521-4


processing involving a network of anatomical areas inde-

pendent from the sensory input processing areas of the

brain, with three main subsystems of attention: alerting,

orienting and detecting.

Attention has several submodalities [e.g. overt or covert

attention, focused attention, selective attention, divided

attention, alternating attention, vigilance, see Gaume et al.

(2015) for a detailed discussion]. We are interested

specifically in sustained attention, i.e. the self-directed

maintenance of cognitive focus in non-arousing conditions

while possibly ignoring distractors and avoiding mind

wandering (Roberton and Garavan 2004; Clayton et al.

2015; Gaume et al. 2016). This state of maintaining

attention is related to what is called concentration outside

the field of neuroscience. Some authors use the term sus-

tained vigilance or just vigilance to designate this state

(e.g. Warm et al. 2008), but it is more widely accepted that

vigilance refers to a condition of sustained arousal with the

purpose of ensuring that important or surprising percepts

will not be missed (Gaume 2015) (whereas we are inter-

ested in this study in the maintenance of overt attention

towards a non surprising or even boring stimulus without

mind wandering).

A recent framework for visual attention (Knudsen 2007)

defined attention as a competitive selection process. This

framework is well-compatible with real-time modelling in

cognitive BCI. It introduces an explicit relationship

between attentional networks and the direct control of the

sensory organs that generate the incoming stimuli. It also

integrates the concept of salience filters to describe the set

of brain networks that automatically estimate the perti-

nence of an incoming sensory input (Gaume et al. 2016;

Gaume 2015). The present investigation was grounded in

Knudsen’s attentional model, with a neuro-cognitive per-

spective coming from EEG modeling, where attention is

considered as the result of three coordinated processes

(Stuss et al. 1995; Clayton et al. 2015):

(A) Monitoring and evaluation of ongoing cognitive

processes, competitive selection process to determine

which information gains access to working memory

(Desimone and Duncan 1995), therefore linking

working memory, attention, and task load.

(B) Excitation of task-relevant processes.

(C) Inhibition of task-irrelevant processes.

The cognitive control involved in sustained attention tasks

is correlated with frontal midline theta-band activity (Ca-

vanagh and Frank 2014; Clayton et al. 2015; Wokke et al.

2017), congruent with [A] monitoring processes. Increased

gamma-range oscillations are believed to promote task-

relevant activity (Reinhart et al. 2011; Akimoto et al.

2013; Ahveninen et al. 2013; Potes et al. 2014; Clayton

et al. 2015) congruent with [B] excitation processes. Alpha

power has been linked with inhibition of task-irrelevant

sensory modalities in task-irrelevant cortical areas (Makeig

and Inlow 1993; Bollimunta et al. 2008; Snyder and Foxe

2010; Toscani et al. 2010; Anderson and Ding 2011;

Mazaheri et al. 2014; Clayton et al. 2015; Wang et al.

2016), congruent with [C] inhibition processes.

Brain–computer interfaces (BCIs) are communication

systems that enable a direct and real-time exchange of

information between the brain and the external world [see

Nicolelis (2011) for an introduction to this subject]. The

first BCI development attempt, which also served as a

proof of concept, was carried out in 1973 by Jacques Vidal

and his team in California. Their experiment was called the

‘‘BCI project’’ and was meant to evaluate the feasibility

and practicality of utilizing the brain signals in a man–

computer dialogue (Vidal 1973). The goal of BCI systems

is to create communication pathways that differ from the

normal input/output channels used by the brain, namely the

sensory organs to capture information about the world and

the peripheral nervous system coupled with the muscles to

interact with the environment (Wolpaw et al. 2000). The

purpose of such alternative pathways is frequently viewed

as a means of assisting in the rehabilitation of disabled or

paralysed persons, to whom BCIs can be of great help by

either replacing a defective sensory input or providing

substitute ways to interact with the world. However, many

other applications can emerge from the development of

real-time brain signals decoding and stimulation tech-

niques. They include applications of neurofeedback, and

applications outside of the medical world, such as in BCI

games (Marshall et al. 2013), performance analysis

(Tharawadeepimuk and Wongsawat 2017), sonification

(Sayan et al. 2019), silent communication devices1 or ways

to improve cognitive activity.2

Thorsten Zander introduced a slightly different classi-

fication in which exogenous BCIs are referred to as reac-

tive while endogenous interfaces are separated into active

and passive, respectively if the subject consciously triggers

control signals or if the interface passively monitors the

user’s brain state (Zander et al. 2010; Zander and Kothe

2011). To further refine this classification, we call sensory

BCI a device with a control signal that is a correlate of

sensory processing, motor BCI a device that uses activity

from the motor cortex, and cognitive BCI a system that

monitors cognitive functions (Gaume et al. 2015). The

long-term goal of our research is the development of a

cognitive BCI able to monitor the variations of sustained

attention in real time. This ‘‘attentionometer’’ could for

1 See for instance Grau et al. (2014) or Rao et al. (2014) for

promising brain-to-brain communication interfaces.
2 See e.g. http://dreem.com for an example of BCI for the general

public aimed at improving the quality of sleep.
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example warn its user immediately and objectively that its

attention shifted towards a distractor. It could also be used

to determine its user’s ability to pay attention at certain

moments of the day, for example to know he is capable of

driving. Such a device could also be used to train sustained

attention by providing a continuous feedback to the user.

More generally, being able to monitor our attention as

directly as, for instance, the position of our arm, would

probably allow us to learn how to consciously regulate our

attention, and to find ways to concentrate easily and

comfortably during long periods of time. This is the prin-

ciple of neurofeedback (Lachaux 2011; Arns et al. 2017;

Gaume et al. 2016).

The challenge that is adressed in the present work is to

find a neural correlate of the variations of sustained

attention that can be monitored in real time and that, ide-

ally, does not require invasive hardware nor the perfor-

mance of a specific task. Classical approaches to monitor

sustained visual attention are based on the Mackworth

Clock (Mackworth 1948), and involve long sessions of

visual monitoring in search for unusual events. The

objective measure used in that case as an indicator of

attention is the response time of the subjects to the

appearance of targets. However, changes in sustained

attention can be measured either as fluctuations, or dete-

riorations of performances along time (Clayton et al.

2015). Most subjects indicate that their attention fluctuates

between targets and that each unusual event recaptures

their focus. The discrete response time measurements used

in such experiments are therefore more related to deterio-

rations of attention, while the experiment fails to capture

the fluctuations occuring in between the targets. In addi-

tion, all subjects who show a significant increase in their

response time over the course of the experiment report

drowsiness and dozing. Consequently, it is difficult to

disambiguate such an experiment from the monitoring of

alertness and vigilance (i.e. sustained arousal). Therefore,

we deem this experimental approach not optimal for the

monitoring of sustained attention. Indeed, it only requires a

discrete involvement of attention and only allows a discrete

measurement of performance. Consequently, the design of

our cognitive BCI involves a continuous task: the subject

has to focus continuously, the evaluation of attentional load

relies on continuous stimulations, and the performance of

the subject is measured continuously.

We therefore introduce an experimental paradigm

involving a continuous task for the monitoring of variations

of visual sustained attention. Furthermore, we intend to

design a task that minimizes the involvement of cognitive

functions other than sustained attention. We therefore

decided to focus on the attention required to continuously

update the visual information we get from our sensory

inputs instead of a task based on continuous processing of

the information stored in working memory, which would

involve working memory load in addition to sustained

attention.

Materials and methods

Continuous performance task (CPT)

Continuous Performance Task (CPT) is a test used in

neuropsychology for the assessment of sustained and

selective attention. Sustained attention is the ability to

maintain concentration over time on a given task while

selective attention refers to the ability to focus on relevant

stimuli in a distracting environment. CPT paradigms gen-

erally involve multiple repetitions of a rapid presentation of

stimuli with infrequently occurring targets. More details

about CPTs can be found in Riccio et al. (2002). The task

we developed is different from static CPT but keeps the

idea that the evaluation of sustained attention requires a

continuous involvement of the subject. Due to the bias-

variance dilemma (Geman et al. 1992), if sources of vari-

ability exist in the data, it creates a lower bound (the so-

called irreducible error) for classification accuracy. We

therefore wanted to avoid discrete evaluations of perfor-

mance, in order to constrain the subject to maintain con-

tinuously his attention without fluctuations. Indeed, such

fluctuations would induce label noise in our database,

which would increase the irreducible error.

Ecological stimuli are of great importance for BCI

designs (Huang et al. 2018). On the move estimation of

attentional mechanisms (continuous estimation) using

video games is more ecological than classical static dis-

plays (discrete estimation) (Szalma et al. 2014). In our

experiment, the subjects play a driving video game using a

joystick: they have to maintain overt visuo-motor cognitive

control, involving both the maintenance of cognitive con-

trol and visual attention [see e.g. Anguera et al. (2013)

about driving video games and attention). It also involves

mechanisms unrelated with sustained attention itself, such

as arousal, stress regulation, sensory integration of visual

cues, and the motor planning and execution of the task.

However, these unrelated mechanisms are present in both

the low, medium and high difficulty conditions. Our task

design was aimed at increasing attention-related functional

loads differentially according to task difficulty. In other

words, despite the task itself is not measuring only sus-

tained visual attention, the variation of difficulty is more

specific to it. This attentional engagement was confirmed

by two observations: first, subjects involved in higher dif-

ficulties reduced their eye blink frequency, a known cor-

relate of visual attention [see e.g. (Kim et al. 2014)].

Second, they lost the ability to answer direct verbal
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questions in the hard condition [attentional inhibition typ-

ical of attentional tunneling (Wickens and Alexander

2009)].

Our task consists in the motor control of a cursor using a

joystick. The concept is simple: subjects of the experiment

sit in front of a computer screen displaying a black circle

(the target) on a grey background (see Fig. 1 for an illus-

tration). A cursor moves randomly and continuously on the

screen and subjects are asked to keep this cursor inside the

circle using the right joystick of a joypad (EG-C1036,

Targetever Technology Co. Ltd.). The difficulty of the task

is adjusted by modifying the speed of the random move-

ment. Performance of the subjects can be monitored in real

time based on the correction applied to the random

movement. The whole experiment was developed using

PsychToolBox-3 for MATLAB (Brainard 1997; Kleiner

et al. 2007) and displayed on a 120 Hz screen with a res-

olution of 1920 � 1080 pixels.

Experimental procedure

After installation of the electrodes and presentation of the

EEG principles and signals, subjects were trained on the

CPT several times at low speed (150 px/s) to make sure

they understood how to manipulate the joypad.

A calibration session was then performed, during which

each subject played the game at 20 different difficulty

levels (starting at 75 px/s and up to 1500 px/s, increasing

the speed by 75 px/s at the beginning of each sequence).

Each level was played continuously for 20 s and subjects

controlled when to begin the rounds so they could take

breaks in-between. Data from the calibration phase was

used to determine the speed of the pointer during the rest of

the experiment. This calibration phase lasted less than ten

minutes.

The recording session then started. Each subject played a

total of 60 rounds of the game at three different difficulty

levels (20 ‘‘easy’’, 20 ‘‘medium’’ and 20 ‘‘hard’’). The first

round was an ‘‘easy’’ round, followed by a ‘‘medium’’ round

and a ‘‘hard’’ round. This was repeated 20 times, in other

words the presentation order was easy-medium-hard-easy-

medium-hard-easy-medium-hard-etc. Each round lasted

30 s for a total duration of around 40 minutes. The subjects

controlled when to begin the rounds so they could take breaks

in-between. The cursor speed for the ‘‘easy’’ levels was

always 150 px/s. Cursor speeds for ‘‘medium’’ and ‘‘hard’’

levels were determined according to calibration results as the

speeds for which the cursor would stay 95% and 50% of the

time in the circle respectively. Speed ranges were [375, 750]

px/s for ‘‘medium’’ level and [650, 900] px/s for ‘‘hard’’

levels, depending on the subject. Last round score, best

scores and average scores (percentage of time spent by the

cursor inside the circle) for each difficulty were shown to the

subject between each round to stimulate his/her motivation.

Experimental conditions

EEG recordings took place in a dark room, where subjects

were seated in a comfortable armchair, about one meter

away from the screen used to display the CPT. The subjects

were shown their EEG activity prior to the recording and

explanations were given about muscular artefacts and eye

blinks. They were instructed to relax and prevent excessive

muscular contractions or eye movements.

Subjects

Seventeen (17) healthy subjects took part in the experi-

ment. Three (3) of them were rejected from the study

because the recorded data were too noisy.3 Fourteen (14)

subjects remained, among which eleven (11) were males

and three (3) females, with an average age of 23.7 (SD 3.9,

range 19–32). All had normal or corrected-to-normal vision

and none of them had any known history of epilepsy,

migraine or any other neurological condition. The study

followed the principles outlined in the Declaration of

Helsinki. All participants were given explanations about

the nature of the experiment and signed an informed con-

sent form before the experiment started.

Data acquisition

EEG signals were continuously recorded at a sampling rate

of 2 kHz using 16 active Ag/AgCl electrodes from an

actiCap system, connected to a V-Amp amplifier, both

Randomly
moving cursor

Target circle

Radius:
250px

Fig. 1 Illustration of the CPT interface. The subject of the experiment

tries to keep a randomly moving cursor inside the target circle using a

joystick. The difficulty of the task can be adjusted by changing the

speed of the cursor

3 The number of electromyographic artifacts made the recording

unexploitable.
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from Brain Products. The electrodes were placed according

to the 10–20 system with a focus on frontal, parietal and

occipital regions at positions Fp1, Fp2, F7, F3, F4, F8, C3,

C4, CP5, CP1, CP2, CP6, P3, P4, O1 and O2, as illustrated

in Fig. 2. Two additional electrodes were used as ground

and reference and were located respectively at AFz and

FCz.

Signal processing

Analyses were performed using MATLAB 2013a. The

recorded EEG signals were filtered between 0.5 and 90 Hz

using a zero-phase 3rd-order digital Butterworth filter, and

the same kind of filter was applied around 50 Hz to remove

the power-line noise. Filtering was applied on the raw

signals before any segmentation to avoid boundary effects.

Eye blink rejection

Preliminary experiments showed that subjects produced

fewer eye blinks when they were engaged in tasks requir-

ing a high level of visual attention than in other tasks. In

order to avoid classification of our data based on the

number of eye blink artifacts found in EEG signals, we

needed either to remove all epochs containing eye blinks,

thereby reducing significantly the size of our dataset, or to

find a way to remove eye blinks from EEG signals.

Therefore, a Second-Order Blind Identification (SOBI)

algorithm from the EEGLAB toolbox was used to decom-

pose recorded EEG signals into independent components.

Eye blink activity and strong eye movements artefacts were

removed before signal reconstruction from SOBI compo-

nents. Details about this algorithm can be found in Belou-

chrani et al. (1993). More information about the eye blink

removal using ICA can be found in Jung et al. (2000).

Feature extraction and selection

This section presents results obtained using only spectral

features extracted from EEG power spectra. All features

were extracted from epochs of 1, 3, 5, 10 and 30 s.

Absolute and relative EEG power in the delta (d 1–4 Hz),

theta (h 4–8 Hz), alpha (a 8–12 Hz), low beta (b� 12–

18 Hz), high beta (bþ 18–25 Hz), low gamma (c� 25–

35 Hz) and high gamma (cþ 35–45 Hz) frequency bands

were extracted from each channel of each EEG epoch,

accounting for a total of 224 features per epoch (14 features

and 16 channels). Absolute power refers to the total power

in a given frequency band, obtained using FFT and a

Hanning window on a given epoch. Relative power refers

to the ratio of the absolute power in a given frequency band

to the absolute power in the whole spectrum, taken

between 1 and 45 Hz.

We used analysis time windows of 1, 3, 5, 10 and 30 s.

These epoch lengths span in an exponential progression the

[1–30] s range, so we could test more short windows than

large windows. We tested these different time windows in

order: (1) to test for stability to parameter changes, and (2)

to provide a global overview of the tradeoff between

accuracy and speed.

When classification was not based on a single variable,

candidate variables were ranked in order of decreasing

relevance by Orthogonal Forward Regression (OFR); fea-

ture selection was performed by the random probe method,

as described in Stoppiglia et al. (2003). Random variables

(probes) were added to the feature set and only variables

that ranked better than 95% of the probes were kept for

classification (35 features out of 224).

Classification

Classification of the EEG epochs was performed using

Linear Discriminant Analysis [LDA, see for instance

Fukanaga (1990)]. LDA estimates separating hyperplanes

in the feature space by seeking the direction, in feature

space, such that the projections of the classes on this

direction have maximum iner-means distance and mini-

mum variance. Likelihood ratios based on the distance to

these hyperplanes are used to assign new observations to

the different classes. LDA has the advantages of a very low

computational requirement, and a single solution with a

given training set. This classifier is simple to use, and has

been used with success in a great number of BCI (Lotte

et al. 2007). LDA assumes Gaussian distributions, which

holds true for our features.

Epochs were labelled as ‘‘easy’’, ‘‘medium’’ or ‘‘hard’’,

depending on the difficulty of the task. We performed

pairwise classification (Knerr et al. 1990) (between all

pairs of classes) and three-class classification. Since the

datasets used for classification were balanced, expected

classification accuracies using random features were 50%

for pairwise classification and 33.3% for three-class clas-

sification. Feature selection and classifier training were

performed using data from all subjects except one and data

from the remaining subject were used for validation. This

is repeated for each subject and accuracies are averaged

(Leave-One-Subject-Out, LOSO).

Results

Single-feature classification

Table 1 shows the evolution of the best accuracy obtained

using a Bayes classifier (i.e. a single feature LDA) as a

function of the epoch length. For each discrimination, we
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Fig. 2 Electrode placement for CPT recordings. Brain activity was recorded using 16 active electrodes (in green), located all over the scalp with

a focus on the frontal, parietal and occipital regions which cover several regions involved in attention and visual processing. (Color figure online)

Table 1 Best accuracies using a single spectral power feature for different epoch lengths and for the four classification scenarios described in

‘‘Classification’’ section

Epoch duration (s) 3-Class classifier (%) ‘‘Easy’’ versus ‘‘medium’’ (%) ‘‘Easy’’ versus ‘‘hard’’ (%) ‘‘Medium’’ versus ‘‘hard’’ (%)

Best LOSO classification accuracies

1 40.5 60.1 60.8 54.5

3 42.2 62.7 63.1 55.8

5 42.8 64.3 65.0 57.1

10 44.0 65.5 65.8 58.2

30 46.2 68.8 66.4 60.2
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selected the feature that ranked first in the ranking provided

by the OFR method. It can be observed that the best

accuracy increases with epoch length for all classification

scenarios. However, 30 s epochs seem to be only slightly

easier to classify than 1s epochs using a single spectral

power feature.

Tables 2 and 3 illustrate the results obtained on 10 s

epochs using single feature LDA for respectively three-class

classification (‘‘easy’’ vs. ‘‘medium’’ vs. ‘‘hard’’) or pairwise

classification (between any pair of difficulty levels). We

observe that the best accuracies obtained in ‘‘easy’’ versus

‘‘medium’’ (65.5%) and ‘‘easy’’ versus ‘‘hard’’ (65.8%)

discriminations come from the same feature (absolute theta

power at Fp1) and are significantly higher than the accuracies

obtained for ‘‘medium’’ versus ‘‘hard’’ classification. The

accuracy maps obtained with absolute spectral power are

also very similar in the ‘‘easy’’ versus ‘‘medium’’ and ‘‘easy’’

versus ‘‘hard’’ discriminations, and both qualitatively look

like the accuracy map obtained in the 3-class discrimination.

We also observe that the features giving the best results are

mostly low frequency features (delta and theta band power)

in the prefrontal, superior parietal and central cortices. These

observations are similar with other window lengths (not

illustrated).

Multiple-feature classification

Tables 4 and 5 show the results obtained using LDA

classification with multiple features in the four discrimi-

nations described in ‘‘Classification’’ section. All results

are given for different epoch lengths ranging from 1 to

30 s. Accuracies are obtained using a leave-one-subject-out

cross validation method. Along with the classification

accuracies, the best features selected by OFR for the

classification of 10 s epochs are listed for each

discrimination.

On average, LOSO classification accuracies increase

with the number of features for all discriminations and all

epoch lengths. Using 30 s epochs, accuracy reaches 64.8%

for the three-class classifier using 26 features; 85.5% in the

‘‘easy’’ versus ‘‘medium’’ discrimination using 14 features;

89.3% in the ‘‘easy’’ versus ‘‘hard’’ discrimination using 26

features and 77.3% in the ‘‘medium’’ versus ‘‘hard’’ dis-

crimination using 25 features. With shorter 5 s epochs, a

situation more likely to happen in a real cognitive BCI,

accuracy reach 51.8% with the three-class classifier; 75.6%

in the ‘‘easy’’ versus ‘‘medium’’ discrimination; 76.2% in

the ‘‘easy’’ versus ‘‘hard’’ discrimination and 63.5% in the

‘‘medium’’ versus ‘‘hard’’ discrimination.

It can be noted that the ‘‘easy’’ versus ‘‘medium’’ clas-

sification is the discrimination that reaches its accuracy

plateau with the lowest number of features, thereby

decreasing the risk of overfitting.

The features selected for each classifier are different

and, as expected, not directly linked with the features

giving the best accuracy when classification is performed

using a single input. However, except for the ‘‘medium’’

versus ‘‘hard’’ classifier, which uses several features in the

delta range (1–4 Hz), the other three classifiers select

similar features among their best ten including:

• Several features based on absolute or relative theta

power (4–8 Hz), taken from multiple locations over the

scalp, from frontal to occipital regions,

• features based on high gamma power (35–45 Hz), taken

in the central or parietal regions,

• a feature based on frontal low beta power (12–18 Hz),

• a feature based on central high beta power (18–25 Hz),

• a feature based on centro-parietal alpha power

(8–12 Hz).

Subjective feedback

After the experiment, each subject was asked about his

perception of the difficulty levels of the game.

• All subjects found the ‘‘easy’’ rounds very easy. Some

reported boredom. On average, 99.8% of ‘‘easy’’ play

time was spent inside the target circle.

• Most subjects reported that the ‘‘medium’’ levels were

the most interesting and engaging, as they had the

impression of having a real control over the movement

of the cursor. 94.6% of total ‘‘medium’’ play time was

spent inside the target.

• All subjects found that ‘‘hard’’ levels were by far the

hardest, and most of them reported that it was slightly

less motivating than the ‘‘medium’’ difficulty because

they felt they did not have enough control over the fast-

moving cursor. Some subjects however found this

difficulty very challenging and interesting. On average,

56.4% of ‘‘hard’’ play time was spent inside the target

circle.

In order to control that the task had an effect on cognitive

load, we confirmed on three subjects the effect of varia-

tions in task difficulty, using the NASA Task Load Index

(Hart and Staveland 1988). The six dimensions (Mental

Demand, Physical Demand, Temporal Demand, Perfor-

mance, Effort, and Frustration) of the scale were compared

between ‘‘easy’’ versus ‘‘medium’’, as well as ‘‘medium’’

versus ‘‘hard’’ conditions, using a Wilcoxon paired test

with Bonferroni corrections for multiple comparisons. Task

difficulty change led to significant increase of Mental

Demand (p\0:05 in all subjects and both conditions),

there were no significant changes with the other dimen-

sions of the scale (p[ 0:10 in all subjects and both

conditions).
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Discussion

Subjects of the experiment reported that the ‘‘medium’’

rounds and the ‘‘hard’’ rounds required more or less the

same concentration. We therefore expected that

classification would work better between ‘‘easy’’ and

‘‘medium’’ or between ‘‘easy’’ and ‘‘hard’’ rounds, than

between ‘‘medium’’ and ‘‘hard’’ rounds. This is consistent

with the results shown on the tables. It is also consistent

with the fact that the features selected to discriminate

Table 2 Two-class classification results obtained using a single spectral power feature when separating EEG epochs of 10 s recorded during two

discriminations among ‘‘easy’’, ‘‘medium’’ and ‘‘hard’’

A -  Easy” vs.  Medium” LOSO Classification

Best features Accuracy Sensitivity Specificity AUC

Absolute theta power (Fp1) 65.5 0.696 0.620 0.695
Absolute delta power (Fp1) 65.4 0.675 0.640 0.685
Relative theta power (C3) 64.9 0.658 0.646 0.681
Relative theta power (CP2) 64.8 0.688 0.620 0.686
Relative theta power (CP1) 64.6 0.629 0.680 0.693

δ θ α β− β+ γ− γ+
0.438

0.655

B -  Easy” vs.  Hard” LOSO Classification

Best features Accuracy Sensitivity Specificity AUC

Absolute theta power (Fp1) 65.8 0.699 0.624 0.702
Absolute theta power (Fp2) 64.3 0.631 0.689 0.695
Absolute delta power (Fp1) 64.0 0.635 0.670 0.676
Absolute delta power (Fp2) 62.0 0.643 0.631 0.633

Relative low gamma power (O2) 61.1 0.718 0.537 0.618

δ θ α β− β+ γ− γ+
0.461

0.658

C -  Medium” vs.  Hard” LOSO Classification

Best features Accuracy Sensitivity Specificity AUC

Relative theta power (P4) 58.2 0.604 0.571 0.599
Relative theta power (CP2) 58.1 0.617 0.560 0.589
Relative theta power (O2) 57.3 0.568 0.585 0.582
Relative theta power (CP6) 57.0 0.519 0.645 0.582
Relative theta power (CP1) 56.4 0.505 0.642 0.578

δ θ α β− β+ γ− γ+
0.460

0.559

” ”

” ”

” ”

The five features giving the best average accuracies are listed for each classifier. Sensitivities and specificities are given for the best threshold.

Accuracies obtained using absolute EEG power for each frequency band and each channel are presented as topographic maps (frontal electrodes

are located at the top). Details about frequency bands can be found in ‘‘Feature extraction and selection’’ section
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Table 3 Three-class classification results obtained using a single spectral power feature when separating EEG epochs of 10 s recorded during

‘‘easy’’, ‘‘medium’’ and ‘‘hard’’ discriminations

 Easy” vs.  Medium” vs.  Hard” LOSO Classification

Best features Accuracy

Relative theta power (CP2) 44.0
Absolute theta power (Fp1) 43.8
Relative theta power (CP1) 43.7
Absolute delta power (Fp1) 42.8
Absolute delta power (Fp2) 42.4

δ θ α β− β+ γ− γ+
0.308

0.438

” ” ”

The five features giving the best average accuracies are listed. Accuracies obtained using absolute EEG power for each frequency band and each

channel are presented as topographic maps (frontal electrodes are located at the top). Details about frequency bands can be found in ‘‘Feature

extraction and selection’’ section

Table 4 Classification results using multiple features for three-class classification (left) and ‘‘easy’’ versus ‘‘medium’’ classification (right)

 Easy” versus  Medium” versus  Hard”  Easy” versus  Medium”

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features

A
cc

ur
ac

y

1s 3s 5s 10s 30s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features

A
cc

ur
ac

y

1s 3s 5s 10s 30s

Ten best features (as ranked by OFR) Ten best features (as ranked by OFR)

1- Absolute theta power (Fp1) 1- Relative theta power (CP1)
2- Relative high gamma power (P3) 2- Absolute low beta power (Fp1)
3- Relative high beta power (C3) 3- Relative high gamma power (CP1)
4- Absolute low beta power (Fp2) 4- Relative low gamma power (F4)

5- Relative theta power (F4) 5- Relative Theta Power (C4)
6- Relative alpha power (CP2) 6- Relative high beta power (C3)

7- Absolute high gamma power (CP1) 7- Relative theta power (O1)
8- Absolute high beta power (C3) 8- Relative alpha power (CP2)
9- Absolute alpha power (F4) 9- Relative delta power (CP5)
10- Relative theta power (O2) 10 Relative high gamma power (F4)

0 10 20 30 0 10 20 30

” ” ” ” ”

Accuracies are given for different epoch lengths as a function of the number of features used by the classifier. The best ten features selected by

OFR on 10 s epochs are listed for both classifiers
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‘‘medium’’ and ‘‘hard’’ rounds are different from those

selected for the other classifiers.

In order to estimate BCI performances, LOSO classifi-

cation accuracies were used. Classical BCI models are

designed and tested within subjects. Instead, LOSO scores

are estimates of the generalization performance of the

classifier onto new subjects, and it is therefore an estimate

of transfer learning (Cheng et al. 2017). The choice of the

LOSO validation approach was made to avoid biases in the

estimates. Indeed, we might achieve higher accuracies on

this database using within-subject analysis instead of cross-

subject classifications. However, a within-subject model

would increase the risk of modeling subject-related motor

and/or cognitive confounders, which would be a serious

flaw for a cognitive BCI (Gerjets et al. 2014). Furthermore,

a LOSO approach allows us to design a cognitive BCI

system which does not need calibration. In other words, it

can be applied right away on new subjects without

retraining.

Pairwise classification (‘‘easy’’ vs. ‘‘medium’’ or ‘‘hard’’

rounds) reached 75% even with short 5 s epochs. Accura-

cies above 85% were obtained using 30 s epochs. Note that

these accuracies were obtained without any calibration of

the model to the left-out subject. Due to the bias-variance

dilemma (Geman et al. 1992), if sources of variability exist

in the data, it creates a lower bound (the so-called irre-

ducible error) for classification accuracy. Considering that

BCI illiteracy affects 15–30% of the population (Jeunet

et al. 2016), the irreducible error is 15%, and therefore

accuracies higher than 85% would be suspicious and might

indicate a flawed model. These accuracies are therefore

close to the optimum, which illustrates the robustness of

the BCI model and show that prediction of the current

cognitive load required by a task can be monitored using

EEG. Such performances are largely sufficient for several

biomedical applications. Indeed, neurofeedback and mon-

itoring applications do not need a high accuracy, but a high

specificity (above 85%), so that it would trigger only useful

alarms. We can achieve such a detection by increasing

specificity at the cost of sensitivity, consequently our sys-

tem can already be used for biomedical applications in its

present state.

In the ‘‘easy’’ versus ‘‘medium’’ discrimination, the

LOSO classification accuracy estimations reached a pla-

teau when the number of features exceeded ten, thereby

proving that the LDA classifiers designed with these

Table 5 Classification results using multiple features for ‘‘easy’’ versus ‘‘hard’’ classification (left) and ‘‘medium’’ versus ‘‘hard’’ classification

(right)

 Easy” versus   Hard”  Medium” versus   Hard”

0 10 20 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features

A
cc

ur
ac

y

1s 3s 5s 10s 30s

0 10 20 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features
A
cc

ur
ac

y

1s 3s 5s 10s 30s

Ten best features (as ranked by OFR) Ten best features (as ranked by OFR)

1- Absolute theta power (Fp1) 1- Relative theta power (P4)
2- Relative high gamma power (P3) 2- Relative low beta power (C3)
3- Relative high beta power (C3) 3- Relative delta power (Fp1)
4- Absolute low beta power (Fp2) 4- Relative theta power (F4)

5- Relative theta power (F4) 5- Relative delta power (CP2)
6- Relative alpha power (CP2) 6- Relative delta power (O1)
7- Relative alpha power (O1) 7- Relative alpha power (F7)

8- Relative high gamma power (F3) 8- Relative alpha power (F8)
9- Relative high gamma power (CP1) 9- Relative theta power (CP5)
10- Relative high beta power (Fp1) 10- Relative delta power (C4)

” ” ” ”

Accuracies are given for different epoch lengths as a function of the number of features used by the classifier. The best ten features selected by

OFR on 10 s epochs are listed for both classifiers
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features are not very prone to overfit our data. However, in

other discriminations, and especially in the ‘‘easy’’ versus

‘‘hard’’ discrimination, accuracy increased with the number

of features and did not seem to reach a plateau (see

Table 5).

Frontal theta power was a good predictor of the task

load, providing a classification accuracy of 66% to separate

the ‘‘easy’’ task from higher demand ‘‘medium’’ and

‘‘hard’’ tasks. This result is in accordance with previously

reported observations: an increase of frontomedial theta is

the best known correlate of sustained attention (Klimesch

1999; Clayton et al. 2015). Joint EEG and fMRI analysis

have shown that prefrontal theta oscillations play a key role

in salience and executive functions (Mas-Herrero and

Marco-Pallars 2016) serving as a common substrate for the

engagement of pre-supplementary motor area and the

dorsomedial prefrontal cortex. Knudsen’s model does

consider salience filters and executive functions as core

components of attention (Knudsen 2007). Augmentation of

frontal theta has also been widely reported in association

with working memory load (Gevins et al. 1998; Jensen and

Tesche 2002; Gevins and Smith 2003; Sauseng et al. 2005;

Cavanagh and Frank 2014; Hsieh and Ranganath 2014;

Fairclough and Ewing 2017).

High beta activity in the left central region provided

good classification results. This activity may be linked with

motor control, since the task involved the control of a

joystick with the right hand. Nevertheless, the high beta

frequency band, containing spectral activity between 18

and 25 Hz, does not overlap with the sensorimotor rhythm,

and may therefore be linked with cognitive load and

attention more than with direct control of motor activity.

This is consistent with the work of Wróbel (2000), which

supports that the 15–25 Hz frequency band is a general

carrier for attention in the brain. Hypotheses about the

sources of this frontal activity could be made, however

precise reconstruction would require a high number of

electrodes (64þ), which is why this method has not been

used with our equipment.

Attention is based on brain networks involving coupling

of several frequencies (Clayton et al. 2015). In order to

target these complex interactions, the feature selection

approach which was used in our investigations extracts

biomarkers carrying complementary information. Instead

of relying on one single marker, the resulting cognitive

BCI model combines multiple features (see Table 4).

Overall, the attentional load is predicted by a combination

of prefrontal theta power, broad spatial range gamma

power, fronto-central alpha power and fronto-central beta

power. This combination of channel and frequency ranges

is coherent with the existing knowledge about the under-

lying networks of attention: frontomedial theta rythms for

attentional monitoring processes, gamma-range oscillations

for excitation processes, and alpha power for attentional

inhibition processes. As we already explained above, the

beta range activity could be correlated with either cognitive

load or sensorimotor confounders of the task.

Another potential confounder is the variation of arousal

during the task. The session was organized with successive

trials of increasing difficulty, which may induce a corre-

lation of mental fatigue with the task condition (the very

first trial was always easy, the very last always hard). A

randomized order would be a better control for this mental

fatigue confounder. However, a randomized order would

also introduce an anxiety confounder : not knowing the

level of difficulty in advance was more stressful when the

difficult condition occurred, whereas anxiety levels were

more comparable between conditions when the subjects

could anticipate it. Both mental fatigue and anxiety can

have an impact on arousal, we chose to prevent anxiety.

Conclusion

To conclude, we presented in this paper an experiment

aimed at discriminating low versus high sustained attention

states in a continuous task. This continuous task approach

introduces a new type of cognitive BCI design, where we

attempt to control the cognitive load using an ecological

video-game where a cognitive constraint is continuously

maintained to prevent load fluctuations. We showed that

features such as average frequency band power, which can

be estimated continuously and do not require discrete

stimulations, provide good classification rates even with

short epochs (5 s). A leave-one-subject-out cross-valida-

tion approach was used to avoid overfitting. Nevertheless

the present investigation is yet insufficient to prevent

modeling confounders of attentional load. For instance,

event though we removed eye blinks using SOBI, we

cannot rule out that some features participating in the

classification process may be related to eye movement or

electromyographic artefacts, which might act as a potential

confounder of sustained attention. Consequently, other

experiments will be required to differentiate potential

confounders (Gerjets et al. 2014), i.e. the features specific

to the motor control task of this investigation, emotional,

arousal or stress correlates [see for instance Mühl et al.

(2014)], artifacts, and the other cognitive loads that are not

specific to sustained visual attention.
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commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give
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