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Abstract: Advanced glycation end products (AGEs) promote the development of diabetic
complications through activation of their receptor (RAGE). Isoforms of soluble RAGE (sRAGE)
sequester AGEs and protect against RAGE-mediated diabetic complications. We investigated the
effect of an overnight fast on circulating metabolic substrates, hormones, AGEs, and sRAGE isoforms
in 26 individuals with type 1 diabetes (T1DM). Blood was collected from 26 young (18–30 years)
T1DM patients on insulin pumps before and after an overnight fast. Circulating AGEs were measured
via LC-MS/MS and sRAGE isoforms were analyzed via ELISA. Glucose, insulin, glucagon, and
eGFRcystatin-c decreased while cortisol increased following the overnight fast (p < 0.05). AGEs (CML,
CEL, 3DG-H, MG-H1, and G-H1) decreased (21–58%, p < 0.0001) while total sRAGE, cleaved RAGE
(cRAGE), and endogenous secretory RAGE (esRAGE) increased (22–24%, p < 0.0001) following the
overnight fast. The changes in sRAGE isoforms were inversely related to MG-H1 (rho = −0.493 to
−0.589, p < 0.05) and the change in esRAGE was inversely related to the change in G-H1 (rho = −0.474,
p < 0.05). Multiple regression analyses revealed a 1 pg/mL increase in total sRAGE, cRAGE,
or esRAGE independently predicted a 0.42–0.52 nmol/L decrease in MG-H1. Short-term energy
restriction via an overnight fast resulted in increased sRAGE isoforms and may be protective against
AGE accumulation.
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1. Introduction

Advanced glycation end products (AGEs) are a heterogeneous group of glycotoxins formed
exogenously via the Maillard Reaction [1] and endogenously via a number of mechanisms. Under
normal physiologic conditions, the endogenous formation of AGEs is slow and the clearance rate is
adequate to prevent their accumulation [2]. However, the chronic oxidative stress and hyperglycemia
conditions that characterize type 1 (T1DM) and Type 2 diabetes mellitus (T2DM), accelerate AGE
formation leading to the accumulation of AGE-modified proteins in tissues and in circulation [3–5].
AGE-modified proteins in tissues are subsequently degraded releasing AGE-free adducts into the
circulation. With diabetes, post prandial hyperglycemia also promotes the production of the highly
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reactive α-dicarbonyls which include, methylglyoxal (MG), glyoxal (GO) and 3-deoxyglucosone
(3DG) [5,6]. These α-dicarbonyls react primarily with arginine residues to form hydroimidazolone
AGE modifications on proteins and also contribute to circulating AGE-free adducts. Other prominently
studied AGEs include carboxymethyl lysine (CML) and carboxyethyl lysine (CEL). These glycation
modifications form on lysine residues of proteins through a number of mechanisms including the
Maillard reaction, lipid peroxidation, and degradation of fructosyl lysine adducts [2]. Accumulation of
these and other AGEs is well documented as a major contributor to diabetic complications such as
neuropathy, nephropathy, and microvascular disease [7–9]. AGEs impose these pathologic effects by
directly modulating the structures and functions of individual proteins, cells and tissues as well as
through binding to their receptor (RAGE) [2,10–14].

RAGE is a type I transmembrane receptor that belongs to the immunoglobulin super family and
was first found via its ability to bind to AGE modified proteins [15,16]. CML has drawn particular
interest as a ligand for RAGE however, the affinity of this interaction is on the micromolar scale whereas
the affinity of RAGE for MG-H1 modified proteins and MG-H1 free-adducts is on the nanomolar scale,
an order of magnitude greater [17,18]. Binding of circulating AGEs to full-length, membrane-bound
RAGE initiates a signaling cascade leading to nuclear factor kappa-B (NF-κB) activation. Once
activated, NF-κB promotes the transcription of several inflammatory cytokines as well as RAGE itself,
propagating a futile cycle [19]. RAGE signaling is further able to contribute to this feed-forward
process by promoting oxidative stress through the activation of NADPH oxidase [20]. This oxidative
environment further contributes to the de novo production of AGEs which may go on to act as
RAGE ligands.

Alternatively, circulating soluble RAGE (sRAGE) isoforms lack the intracellular domain of RAGE
which is necessary for initiation of downstream signaling [15]. The sRAGE pool is a heterogeneous
group of proteins made up of primarily two isoforms: cleaved RAGE (cRAGE) which is produced
via proteolytic cleavage of the RAGE ectodomain via ADAM10 (a disintigrin and metalloproteinase
10), and endogenous secretory RAGE (esRAGE) which is produced via alternative splicing of RAGE
pre-mRNA [21–23]. sRAGE isoforms are believed to act as competitive inhibitors of RAGE and have
been repeatedly demonstrated to be protective against AGE-RAGE mediated vascular dysfunction
and insulin resistance [15,24,25].

Previous cross-sectional analyses have demonstrated elevated circulating and urine AGEs in
individuals with T1DM compared to age matched controls [4,5,26,27]. However, whether sRAGE
is protective against, or simply a marker for complications in individuals with T1DM remains
inconclusive. Contrary to the majority of findings in individuals with obesity or T2DM, several studies
report elevated circulating sRAGE in T1DM individuals to be predictive of diabetic complications and
risk of all-cause and CVD mortality [27–33]. However, poor kidney function has been demonstrated
to increase circulating sRAGE and has been shown to confound some of the positive relationships
between sRAGE and CVD [27,30]. On the other hand, some studies have demonstrated lower total
sRAGE and esRAGE in T1DM patients compared to age-matched controls and an inverse association
between sRAGE isoforms and markers of inflammation [31,32,34].

Previous studies examining AGEs and sRAGE are limited by their cross-sectional design whereas
interventional studies examining change in AGEs and sRAGE are lacking. In addition, whether or
not changes in sRAGE and AGEs are related to one another is also unclear. Thus, understanding
the temporal dynamics of sRAGE isoforms and AGE species is paramount to determining their
physiological relevance and their efficacy as disease biomarkers. Of the many perturbations that may
influence sRAGE and AGE in vivo, the effects of negative energy balance (i.e., caloric restriction or
intermittent fasting) are of particular interest given reports of metabolic protection afforded in RAGE
null animals fed a high fat diet [35] and the ability of NAD+-dependent deacetylase, Sirtuin 1 (SIRT1),
to activate ADAM10 transcription [36]. Further, other studies have demonstrated that ADAM10
activity can be stimulated by G-protein coupled receptor (GPCR) signaling [37]. Glucagon may be a
candidate effector of this process given its concentration is increased during low energy states such as
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fasting and signaling through its GPCR. In addition, our work, and others, have demonstrated periods
of caloric restriction are able to increase esRAGE transcription and circulating esRAGE concentration
in normal weight and obese subjects, respectively [38,39]

Therefore, the purpose of our study was to comprehensively characterize the change in circulating
AGEs, oxidative damage markers and sRAGE isoforms following an overnight fast in individuals
with T1DM. We hypothesized that the acute negative energy balance imparted by an overnight fast
would increase sRAGE isoforms and decrease circulating AGEs. We also explored the ability of sRAGE
isoforms and circulating metabolic regulators to predict the reduction of MG-H1, the most abundance
AGE-free adduct, using multivariate regression analysis.

2. Materials and Methods

2.1. Participants

Young adults (n = 26, 24 ± 1 years) previously diagnosed with T1DM were recruited from the
greater Chicago metropolitan area. To be eligible, subjects were required to be diagnosed with T1DM
for at least 5 years and utilize an insulin pump [40]. Subjects were excluded if they were night-
or rotating-shift workers, using medication that altered sleep, were diagnosed with cardiovascular
disease, uncontrolled thyroid disease, or reported any diabetic complications. The study was approved
by the institutional review board at the University of Illinois at Chicago and all subjects provided
written informed consent prior to participation in accord with the Declaration of Helsinki (project IRB
approval code: 2013-0030).

2.2. Clinical Procedures

These data were generated via post hoc analysis of study samples from a patient population that
has been previously described [40]. The original study utilized continuous glucose monitoring for
three days prior to and the day of the in-patient stay. During the three days prior to the in-patient stay,
subjects were free to carry out their normal activities, exercise and eat ad libitum. This post hoc analysis
is focused on samples collected during the overnight in-patient stay. Briefly, participants arrived at
the College of Nursing at the University of Illinois at Chicago at 2000 h. Subjects were instructed
to consume their regular evening meal; however, the composition of this meal was not controlled.
Blood samples collected with EDTA anticoagulant were obtained immediately before lights-out (22:00)
and immediately after lights-on (06:00) and centrifuged to isolate plasma, after which plasma was
aliquoted and stored at −80 ◦C for future analysis. Subjects spent at least 7 h in bed and the fasting
period was approximately 10 h.

2.3. Quantification of Circulating Protein Oxidation, and Glycation Free Adducts via LC-MS/MS

Circulating oxidative damage products methionine sulfoxide (MethSO), 2-Amino adipic acid
(2-AAA), and AGE-free adducts MG-H1, G-H1, CML, CEL, and 3DG-H were measured via isotope
dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) with an Agilent
model 6410 triple quadrupole MS system with 1200 Rapid Resolution 1200 LC system as described
previously [41]. Briefly, oxidative damage markers and AGE-free adducts were quantified in
plasma filtrates prepared via centrifugation through 10 K cut-off Amicon® filters and separated by
liquid chromatography with a methanol/H2O gradient mobile phase with 0.29% heptafluorobutyric
acid (HBFA).

2.4. Quantification of Circulating sRAGE Isoforms

Circulating total sRAGE (R&D Systems Inc., Minneapolis, MS, USA) and esRAGE (As One
International, Mountain View, CA, USA) were determined by commercially available ELISAs per
manufacturer’s protocol. Circulating cRAGE was calculated by subtracting esRAGE from total
sRAGE as previously described [39,42–44]. We also derived a ratio of cRAGE:esRAGE to examine the
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proportional expression of the isoforms as previously described [39,42–44]. Given that cRAGE and
esRAGE are likely generated by independent mechanisms, deriving a ratio of the two isoforms gives
insight into the relative contribution of the mechanisms.

2.5. Quantification of Circulating Metabolic Substrates and Hormones

Plasma non-esterified fatty acids (NEFAs) were determined via colorimetric assay according
to manufacturer’s protocol (Wako Pure Chemical Industries Ltd., Osaka, Japan). Total cholesterol,
LDL, HDL, Non-HDL, and triglycerides were determined via Cholestech LDX lipid profile cassettes
(Alere Inc., Hayward, CA, USA). Glucose was measured using a bed-side analyzer (YSI Stat, Yellow
Springs, USA; ABL, Radiometer, Denmark). Insulin and glucagon were measured via commercially
available ELISAs according to manufacturer’s protocol (Crystal Chem Inc., Elk Grove Village, IL,
USA). Cystatin-C was measured via ELISA (R&D Systems Inc., Minneapolis, MS, USA). Plasma
concentrations of Cystatin-C were subsequently used to calculate estimated glomerular filtration rate
via the following equation:

eGFRCystatin-C

(
mL·min−1·1.73 m−2

)
= (

84.6
Cystatin-C

(mg
L
) )− 3.2 (1)

This equation was first described by MacIsaac et al. and was later validated against isotopic
measurement of GFR [45,46]. Cortisol, IL-6, and TNF-α were measured via ELISA (R&D Systems Inc.,
Minneapolis, MS, USA) and have been previously reported along with HbA1c [40,47].

2.6. Data Analysis/Statistics

All statistical analyses were performed using SPSS version 24 (IBM, Armonk, NY, USA). Data
were tested for normality via Shapiro-Wilk test. Comparisons between time points were made via
student’s paired T test or Wilcoxon Sign Rank test where appropriate. Relationships between variables
were analyzed via Pearson’s or Spearman’s correlation where appropriate. Multivariate regression
analysis was used to determine the effect of the changes in sRAGE isoforms, glucose, eGFRCystatin-C,
and glucose counterregulatory hormones (glucagon, insulin, and cortisol) on MG-H1. To avoid bias,
independent variables were entered into the models simultaneously rather than using a stepwise
model. Sex was not considered in the analysis given our small n size. All data are presented as mean
± SEM and differences were deemed significant if p < 0.05.

3. Results

3.1. Baseline and Metabolic Changes Following an Overnight Fast

Baseline anthropometric and metabolic characteristics are presented in Table 1. Two subjects in
the cohort were former smokers (> 1 year) and one was a current smoker. Table 1 presents metabolic
values before (22:00) and after (06:00) the in-clinic, overnight fast. Following the overnight fast, glucose
(−2.83 ± 0.86 mmol/L), insulin (−59.25 ± 10.91 pmol/L), glucagon (−7.15 ± 1.89 ng/L), and IL-6
(−0.18 ± 1.41 pg/mL) decreased (p < 0.05, Table 1). Conversely, cortisol (323.6 ± 23.7 nmol/L), and
TNF-α (0.47 ± 0.05 pg/mL) increased following the overnight fast (p < 0.05).

Table 1. Anthropometric, metabolic and hormonal measures.

22:00 06:00 p

Gender (M/F) 14/12 N/A
Age (years) 24 ± 1 N/A

Diabetes Duration (y) 12 ± 1 N/A
Weight (kg) 75.6 ± 2.5 N/A
BMI (kg/m2) 26.2 ± 0.7 N/A
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Table 1. Cont.

22:00 06:00 p

HbA1C (%) 7.69 ± 0.27 N/A
Avg Overnight Glucose (mmol/L) 7.27 ± 0.58 N/A

Glucose (mmol/L) 8.46 ± 0.86 5.67 ± 0.59 0.003
eGFRcystatin-C (mL ·min−1 ·1.73−2) 109.7 ± 2.8 107.2 ± 5.2 0.011

Insulin (pmol/L) 113.4 ± 12.9 54.1 ± 3.5 <0.001
NEFA (mEq/L) 0.32 ± 0.04 0.34 ± 0.04 0.459

Total Cholesterol (mmol/L) 4.65 ± 0.18 4.63 ± 0.20 0.621
Triglycerides (mmol/L) 1.10 ± 0.11 1.02 ± 0.12 0.073

HDL (mmol/L) 1.51 ± 0.09 1.42 ± 0.08 0.157
LDL (mmol/L) 2.52 ± 0.16 2.68 ± 0.16 0.397

Non-HDL (mmol/L) 3.03 ± 0.18 3.04 ± 0.18 0.791
IL-6 (pg/mL) 1.02 ± 0.11 0.83 ± 0.11 0.020

TNF-α (pg/mL) 0.95 ± 0.09 1.43 ± 0.13 <0.001
Cortisol (nmol/L) 822.9 ± 3.8 1712.3 ± 24.7 <0.001
Glucagon (ng/L) 15.4 ± 2.4 8.9 ± 1.2 0.002

Data are represented as Mean ± SEM. Abbreviations: BMI, body mass index, HbA1C, glycated hemoglobin protein
A1C, eGFRcystatin-C, estimated glomerular filtration rate, NEFA, non-esterified fatty acids, HDL, high density
lipoprotein, LDL, low density lipoprotein, IL-6, interleukin-6, TNF-α, tumor necrosis factor alpha. Bolded p values
indicate significant change in parameter.

3.2. Divergent Changes Between sRAGE Isoforms, AGEs/Oxidative Stress Markers with Overnight Fast

Total sRAGE (+270 ± 44.4 pg/mL), cRAGE (+206 ± 35.3 pg/mL), and esRAGE
(+63.9 ± 10.7 pg/mL) increased following the overnight fast (p < 0.001, Figure 1A–C) whereas
cRAGE:esRAGE did not change (p > 0.05, Figure 1D). Conversely, AGE-free adducts MG-H1
(−189 ± 25.1 nmol/L), G-H1 (−3.32 ± 0.67 nmol/L), CML (−33.8 ± 9.33 nmol/L), CEL
(−19.0 ± 3.87 nmol/L), and 3DG-H (−161 ± 35 nmol/L) all decreased following the overnight fast
(p < 0.0001, Figure 2 C–G). Circulating markers of protein oxidation MethSO (−864 ± 91.2 nmol/L)
and 2-AAA (−651 ± 140 nmol/L) also decreased (p < 0.0001, Figure 2A,B). The change in esRAGE
was negatively correlated to the change in G-H1 (rho = −0.474, p = 0.02) and the change in all sRAGE
isoforms were negatively correlated with the change in MG-H1 (Table 2). Neither the changes in sRAGE
isoforms, nor the changes in AGEs, were related to changes in circulating oxidative stress markers.

Table 2. Relationships between the change in srage isoforms and age-free adducts following an
overnight fast.

∆Total sRAGE
(pg/mL) ∆cRAGE (pg/mL) ∆esRAGE (pg/mL) ∆cRAGE:esRAGE

Corr. p Corr. p Corr. p Corr. p

∆MethSO (nmol/L) −0.007 0.973 −0.006 0.978 −0.011 0.960 −0.105 0.617
∆AAA (nmol/L) 0.121 0.565 0.088 0.674 0.124 0.556 −0.153 0.465
∆CML (nmol/L) −0.112 0.594 −0.162 0.438 −0.071 0.737 −0.169 0.419

∆3DG−H (nmol/L) −0.041 0.847 −0.084 0.690 0.121 0.565 −0.353 0.083
∆CEL (nmol/L) −0.235 0.259 −0.274 0.185 −0.195 0.351 −0.145 0.489

∆G−H1 (nmol/L) −0.295 0.153 −0.274 0.185 −0.474 0.017 0.112 0.596
∆ MG −H1 (nmol/L) − 0.505 0.010 −0.493 0.012 − 0.589 0.002 0.103 0.624

Relationships were analyzed via Pearson’s R or Spearman’s Rho where appropriate. Significant relationships are
bolded (p < 0.05).
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Figure 1. Plasma concentrations of soluble activation of their receptor (sRAGE) isoforms following an 
overnight fast. (A) Plasma concentration of total sRAGE, (B) plasma concentration of cleaved sRAGE 
(cRAGE), (C) plasma concentration of endogenous secretory RAGE (esRAGE), (D) proportion of 
plasma cRAGE:esRAGE before and after an overnight fast in T1DM subjects. Data were analyzed via 
paired t-test and are presented as mean with individual data plotted. * Indicates significance 
difference between time points (p < 0.0001). 
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overnight fast. (A) Plasma concentration of methionine sulfoxide (MethSO), (B) plasma concentration 

Figure 1. Plasma concentrations of soluble activation of their receptor (sRAGE) isoforms following
an overnight fast. (A) Plasma concentration of total sRAGE, (B) plasma concentration of cleaved
sRAGE (cRAGE), (C) plasma concentration of endogenous secretory RAGE (esRAGE), (D) proportion
of plasma cRAGE:esRAGE before and after an overnight fast in T1DM subjects. Data were analyzed via
paired t-test and are presented as mean with individual data plotted. * Indicates significance difference
between time points (p < 0.0001).
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Figure 2. Plasma concentrations of circulating oxidation markers and age-free adducts following an
overnight fast. (A) Plasma concentration of methionine sulfoxide (MethSO), (B) plasma concentration
of amino adipic acid (AAA) (C) Plasma concentration of carboxymethyl lysine (CML), (D) plasma
concentration of 3-Deoxyglucosone Hydroimidazalone (3DG-H), (E) carboxyethyl lysine (CEL),
(F) glyoxal hydroimidazolone (G-H1) and (G) methylglyoxal hydroimidazalone (MG-H1) free adducts
before and after an overnight fast in T1DM subjects. Data were analyzed via paired t-test and are
presented as mean with individual data plotted. * Indicates significance difference between time points
(p < 0.0001).
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3.3. Diurnal Changes in eGFRCystatin-C are Related to Changes in MG-H1 but Does Not Affect the
Relationships between MG-H1 and sRAGE Isoforms

Given the relationship between the change in MG-H1 and the change in sRAGE, we next
determined if diurnal changes in eGFRCystatin-C were related to changes in MG-H1 or sRAGE isoforms.
This was an important consideration since AGE-free adducts are filtered by the kidney and sRAGE may
be as well given its Stokes radius is sufficiently small (2.81 nm) [48] to traverse glomerular pores whose
size is approximately 8 nm [4,26,41]. As expected, the change in eGFRCystatin-C negatively correlated
with the change in MG-H1 (rho = −0.419, p = 0.023). We then examined the relationship between the
change in sRAGE isoforms and MG-H1 while controlling for the change in eGFRCystatin-C by utilizing
partial correlations. After controlling for the changes in eGFRCystatin-C, the relationships between the
change in total sRAGE (r = −0.669, p < 0.001), cRAGE (r = −0.670, p < 0.001), and esRAGE (r = −0.564,
p < 0.01) and MG-H1 remained significant suggesting minimal effect of the change in renal function
on the interaction between sRAGE isoforms and MG-H1. Further, we explored the possibility that
diurnal changes in eGFRCystatin-C, glucose and glucose counterregulatory hormones (insulin, glucagon,
and cortisol) influenced the relationship between the changes in sRAGE isoforms and MG-H1. These
independent variables were simultaneously entered into linear regression models with the change in
MG-H1 as the dependent variable (Table 3). MG-H1 was chosen as the dependent variable given the
significant relationships between the change in sRAGE isoforms and the change in MG-H1. In each of
the models, the change in total sRAGE, cRAGE, and esRAGE were the only significant contributors
to the models although the changes in eGFRCystatin-C and cortisol were trending toward significance
(Table 3). Changes in each of the sRAGE isoforms predicted the change in MG-H1 whereby every
1 pg/mL increase in total sRAGE, cRAGE, and esRAGE predicted a 0.292 nmol/L, 0.364 nmol/L,
and 0.972 nmol/L decrease in MG-H1 respectively (unstandardized B of −0.292, −0.364, and −0.927
respectively). Interestingly, the models that utilized the change in total sRAGE (Adjusted R2 = 0.587,
p < 0.01) and cRAGE (R2 = 0.587, p < 0.01) were the strongest in predicting changes in MG-H1 (Table 3).

Table 3. Change in sRAGE isoforms independently predict change in mg-h1 via multiple linear
regression models.

Dependent Variable: ∆MG-H1 (nmol/L)

Adjusted R2 Standardized β 95% CI p Value

Model 1 0.587 - - 0.0003

∆Total sRAGE (pg/mL) - −0.517 −0.492, −0.093 0.007
∆ eGFRCystatin-C (mL ·min−1 ·1.73−2) - −0.294 −7.43, 0.202 0.062
∆Glucose (mmol/L) - 0.242 −1.50, 0.940 0.144
∆Glucagon (ng/L) - −0.083 −6.23, 3.854 0.620
∆Insulin (pmol/L) - 0.132 −3.20, 7.57 0.402
∆Cortisol (nmol/L) - −0.288 −1.88, 0.105 0.076

Model 2 0.587 - - 0.002

∆cRAGE (pg/mL) - −0.511 −0.613, −0.116 0.007
∆ eGFRCystatin-C (mL ·min−1 ·1.73−2) - −0.309 −7.59, 0.006 0.050
∆Glucose (mmol/L) - 0.221 −0.187, 0.909 0.182
∆Glucagon (ng/L) - −0.090 −6.33, 3.74 0.593
∆Insulin (pmol/L) - 0.138 −3.01, 7.64 0.380
∆Cortisol (nmol/L) - −0.302 −1.91, 0.056 0.063

Model 3 0.502 - - 0.006

∆esRAGE (pg/mL) - −0.415 −1.87, −0.073 0.036
∆ eGFRCystatin-C (mL·min−1 ·1.73−2) - −0.284 −7.74, 0.770 0.102
∆Glucose (mmol/L) - 0.318 −0.75, 1.11 0.083
∆Glucagon (ng/L) - −0.143 −7.53, 3.39 0.433
∆Insulin (pmol/L) - 0.186 −2.75, 8.89 0.279
∆Cortisol (nmol/L) - −0.286 −1.98, 0.226 0.111

Bold text indicates significant relationship by regression analysis.
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4. Discussion

Circulating AGEs tend to accumulate in T1DM and predict the development of
complications [2,4,5,49], whereas the ability for sRAGE isoforms to do the same have been equivocal.
So far, the literature with regard to sRAGE isoforms have mainly been limited to cross-sectional
studies and the temporal dynamics of these factors are poorly understood. AGEs directly affect
the manifestation of diabetic complications by altering protein structure and function and indirectly
through via activation of RAGE signaling. Soluble RAGE acts to sequester AGEs therefore, it is not
surprising that administration of sRAGE both in vitro and in vivo attenuates AGE/RAGE-mediated
complications such as atherosclerosis [24], and insulin resistance [25]. These data are the first to
demonstrate a relationship between a decrease in circulating AGE-free adducts with a concomitant
increase in sRAGE isoforms following an overnight fast in T1DM patients. Acknowledging previous
work in T1DM demonstrating increased sRAGE as a risk factor for CVD [27,30], our data would
appear in conflict to these findings. However, our work was not designed to examine CVD risk
but rather, physiological diurnal variations of these biomarkers. Nevertheless, sRAGE isoforms in
T1DM individuals are greater than age-matched controls without T1DM [27–30], although the exact
mechanisms for these observations are yet to be elucidated.

Soluble RAGE is produced via two independent mechanisms: cleavage of the RAGE ectodomain
by matrix metalloproteinases, such as ADAM10, to produce cRAGE [21] and alternative splicing of the
RAGE gene (Ager) to produce esRAGE [22]. Transcription and activity of ADAM10 are regulated by
the transcription factor PPARα [23] which promotes transcription of genes involved in fat catabolism,
and the NAD+-dependent deacetylase SIRT1 [36] which modulates autophagy and mitochondria
biogenesis signaling. Both of these pathways are activated during periods of low energy availability
such as during fasting and may explain the increase in cRAGE we observed following an overnight fast.
The production of esRAGE is not well understood but has been reported to be inhibited by the splicing
silencer heterogeneous nuclear RNA binding protein A1 (hnRNPA1) and promoted by the splicing
enhancer transformer 2β (Tra2β) in neuronal cells [50]. Regulation of Tra2β may also be related to
energy status as individuals with obesity have lower skeletal muscle and adipose expression of Tra2β
compared to lean individuals [51]. In support of the ability of low energy state to promote sRAGE
production, our lab previously demonstrated increases in esRAGE following a 24-week weight-loss
intervention utilizing alternate day fasting as a dietary strategy [39] and conversely lower circulating
esRAGE in individuals with obesity compared to lean individuals [43].While the current study is
limited by the lack of cells or tissue samples to examine abundance of membrane-bound/full-length
RAGE, or the mechanisms of sRAGE production, our data suggest that the fasting state may be able to
provoke sRAGE production by either the aforementioned mechanisms, or through mechanisms yet to
be elucidated. Certainly, we cannot conclude that fasting has direct mechanistic influence on reducing
membrane-bound/full-length RAGE expression, or RAGE-mediated signaling. Future studies should
have concomitant measures of cellular or tissue RAGE expression, intracellular signaling, circulating
AGEs, and sRAGE isoforms to address these nebulous areas.

Our observed correlation between changes in sRAGE isoforms and changes in MG-H1 free
adducts suggest that sRAGE isoforms may be able to sequester MG-H1. However, it is not clear why
similar relationships with other AGE-free adducts were not observed. RAGE affinity for MG-H1 is
on the nmol/L scale [18], whereas other AGEs (e.g., CML), are on the µM scale [52]. Further, MG-H1
was the most abundant AGE-free adduct in our cohort and has been reported to be approximately
ten-fold higher in T1DM compared to age-matched healthy individuals [4]. The ability of sRAGE
to sequester circulating AGEs in a physiologically meaningful way is often criticized because of the
large concentration difference between the decoy and the ligand. In the current study, we calculated a
MG-H1 to total sRAGE ratio of 60 ± 5.7 (Mean ± SEM) at 2200 h which was reduced to 19 ± 1.8 at
06:00 (p < 0.001). This suggests a potential indirect mechanism by which sRAGE is able to attenuate
circulating MG-H1 concentrations other than simply sequestration of the adduct.
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The main clearance mechanism of AGEs is believed to be through filtration by the kidney [26].
In addition, both AGEs and sRAGE have been previously shown to be inversely related to renal
function [4,7,27]. In accord with previous literature, we observed a negative correlation between
baseline eGFRCystatin-C and CML (rho = −0.420, p < 0.05), despite all of our participants having normal
kidney function. However, we did not observe any correlations between eGFRCystatin-C and sRAGE
isoforms at baseline. Compared to existing literature describing a relationship between renal function
and sRAGE, our cohort of T1DM was younger [27] which may explain why we were not able to
recapitulate this result. We also demonstrate, via multiple regression analysis, that eGFRCystatin C does
not contribute to any of the models predicting the change in MG-H1. However, while the change in
eGFR was statistically significant, the decrease in eGFR observed in this context is not clinically relevant.
With these factors in mind, it is not surprising that eGFR did not contribute to predicting the change in
MG-H1 free adducts although the trending p value suggests that a more robust stimulus/intervention,
with a larger n size or a more pathological group of T1DM patients may implicate renal function to
have a role in this relationship.

Other factors that have been demonstrated to alter AGE and sRAGE are glucose and insulin.
Several investigations in individuals with T1DM and T2DM have demonstrated that elevated plasma
glucose, during an oral glucose tolerance test, or by administering a mixed meal increases circulating
reactive dicarbonyls which may lead to increased circulating AGEs. Indeed, in our cohort, the change
in glucose was positively correlated to the change in MG-H1 free adducts (r = 0.379, p = 0.037) [5,6,53].
In addition, insulin has been previously shown to promote sRAGE production and has been suggested
as a potential explanation for many studies demonstrating elevated sRAGE values in T1DM [54].
Given these data, we included the major glucose counterregulatory hormones and the change in
glucose in our regression models. However, neither the change in glucose nor did any of the glucose
counterregulatory hormones significantly contribute to predicting the change in MG-H1. Therefore,
the regression models demonstrated that the change in sRAGE isoforms independently accounted for
more than 50% of the variability in the change in MG-H1 following an overnight fast.

More work is needed to determine the mechanisms that explain this relationship between sRAGE
isoforms and MG-H1. Perhaps sRAGE isoforms are indeed able to sequester and remove sufficient
amounts of MG-H1 from the circulation. Another possibility is that sRAGE has a more indirect effect
on MG-H1 adduct appearance through modulating cellular receptors and downstream inflammation
which has been previously suggested of sRAGE [55,56]. Importantly, few studies simultaneously
report both sRAGE isoforms and AGE-free adducts, many of which are of cross-sectional design and
rely on skin autofluorescence as a surrogate AGE marker [28,57]. A distinguishing characteristic of our
work is the concurrent reporting of AGEs and sRAGE isoforms and that we examined both before and
after a physiological perturbation with known cardiometabolic mechanisms at play.

Interpretation of these data should be done with caution given our limited sample size and
absence of a control group without T1DM. We also did not collect urine or tissue samples and are thus
limited to speculate on the tissue specific mechanisms of sRAGE production with fasting or clearance
of sRAGE and AGE-free adducts. These points should be a major focus of future studies to determine
if targeting sRAGE-producing mechanisms is viable for attenuating AGE burden and, if doing so
confers positive health outcomes in individuals with diabetes.

As mentioned previously, two of our participants were former smokers and one was a current
smoker at the time of study. There is an established influence of smoking on the concentrations
of both sRAGE isoforms and circulating AGEs, which was recently reviewed by Prasad et al. [58].
However, the changes in sRAGE isoforms and AGEs observed in the entire cohort were mirrored in
these individuals, and removing these individuals from the analyses did not alter any of the outcomes.
A final consideration when interpreting these data is that our baseline measures were made 3–4 h
postprandial and we did not standardize the participants’ dietary compositions. The AGE composition
of a typical western diet has been shown to influence various metrics of metabolism [59–62]. Indeed, we
recently demonstrated the importance of dietary composition on sRAGE where we found that a high
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fat meal decreases circulating sRAGE concentrations with concomitant increases in blood mononuclear
cell RAGE protein expression of lean healthy individuals [44]. Nevertheless, it is important to note that
much of our daylight hours are spent in the post-prandial state and the total AGE burden, independent
of source (exogenous versus endogenous) is a driver of inflammation and insulin resistance. Thus,
elucidation of strategies and perturbations that elicit divergent changes is sRAGE isoforms and
AGE-free adducts, such as a period of fasting, has important implications for cardiometabolic health
and in the future design of studies pertaining to AGE-RAGE biology.

5. Conclusions

In conclusion, the data presented herein demonstrate the ability of fasting to increase sRAGE
isoforms and that these changes are strongly related to decreases in circulating MG-H1 adducts
with fasting. These data provide further evidence for the potential therapeutic effect of sRAGE on
preventing and treating diabetes and its complications.
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