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The worldwide spread of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a healthcare
challenge for some decades. To understand its molecular epidemiology in Southern Thailand, we con-
ducted whole-genome sequencing (WGS) of 221 CRAB clinical isolates. A comprehensive bioinformatics
analysis was performed using several tools to assemble, annotate, and identify sequence types (STs),
antimicrobial resistance (AMR) genes, mobile genetic elements (MGEs), and virulence genes. ST2 was
the most prevalent ST in the CRAB isolates. For the detection of AMR genes, almost all CRAB isolates car-
ried the blaOXA-23 gene, while certain isolates harbored the blaNDM-1 or blaIMP-14 genes. Also, various AMR
genes were observed in these CRAB isolates, particularly aminoglycoside resistance genes (e.g., armA, aph
(6)-Id, and aph(300)-Ib), fosfomycin resistance gene (abaF), and tetracycline resistance genes (tet(B) and
tet(39)). For plasmid replicon typing, RepAci1 and RepAci7 were the predominant replicons found in
the CRAB isolates. Many genes encoding for virulence factors such as the ompA, adeF, pgaA, lpxA, and
bfmR genes were also identified in all CRAB isolates. In conclusion, most CRAB isolates contained a mix-
ture of AMR genes, MGEs, and virulence genes. This study provides significant information about the
genetic determinants of CRAB clinical isolates that could assist the development of strategies for
improved control and treatment of these infections.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Multidrug resistance (MDR) in Gram-negative bacteria is a glo-
bal public health concern as the treatment options are dramatically
limited [1,2]. These pathogens have a high level of resistance to
available antimicrobial classes, especially carbapenems and col-
istin, which are considered to be the last-line treatments [3–5].
Among them, carbapenem-resistant Acinetobacter baumannii
(CRAB) is an important cause of nosocomial infections associated
with high mortality rates [6]. It is commonly transmitted in inten-
sive care units (ICUs). CRAB can cause various infections such as
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ventilator-associated pneumonia, wound infections, urinary tract
infections (UTIs), bloodstream infections, and meningitis [7,8].

CRAB can be resistant to carbapenems through various mecha-
nisms. Carbapenemase production is the major mechanism of car-
bapenem resistance in A. baumannii as well as other Gram-negative
bacteria. The carbapenemase enzymes have been classified by
Ambler into three classes, class A, class B, and class D carbapene-
mases [9]. The carbapenemase-encoding genes are mainly located
on mobile genetic elements (MGEs), plasmids, transposons, and
integrons. Due to the presence of MGEs, many carbapenemase
genes can be transferred between plasmids and chromosomes.
Additionally, they can be horizontally transferred from one bacte-
ria to another bacteria, leading to the rapid dissemination of car-
bapenemase genes [10]. Although the genetic basis associated
with antimicrobial resistance (AMR) and bacterial pathogenesis
among CRAB isolates has been characterized [11,12]. The genetic
processes supporting the co-acquisition of multiple carbapene-
mase genes as well as other AMR genes still need to be elucidated
further. Whole-genome sequencing (WGS) has become a powerful
tool for rapidly analyzing the entire genomic DNA sequence of
organisms. It has been used to characterize and understand the
mechanisms of AMR and their spread through bacterial species,
which is necessary for combating AMR-bacteria [13,14].

Previously, most of the studies have been reported the genetic
characteristics of CRAB clinical isolates from many countries such
as Korea, Thailand, Vietnam, Myanmar, Malaysia, and Brazil as well
as in European countries [1,3,15–18]. Their findings demonstrated
that a high level of the CRAB isolates was assigned to an ST2 with
the carriage of the blaOXA-23 gene and other AMR genes conferring
resistance to many antibiotic classes, particularly aminoglycosides.
In addition, the RecAci1 plasmid was predominantly found in the
CRAB isolates, while the insertion sequence (IS) elements (e.g.,
ISAba1 and ISAba125) were also detected in the CRAB isolates.
Although several studies have provided WGS data of many CRAB
isolates which are for understanding the distribution of AMR
genes, virulence genes, and MGEs, there are to date few studies
examining the genomic characteristics of CRAB isolates from
Southern Thailand. Elucidation of the mechanisms of acquired
AMR genes and virulence-associated genes and the genomic diver-
sity among the CRAB isolates would help better understand their
dissemination patterns in the regions. This is because CRAB isolates
continuously evolve to survive in harsh environments, and they
have been spreading throughout the world for a long time. Impor-
tantly, the AMR genes can be horizontally transferred (conjugation
and transduction) to other related pathogenic bacteria, causing the
rapid and global spread of AMR in Gram-negative bacteria. Thus,
the objective of this study was to analyze the whole-genome
sequence of CRAB, isolated from patients in 7 hospitals within
lower Southern Thailand, to gain genomic insights into the clinical
CRAB isolates of this area. The understanding and tracing of the
rapid evolution of MDR in Gram-negative bacteria will play an
important role in controlling these bacteria and slowing their
spread until more effective treatments become available.
2. Materials and methods

2.1. Bacterial isolates and clinical data

In this study, a total of 221 CRAB isolates were obtained from
the Clinical Microbiology Laboratories (CMLs) of 7 hospitals
located in lower Southern Thailand including Trang Hospital
(n = 62; 28.05%), Songklanagarind Hospital (n = 54; 24.43%), Phat-
thalung Hospital (n = 45; 20.36%), Songkhla Hospital (n = 44;
19.91%), Satun Hospital (n = 7; 3.17%), Pattani Hospital (n = 7;
3.17%), and Yala Hospital (n = 2; 0.90%) (Fig. 1a). The 221 CRAB iso-
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lates were collected mostly from sputum but also from other clin-
ical specimens (e.g., urine, pus, blood, body fluids, and tissue) of
221 patients who were admitted to the hospitals between March
and August 2019 (Fig. 1b). In CMLs, the A. baumannii strains were
identified by biochemical tests, according to Bergey’s Manual of
Systematic Bacteriology [19] and confirmed by Matrix-Assisted
Laser Desorption/Ionization-Time Of Flight (MALDI-TOF) mass
spectrometry (MS) [20,21]. The phenotypic resistance to car-
bapenem (imipenem and meropenem) in A. baumannii strains
was evaluated by disk diffusion method. A. baumannii strains were
defined as resistant to carbapenem, when the zone diameters
were � 18 mm for imipenem and/or � 14 mm for meropenem,
according to the CLSI guideline (2018) [22]. The inclusion criterion
for CRAB isolates was the A. baumannii strains that were resistant
to carbapenem, while A. baumannii strains without carbapenem
resistance were excluded from the study.

2.2. Genome library preparation and sequencing

Genomic DNA of all the CRAB isolates was extracted using the
TIANamp Bacterial DNA Kit (Tiangen, Beijing, China), following
the manufacturer’s instructions. The extracted DNA was sent to
the Beijing Genomics Institute (BGI) in China for short-read WGS.
For testing sample qualification, the DNA concentrations were
measured by Qubit Fluorometer (Invitrogen), while DNA integrity
and purity were investigated by Agarose Gel Electrophoresis. Then,
1 mg of the qualified genomic DNA (�23 kbp) was randomly frag-
mented by Covaris. Fragmented sequences with a size
of � 800 bp were selected using the Agencourt AMPure XP-
Medium kit. End-repair and 30-adenylation were performed on
the fragments, and adaptors were ligated to the ends of these 30-
adenylated fragments to amplify the fragments. The PCR products
were then purified using an Agencourt AMPure XP-Medium kit.
The double-stranded PCR products were heat-denatured and circu-
larized by the splint oligo sequence. The single-strand circle DNA
(ssCir DNA) was formatted as the final library. The quality of the
whole-genome library was checked by quality control (QC). The
qualified libraries were sequenced by BGISEQ-500 (BGI, China).
Finally, 150-bp paired-end reads were received by combinatorial
Probe-Anchor Synthesis (cPAS).

2.3. Genome assembly and annotation

De novo assemblies of our 221 CRAB genomes were generated
using SPAdes v3.12 [23]. The quality and completeness of the gen-
ome assemblies were assessed by Quast v5.0.2 [24] and Busco
v5.1.2 [25,26], respectively. According to the exploration of
reported A. baumannii genomes in the National Center for Biotech-
nology Information (NCBI) (https://www.ncbi.nlm.nih.gov/), we pre-
dicted that the highest length of A. baumannii genomes is
approximate 4.4 Mbp. Thus, assembled sequences containing a
read length of > 4.4 Mbp were initially excluded from the study,
because they might contain contaminant sequences from other
species. The genomes were then annotated using Prokka v1.12
[27], and finally, the tRNAs and rRNAs were identified by
tRNAscan-SE v2.0 [28,29] and RNAmmer v1.2 [30], respectively.

2.4. Bioinformatics analysis

Sequence analyses were performed using several bioinformatics
tools. Although the CMLs of the 7 hospitals had previously identi-
fied the CRAB isolates using standard biochemical methods and
MALDI-TOF MS, the A. baumannii species was reconfirmed by in sil-
ico methods using SpeciesFinder v2.0 (https://cge.cbs.dtu.dk/ser-
vices/SpeciesFinder/) [31] in the center for genomic epidemiology
(CGE). For multilocus sequence typing (MLST), we searched the
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Fig. 1. The numbers of CRAB clinical isolates collected at hospitals located in 6 provinces, lower Southern Thailand (a) and sample sources (b). TR, Trang Hospital; PSU,
Songklanagarind Hospital; PT, Phatthalung Hospital; SK, Songkhla Hospital; ST, Satun Hospital; PA, Pattani Hospital; YL, Yala Hospital; NA, not available.
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sequence types (STs) of all CRAB isolates against the public data-
bases for molecular typing and microbial genome diversity
(PubMLST) using mlst v2.19.0 (https://github.com/tseemann/mlst)
[32]. The AMR genes were identified using ABRicate v1.0.1
(https://github.com/tseemann/abricate) with the default parameter
against the comprehensive antibiotic resistance database (CARD)
(https://card.mcmaster.ca/) [33]. In plasmid identification, we cre-
ated a plasmid nucleotide sequence database based on the litera-
ture reviews [16,34–42] and then predicted the presence of
plasmid replicon types using blastn v2.12.0 with 80% identity
and 1e-30 E-value cut-offs. The presence of insertion sequence
(IS) elements was predicted using ABRicate v1.0.1 with the default
parameter against the IS database from ISfinder (https://www-is.
biotoul.fr/) [43]. Also, the integrons were investigated using inte-
gron_finder v2.0 (https://github.com/gem-pasteur/Integron_Finder)
with the default parameter [44]. Also, the virulence-associated
genes were detected using blastn v2.12.0 with 80% identity and
1e-30 E-value cut-offs against the virulence factor database (VFDB)
of Acinetobacter spp. (http://www.mgc.ac.cn/cgi-bin/VFs/genus.
cgi?Genus=Acinetobacter) [45], while the bacteriocin-encoding
genes were explored using blastx v2.12.0 with 80% identity and
1e-30 E-value cut-offs against the databases from bacteriocin gen-
ome mining tool (BAGEL4) (http://bagel4.molgenrug.nl/databases.
php) [46]. We also predicted the presence of the bacteriophage
genome in the CRAB isolates using phigaro v2.3.0 (https://github.-
com/bobeobibo/phigaro) with the default parameter [47].
2.5. Pan-genome and phylogenetic analysis

The pan-genome of our 221 CRAB isolates was analyzed using
Roary v3.13.0 [48], with a 95% minimum blastp identity and a
99% core definition threshold. Then, we called SNPs of core genes
to reduce the computational complexity for phylogenetic tree con-
struction using SNP-sites v2.4.1 [49]. Afterward, a phylogenetic
tree was then built by raxmlHPC-PTHREADS v8.2.12 with the
neighbor-joining method using 1000 bootstraps [50]. Visualization
of the phylogenetic tree was performed using Geneious R10.26
[51] and Phandango website (https://jameshadfield.github.io/phan-
dango/) [52]. A pan-genome frequency plot, a piechart of the pan-
genome, and a presence and absence matrix against a phylogenetic
tree were created using roary_plots script (https://github.com/san-
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ger-pathogens/Roary/tree/master/contrib/roary_plots). In addition,
we also performed the pan-genome analysis of our CRAB genomes
compared to previously published genomes from Thailand [16].
The phylogenetic trees were constructed based on the SNPs of core
genes and accessory genes, respectively, with the neighbor-joining
method using 1000 bootstraps.
3. Results

3.1. Patient demographics and clinical profiles

Since we selected only 1 isolate per patient for performingWGS,
the prevalence and distribution of patients in each hospital were
equal to the number of isolates, as noted earlier. The clinical pro-
files showed that, in the 221 patients infected with CRAB, diabetes
mellitus was the most common underlying disease (n = 103;
46.61%), followed by hypertension (n = 78; 35.29%), chronic kidney
disease (n = 48; 21.72%), cerebrovascular disease (n = 42; 19.00%),
coronary artery disease (n = 38; 17.19%), and pulmonary disease
(n = 29; 13.12%). Importantly, 199 (90.04%) of the 221 patients
had previously received carbapenem antibiotics (meropenem, imi-
penem, and/or ertapenem). We found the prior use of ceftriaxone,
piperacillin-tazobactam, fluoroquinolones (levofloxacin or cipro-
floxacin), ceftazidime, and aminoglycosides (amikacin or gentam-
icin) in 139 (62.90%), 116 (52.49%), 77 (34.84%), 27 (12.22%), and
27 (12.22%) patients. The previous use of other antibiotics (azithro-
mycin, colistin, tigecycline, or cefoperazone-sulbactam) was also
found in some patients. The metadata of the patients is shown in
Table S1.
3.2. Genome assembly quality

In the 221 CRAB isolates, de novo assembly yielded genome
lengths from 3,777,937 bp to 4,319,283 bp, with an average of
3,930,367 bp. The number of contigs ranged from 26 to 193, with
an average of 68. The GC-content varied from 38.68% to 39.10%,
with an average of 38.91%. The N50 and L50 values of the 221
assembled genomes ranged from 45,197 bp to 444,207 bp having
an average of 175,941 bp and 3 to 28 having an average of 9,
respectively. The details of the assembly quality are given in
Table S2.
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3.3. Sequence types (STs) and antimicrobial resistance (AMR)
determinants

In the MLST results of the 221 CRAB isolates (Table S3), ST2 had
the largest frequency having been identified in 119 (53.85%) iso-
lates, followed by ST164 (n = 29; 13.12%), ST374 (n = 18; 8.14%),
ST16 (n = 13; 5.88%), ST215 (n = 12; 5.43%), and so forth. However,
STs could not be assigned for 2 (0.90%) isolates, PSU043 and
PSU114. Among the 7 housekeeping genes of A. baumannii, using
MLST (Pasteur), the alignment of PSU043 genome with allele 8 of
the recA gene showed 99.73% identity and 100% coverage. This
PSU043 contained 1 nucleotide substitution (A to G) at position
99 of the recA gene sequence, resulting in a non-identified ST, while
PSU114 provided 100% identity and 100% coverage in alignment
with all 7 genes. However, when the locus combination of allele
181 of the gltA gene and the alleles of the 6 other genes were ana-
lyzed, according to the MLST allelic profile, PSU114 could not be
assigned to an ST.

Identification of AMR determinants from theWGS data revealed
various AMR determinants with the predicted resistance to several
antimicrobial classes, as shown in Figs. 2 and 3, Table S4. Among
the 221 CRAB isolates, 207 (93.66%) isolates carried the blaOXA-23
gene, while only 18 (8.14%), 8 (3.62%), and 1 (0.45%) isolates har-
bored the blaNDM-1, blaOXA-58, and blaIMP-14 genes, respectively.
These genes were the carbapenemase genes that might be
expressed, leading to carbapenem resistance in these CRAB iso-
lates. Likewise, we found the blaOXA-66 (n = 133; 60.18%),
blaADC-73 (n = 109; 49.32%), blaTEM-12 (n = 58; 26.24%), blaOXA-91
(n = 35; 15.84%), blaADC-79 (n = 27; 12.22%), and blaCARB-16
(n = 27; 12.22%) genes and so forth, which may provide resistance
to other b-lactam antibiotics such as penicillins and cephalospor-
ins. For aminoglycoside resistance prediction, the armA, aph(6)-Id,
Fig. 2. Distribution of antimicrobial resistance (AMR) genes in the study 221 CRAB
aminoglycoside; FQ, fluoroquinolone; FOS, fosfomycin; RF, rifampicin; TET, tetracycline
macrolide.
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and aph(300)-Ib genes were highly detected in 153 (69.23%), 149
(67.42%), and 146 (66.06%) isolates, respectively. Additionally, we
found more aminoglycoside resistance genes such as the aph(30)-
Ia (n = 82; 37.10%), ant(200)-Ia (n = 22; 9.95%), ant(300)-IIa (n = 22;
9.95%), and aac(60)-Ib7 (n = 19; 8.60%) genes, and so forth. Notably,
the abaF gene that probably provides resistance to fosfomycin was
present in 208 (94.12%) isolates. In addition, 176 (79.64%) isolates
possessed the mphE and msrE genes predicting macrolide resis-
tance, while 124 (56.11%) and 54 (24.43%) isolates contained the
tet(B) and tet(39) genes predicting tetracycline resistance. The
sul2 and sul1 genes that may confer resistance to sulfonamide were
observed in 102 (46.15%) and 30 (13.57%) isolates, respectively. We
also found other genes such as the arr-2 (n = 20; 9.05%) and catB8
(n = 18; 8.14%) genes, which may provide resistance to rifampicin
and chloramphenicol, respectively. Besides the investigation of the
presence of AMR genes, almost all CRAB isolates might be classified
as MDR isolates since they possessed many genes that probably
confer resistance to more than three antimicrobial classes.

In terms of the ST distribution of AMR genes in the 221 CRAB
isolates, we found that all ST2 isolates harbored the blaOXA-23 and
blaOXA-66 genes (Figs. 2 and 3, Table S4). ST2 isolates carried various
AMR genes, ranging from 5 to 19 in number. In addition, some AMR
genes, especially the aph(300)-Ib, aph(6)-Id, armA, abaF, sul2, mphE,
and msrE genes were detected in many STs. The blaOXA-69 and bla-
ADC-11 genes were only present in ST1 isolate (PT007), while the bla-
OXA-417 and blaVEB-7 genes were only found in ST396 isolate
(SK070). The blaIMP-14, blaADC-68, aac(60)-Ib-cr, qnrB17, and dfrA27
genes were only identified in ST433 isolate (SK066), while the bla-
OXA-67 and aac(60)-Ib9 genes were only seen in ST740 isolate
(PSU104). Also, only ST25 isolates possessed the aac(3)-IIe and
aac(60)-Ian genes, while only ST113 isolates harbored the aph(30)-
VIa gene.
clinical isolates according to sequence types (STs). NI, non-identified ST; AMG,
; CPL, chloramphenicol; TMP, trimethoprim; SF, sulfonamide; LC, lincosamide; MC,



Fig. 3. The presence of antimicrobial resistance (AMR) genes in the study 221 CRAB clinical isolates. Red, pink, orange, dark blue, light blue, purple, dark gold, blue, dark green,
solid bracken green, black, and green colors represent the predicted resistance to b-lactam, aminoglycoside, aminoglycoside and fluoroquinolone, fluoroquinolone,
fosfomycin, rifampicin, tetracycline, chloramphenicol, trimethoprim, sulfonamide, lincosamide, and macrolide, respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 3 (continued)
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3.4. Mobile genetic elements (MGEs)

Overall, the plasmid replicons were identified in 219 (99.10%)
of the CRAB isolates, while no plasmids were found in the other 2
(0.90%) isolates, PT041 and SK066. A total of 169 (76.47%) isolates
contained 2 to 6 plasmid types, while 50 (22.62%) isolates carried
only one plasmid, as shown in Fig. 4 and S1, Table S5. Notably,
PT069 contained the highest number of plasmids, RepAci1, RepA-
ci7, RepM-Aci9, p1ABSDF, pABTJ2, and pRAY*. The RepAci1 and
RepAci7 plasmids were detected at a high frequency in 139
(62.90%) and 120 (54.30%) isolates, respectively, and they were
present in almost all ST2 isolates. The RepM-Aci9 plasmid was
harbored by 39 (17.65%) isolates, followed by RepApAB49
(n = 34; 15.38%), pABTJ2 (n = 26; 11.76%), p4ABAYE0001
(n = 21; 9.50%), and so forth. The pA297-3 plasmid was found
in all ST25 isolates and the RepAci4 plasmid was present in three
ST126 isolates.

Besides plasmid identification, we also investigated insertion
sequences (ISs) and integrons. For the ISs, we found that ISAba22
(n = 154; 69.68%) and ISEc29 (n = 153; 69.23%) were the most
common ISs in the CRAB isolates. ISAba26, ISVsa3, ISAba1, and
ISAba24 were detected in 141 (63.80%), 138 (62.44%), 119
(53.85%), and 114 (51.58%) isolates, respectively. ISAba11 was
only detected in all ST25 isolates, while other ISs were distributed
in several ST isolates. The IS results are illustrated in Fig. 4 and S1,
Table S6.

For the integrons, the integron-associated intI1 gene was
detected in 34 isolates (15.38%). The results also showed the
arrangement of genes on integrons, particularly AMR genes. In 34
integron-positive isolates, 21 (61.76%), 2 (5.88%), and 1 (2.94%) iso-
lates carried the aac(60)-Ib, aac(3)-Ia, and blaIMP-14 genes on their
integrons, respectively. Twenty (58.82%) isolates harbored an
efflux pump gene on their integrons, which may provide chloram-
phenicol resistance, as shown in Fig. 4 and S1, Table S7.
Fig. 4. Distribution of mobile-genetic elements (MGEs) in the study 221 CRAB clinica
sequences.
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3.5. Virulence-associated genes

The investigation of the virulence factors of Acinetobacter spp. in
the CRAB isolates revealed the presence of virulence genes associ-
ated with adherence, biofilm formation, enzyme, immune evasion,
iron uptake, regulation, and serum resistance. All isolates pos-
sessed genes encoding OmpA (outer membrane protein A),
AdeFGH efflux pump, PANG (poly-N-acetylglucosamine), LPS
(lipopolysaccharide), BfmRS (regulation of biofilm formation),
and PbpG (penicillin-binding protein). A total of 220/221
(99.55%) isolates (except SK066) harbored all acinetobactin genes.
Twenty-six to 29 virulence genes were identified in 220 of the iso-
lates, while only 10 virulence genes were detected in SK066.
Among the capsule-encoding genes that are responsible for
immune evasion, all isolates carried ACICU_0071 (ATPase gene),
ACICU_0092 (phosphomannomutase gene), and pgi genes.
ACICU_0091 (UDP-glucose 4-epimerase gene), ACICU_0088 (UDP-
glucose pyrophosphorylase gene), ACICU_0089 (UDP-glucose
6-dehydrogenase gene), ACICU_0074 (UDP-N-acetyl-D-
mannosaminuronate dehydrogenase gene), and ACICU_0087 (sugar
transferase gene) were mostly found in 215 (97.28%), 211 (95.48%),
179 (81.00%), 169 (76.47%), and 161 (72.85%) isolates. Likewise, the
study showed that 219 (99.10%), 203 (91.86%) to 205 (92.76%), 197
(89.14%), 181 (81.90%) to 174 (78.73%), and 143 (64.71%) isolates
possessed virulence factors including phospholipase D/C, Csu fim-
briae, hemO cluster, quorum sensing, and biofilm-associated pro-
teins, respectively. Virulence-associated gene information and
results are shown in Fig. 5 and S2, Table S8.

3.6. Bacteriocin-encoding gene and bacteriophage genomes

In this study, we also explored the presence of bacteriocin and
bacteriophages. For bacteriocin identification, the study showed
that all CRAB isolates carried the zooA gene encoding zoocin A. In
l isolates according to sequence types (STs). NI, non-identified ST; ISs, insertion
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Fig. 5. The presence of virulence-associated genes in the study 221 CRAB clinical isolates. OmpA, outer membrane protein A; Bap, biofilm-associated protein; PNAG, poly-N-
acetylglucosamine; LPS, lipopolysaccharide; Bfm, biofilm formation; PbpG, penicillin-binding protein; ACICU_0071 to ACICU_0092 represent the genes encoding proteins
related to the capsule (ACICU_0071, ATPase; ACICU_0072, protein-tyrosine-phosphatase; ACICU_0073, periplasmic protein; ACICU_0074, UDP-N-acetyl-D-mannosaminuronate
dehydrogenase; ACICU_0075, nucleoside-diphosphate sugar epimerase; ACICU_0076, pyridoxal phosphate-dependent enzyme; ACICU_0077, CMP-N-acetylneuraminic acid
synthetase; ACICU_0078, spore coat polysaccharide biosynthesis protein [glycosyltransferase]; ACICU_0079, acetyltransferase; ACICU_0080, sialic acid synthase; ACICU_0081,
membrane protein; ACICU_0082 - ACICU_0085, hypothetical protein; ACICU_0086, glycosyltransferase; ACICU_0087, sugar transferase; ACICU_0088, UDP-glucose pyrophos-
phorylase; ACICU_0089, UDP-glucose 6-dehydrogenase; ACICU_0091, UDP-glucose 4-epimerase; ACICU_0092, phosphomannomutase).
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addition, we found the genome matching three phage families,
belonging to the order Caudovirales in the prophage investigation.
The Siphoviridae, Myoviridae, and Podoviridae families were seen
in 212 (95.93%), 63 (28.51%), and 37 (16.74%) isolates, respectively.
The bacteriocin-encoding gene and bacteriophage genome infor-
mation is given in Fig. S2, Table S9.
3.7. Pan-genome and phylogenetic analysis

The results of pan-genome analysis among the study 221 CRAB
isolates showed that 9,318 (68.68%), 2,412 (17.78%), 1,615
(11.90%), and 222 (1.64%) of 13,567 pan genes were identified as
cloud, core, shell, and soft-core genes, respectively. These CRAB
isolates contained various genes associated with transcriptional
regulators and transporters in 3.96% and 4.19% of the pan-
genome, respectively. Notably, we also found genes encoding
transposases and bacteriophage proteins (e.g., heads, capsids, and
tails) in 1.30% and 0.51% of the accessory genome. Furthermore,
genes encoding hypothetical proteins were also observed in
5.97% and 66.44% of core and accessory genomes, respectively.
Overall, the phylogenetic tree could be divided into many clades
according to STs, as illustrated in Fig. 6 and S3. Among these clades,
ST1479 was in the same clade as ST164. For two isolates that could
not be assigned to an STs, one isolate was grouped into the ST374
clade, while the other isolate was located in the ST16 clade. Inter-
estingly, we noticed that two isolates, SK066 and SK070, which
were very different in terms of gene presence and absence,
belonged to the different clades, as shown in the red box of
Fig. S4. According to the gene presence and absence matrix
(Fig. S4) and pan-genome graph (Fig. S5), the pan-genome profiles
of these CRAB isolates seem to provide an open pan-genome with
vast genomic diversity (Fig. S5).

In addition, the results of pan-genome analysis of our 221 CRAB
genomes compared to 188 previously published genomes are
exhibited in Figs. S6 - S9. In 18,915 pan genes, 14,685 (77.64%),
2,282 (12.06%), 1,633 (8.63%), and 315 (1.67%) genes were detected
as cloud, core, shell, and soft-core genes, respectively. Genes
encoding transposases and bacteriophage proteins (e.g., heads,
capsids, and tails) were observed in 2.78% and 0.49% of the acces-
sory genome, respectively.
4. Discussion

The rapid increase of CRAB infections seriously threatens the
global population. Since most CRAB isolates resist many potential
antimicrobial classes, it is currently difficult, if not impossible, to
manage CRAB infections, especially through the use of suitable
antibiotics. Faced with these challenges, many scientists across
the world are trying to characterize and understand the mecha-
nisms of antimicrobial resistance in CRAB isolates. We therefore
used WGS as a comprehensive method for studying and exploring
the genetic basis of 221 CRAB isolates collected at hospitals in
Southern Thailand.
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According to the results of this study, the largest proportion of
CRAB isolates was identified in ST2, which belonged to interna-
tional clone 2 (IC2) [53,54]. ST2 is the most predominant type
and the most widespread in many parts of the world, especially
Thailand [55–57]. The prevalences of other STs such as ST164,
ST374, ST16, ST215, ST25 (IC7), ST129 (IC2), and ST1 (IC1) are dif-
ferent in each region [55,56,58–60]. Hamidian and Nigro (2019)
reported the level ST of 3575 CRAB isolates showing ST2 as the
most prevalent ST, followed most prominently by ST1 (IC1),
ST76, SLV2 (a single-locus variant of ST2), ST25 (IC7), ST10, and
then others with lower prevalences [56]. Here, we also noticed that
6 isolates belonged to ST1479, a new ST that was recently discov-
ered in a clinical isolate of extensively drug-resistant A. baumannii
(XDRAB) from Thailand [61]. Unfortunately, two isolates could not
be assigned to an ST by PubMLST in this study. PSU043 contained
one nucleotide substitution (A99G) in the recA gene, which is a
silent mutation that does not cause an alteration of the amino acid.
Therefore, we predicted that this mutation may not change the
function of the RecA protein, and the nearest ST identified by the
PubMLST was ST16. For PSU114, although there were no mutations
in all seven housekeeping genes, we still could not identify the ST.

In the detection of AMR genes, a majority of the CRAB isolates
possessed the blaOXA-23 gene, which is the distinctive class D
carbapenemase-encoding gene in A. baumannii. It has been
reported in many countries all over the world including the USA,
Australia, Germany, Brazil, China, Korea, Thailand, Vietnam, Malay-
sia, Pakistan, and Egypt [1,3,15–18,55,56,62,63]. Normally, oxacilli-
nase (OXA) enzymes have a weak hydrolyzing activity and are
poorly expressed, resulting in a low level of carbapenem resistance
[56,64]. Nevertheless, the blaOXA expression can be enhanced by an
IS located upstream of the blaOXA genes, leading to a high level of
carbapenem resistance [56,65]. As to the results of our study,
ISAba1 was identified in 56.04% of the blaOXA-23-positive CRAB iso-
lates. Many earlier reports have demonstrated that ISAba1 is gener-
ally located upstream of the blaOXA-23-like gene, and it provides a
strong promoter that drives the expression of the blaOXA-23-like gene
[63,66–68]. In addition, we found other blaOXA variants such as the
blaOXA-58 gene. The OXA-58 enzyme has been reported with high-
level resistance to carbapenem in A. baumannii [69]. More than half
of our CRAB isolates also carried the blaOXA-66 gene, and some of the
isolates harbored the blaOXA-91, blaOXA-259, and blaOXA-402 genes, and
so forth. These genes are member of the blaOXA-51-like genes, the
intrinsic oxacillinase genes with low-level carbapenemase activity
that naturally occur and are located on the chromosome of A. bau-
mannii [62,65,70,71].

In addition, some of our CRAB isolates possessed class B car-
bapenemase (metallo-b-lactamase; MBL) genes including
blaNDM-1 and blaIMP-14 genes. These MBL genes provide a broad
spectrum of carbapenemase activity in Gram-negative bacteria,
particularly Enterobacterales, Acinetobacter spp., and Pseudomonas
aeruginosa [72]. Additionally, we found ISAba125 in 72.22% of the
blaNDM-1-positive CRAB isolates. ISAba125 is commonly located
upstream and provides a promoter sequence for the blaNDM-1

expression [73,74]. We also found extended-spectrum
b-lactamase (ESBL) genes (blaTEM-12, blaVEB-1, blaVEB-7, blaPER-1, and



Fig. 6. Phylogenetic tree constructed by calling SNPs from core gene alignment of the study 221 CRAB clinical isolates.
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blaPER-7) and other b-lactamase genes (e.g., blaAmpC, blaADC-6, blaADC-
30, blaADC-73, blaADC-79, blaCARB-16, ble, etc.). The blaAmpC and blaADC
genes are the class C b-lactamase genes, while the blaCARB gene is
a class A b-lactamase gene. Overproduction of AmpC b-lactamase
in combination with ESBLs, efflux pumps, and/or porin loss has
been associated with carbapenem resistance in Gram-negative
bacteria [75,76].

Besides b-lactam resistance genes, the other genes that proba-
bly confer resistance to aminoglycoside, fosfomycin, tetracycline,
chloramphenicol, trimethoprim, sulfonamide, lincosamide, and
macrolide were found in these CRAB isolates and they might be
classified as multidrug-resistant (MDR) isolates accordingly. Many
studies have reported on the retained susceptibility to aminoglyco-
sides (e.g., amikacin and gentamicin) and tetracyclines (e.g., doxy-
cycline and tigecycline) in carbapenem-resistant Gram-negative
bacteria (CR-GNB) [74,77–79]. Unfortunately, although aminogly-
cosides and tetracyclines are used as a monotherapy, or in combi-
nation with other antimicrobial agents against CR-GNB infection
[77,80], aminoglycosides seem more effective in carbapenem-
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resistant Enterobacteriaceae (CRE) than in CRAB, while tetracycli-
nes are normally used to combat both CRE and CRAB [80]. The tige-
cycline resistance is continuously found in CRAB [78]. Notably,
although low-level resistance to plazomicin, a novel aminogly-
coside, has been reported in CRAB [80], we found that over a haft
of the CRAB isolates carried the armA gene, which has been
reported as confer high-level resistance to aminoglycosides, partic-
ularly gentamicin, amikacin, tobramycin, and plazomicin [81]. Our
CRAB isolates also harbored other aminoglycoside resistance genes
(aph(6)-Id, aph(30)-Ia, aadA1, aac(3)-IId, ant(200)-Ia, aac(60)-lb, armA,
etc.) and tetracycline resistance genes (tet(B) and tet(39)), a finding
concordant with previous studies [82,83]. As well, previous studies
demonstrated good efficacy of fosfomycin in combination with
other antibiotics against CR-GNB [74,84,85]. However, our findings
showed that the abaF gene, a fosfomycin resistance gene, was seen
in almost all CRAB isolates. This would indicate that aminoglyco-
sides, tetracyclines, and fosfomycin should be used with caution
for the treatment of CRAB infections. In addition, the mphE and
msrE genes were present in a high number of the CRAB isolates.
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These genes commonly associated with MDR in A. baumannii,
which confer resistance to macrolide by inactivation (mphE) and
modification of the target site (msrE) [86,87].

In our study on the dissemination mechanisms of the AMR gene
among Gram-negative bacteria, we investigated the MGEs (plas-
mids, IS elements, and integrons). The findings showed that the
largest number of CRAB isolates harbored the RepAci1 and RepAci7
plasmids. The RepAci1 plasmid is one of the most widespread plas-
mids in Acinetobacter spp. [88]. Towner et al. (2011) reported that
the blaOXA-23-like and blaOXA-58-like genes were associated with the
carriage of the repAci1 replicase gene located on the RepAci1 plas-
mid [71]. Surprisingly, here, we found a high prevalence of RepAci7
plasmid in these CRAB isolates, which has not been reported in any
other countries. Loraine et al. (2020) previously analyzed the geno-
mics of A. baumannii isolated from three hospitals located in Cen-
tral and Southern Thailand. They found the RepAci1, RepAci6,
and RepApAB49 plasmids to have a high frequencies, while the
RepAci7 plasmid was not detected in any A. baumannii isolates.
Additionally, plasmid pA297-3 was present in all ST25 isolates.
This plasmid has been associated with the AMR spread in Acineto-
bacter spp., particularly in ST25 isolates [89]. Among the 61 ISs
detected in our study, we found that ISAba22 was the most preva-
lent IS, followed by ISEc29, ISAba26, ISVsa3, ISAba1, and ISAba24.
Besides functioning as the promoters for the expression of many
AMR genes, the ISs generally provide for a cut-and-paste mecha-
nism of transposition [90]. Previous studies have shown that the
blaOXA-23 gene is mostly located in a composite transposon
Tn2006 that is bracketed by two copies of ISAba1 [88,90]. In terms
of integrons, we found an integron-integrase gene (IntI1) in 34
CRAB isolates. The AMR genes, especially aminoglycoside resis-
tance genes (aac(60)-Ib and aac(3)-Ia), were present in the
integron-encoded IntI1 integrase. The SK066 isolate carried the bla-
IMP-14 gene in the class 1 integron, similar to many other reports
[91,92]. According to the MGE results, we indicate that if the
AMR genes locate on the MGEs, these particular genes might be
horizontally transferred (conjugation) to other Acinetobacter spp.
as well as other species of Gram-negative pathogenic bacteria.
Thus, the MGEs are a significant factor in the acquisition and
spread of AMR genes [93].

In addition to AMR, pathogenic bacteria have evolved and
developed virulence to host-defense mechanisms [94,95]. We
found the virulence-associated genes encoding for many virulence
factors (e.g., adherence, biofilm formation, enzyme, immune eva-
sion, iron uptake, regulation, and serum resistance) in all CRAB iso-
lates. This finding could imply that the presence of these virulence
genes may increase the pathogenicity of these CRAB isolates and
the severity of infection [95]. Importantly, they might be spread
to other bacteria through horizontal gene transfer, similar to the
AMR genes [94]. Furthermore, we found the zooA gene encoding
zoocin A in all isolates. Zoocin A, a bacteriocin-like inhibitory sub-
stance (BLIS), was first identified in Streptococcus equi subsp.
zooepidemicus strain 4881 [96–98]. It is a peptidoglycan hydrolase
that is responsible for inhibiting the peptidoglycan synthesis in
many other streptococcal species, especially S. mutans, S. sobrinus,
and S. cricetus [96–98]. Importantly, it is also classified as a
penicillin-binding protein (PBP) [96], which provides weak b-
lactamase activity against penicillin. This might be one of the fac-
tors causing high-level b-lactam resistance in the CRAB isolates. In
the investigation of the bacteriophage genome, a very high level of
CRAB isolates showed sequence alignment to Siphoviridae phage,
while some isolates also harbored Myoviridae and/or Podoviridae
phages. These three phage families belong to the order Caudovi-
rales, which contains double-stranded DNA (dsDNA) genomes
[99]. We thus postulate that the CRAB isolates might have been
previously infected by these particular phages. More importantly,
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the DNA phages can drive the bacterial genes, especially AMR
genes, to other bacteria by generalized transduction [100,101].
Thus, the discovery of these bacteriophage genomes within the
CRAB genomes may be indicated as one of the factors causing
the spread of AMR genes or other genes.

To demonstrate the genomic diversity, we analyzed the pan-
genome among our 221 CRAB isolates. The pan-genome profiles
showed that these CRAB isolates shared 17.78% core genes, and
contained a very high percentage (68.68%) of cloud genes. In a
presence and absence matrix of pan-genome, the accessory gen-
ome demonstrated the presence of genes encoding transposases
and bacteriophage proteins (e.g., head, capsid, and tails), and the
high level of genes encoding hypothetical proteins in these CRAB
isolates. We hypothesized that these genes are probably involved
in adaptation mechanisms, particularly the acquisition of AMR
and virulence genes and the ability to persist in some changing
environments [102,103]. Based on our analysis, the pan-genome
graph could be possibly considered as an open pan-genome since
our dataset contained only 221 isolates. However, in the analysis
of a larger dataset of A. baumannii isolates, the result also exhibited
that exponential pan-genome growth was observed when increas-
ing a great number of pan-genome [103–106]. Furthermore, the
high proportion of accessory genes demonstrated a high genomic
diversity among these isolates. This discovery could be an indicator
of a useful path for researchers to explore and perhaps find new
genes and to study genomic diversity in the A. baumannii strains,
especially carbapenem-resistant and MDR isolates. Notably, two
isolates (SK066 and SK070) in our study were uncommon and very
different from the other CRAB isolates. However, after submitting
the genome sequences of 221 isolates into the NCBI server, the
submission details reported that only 219 isolates were CRAB,
whereas the other 2 isolates belonged to other Acinetobacter spe-
cies. The average nucleotide identity (ANI) results from NCBI
revealed that the SK066 and SK077 isolates were identified as
Acinetobacter pittii (97.42% identity) and Acinetobacter nosocomialis
(97.85% identity), respectively. These two isolates were previously
confirmed as A. baumannii by both in vitro and in silico methods
and also carried carbapenem resistance genes as well as other
AMR genes. This could indicate that these genomes are biologically
related among Acinetobacter spp. To further elucidate the genomic
data of these two isolates, additional tools and technologies such as
long-read WGS should be considered to provide more information
in the future. In addition, the pan-genome analysis of our CRAB
genomes compared to previously published genomes demon-
strated that the specific features could not be observed among
the accessory genomes. These findings could be indicated that
genetic features of the A. baumannii clinical isolates from Thailand
are closely related.

WGS provides more accurate details and more precise informa-
tion than traditional microbiological methods; for example, in the
comparison of antimicrobial susceptibility patterns obtained from
antimicrobial susceptibility testing (AST) and bacterial DNA finger-
prints obtained from pulse-field gel electrophoresis (PFGE) [107].
These strengths of this method allow scientists to compare entire
genome sequences within the bacterial cell, for a better under-
standing of the epidemiology of the pathogens such as identifying
the environmental source of an outbreak, transmission events, and
the mechanism for spreading antimicrobial resistance [108–110].
Since the presence or absence of MGEs carrying AMR genes results
in genetic variation and changes in antimicrobial susceptibility
patterns, WGS can rapidly provide crucial data during an acute
outbreak [111]. Therefore, using WGS to study the genomic
insights into the pathogens, especially antibiotic-resistant strains,
could be beneficial for outbreak investigations and surveillance
as well as infection control and prevention.
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5. Conclusions

This study revealed significant information from a short-read
WGS analysis. All CRAB isolates possessed various AMR genes,
MGEs (especially plasmids and ISs), and virulence-associated
genes, which can be horizontally transferred to other pathogenic
bacteria causing widespread carbapenem resistance. The bacteri-
ocin gene and the bacteriophage genomes were present at the
highest frequency in these CRAB isolates. Finally, a way to rapidly
identify and characterize the genomic features of the CR-GNB
strains is necessary before we will be able to finally control the
spread of these pathogens in the future.
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