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József Geml1,2, Tatiana A. Semenova1,2, Luis N. Morgado1

and Jeffrey M. Welker3

1Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
2Faculty of Science, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
3Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA

JG, 0000-0001-8745-0423

We characterized fungal communities in dry and moist tundra and investi-

gated the effect of long-term experimental summer warming on three

aspects of functional groups of arctic fungi: richness, community compo-

sition and species abundance. Warming had profound effects on

community composition, abundance, and, to a lesser extent, on richness of

fungal functional groups. In addition, our data show that even within func-

tional groups, the direction and extent of response to warming tend to be

species-specific and we recommend that studies on fungal communities

and their roles in nutrient cycling take into account species-level responses.
1. Introduction
The arctic tundra is considered a maritime biome, as approximately 80% of non-

alpine tundra is located within 100 km of a coastline [1]. As a result of the

retreating sea ice, arctic land surface temperatures are increasing, causing

major changes in terrestrial ecosystems [2,3]. In response to warming tempera-

tures, shifts in land surface vegetation and ecosystem C cycling have already

been observed in terrestrial arctic ecosystems [3,4]. However, the responses of

belowground communities, such as soil microbes, have been less certain [5].

Fungi are key to the functioning of terrestrial arctic ecosystems as symbionts

(e.g. mycorrhizae, endophytes and lichens) and decomposers. Given their inti-

mate relationships with plants in a wide range of symbioses, fungi are expected

to play an important role in arctic vegetation change [6]. In this study, we com-

pared fungal communities across plots with ambient and experimentally

increased summer air and near-surface soil temperature to reveal (i) how com-

munity composition and abundance of functional groups of fungi change in

response to long-term increase in summer temperature and (ii) whether these

responses are similar in dry and moist tundra.
2. Material and methods
(a) Data generation
The study was conducted at the Toolik Field Station in Alaska, USA, where the main

vegetation types are dry acidic heath and moist acidic tussock tundra [7,8]. Open top

chambers (OTCs), with 1 m2 area and 0.4 m height, were established in 1994 in both

tundra types to increase summer air and upper soil temperature by approximately

28C, leading to shifts in edaphic factors and vegetation [7–9].
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Table 1. The results ( p-values) of two-way ANOVA on OTU richness, Shannon’s and Simpson’s diversity indices calculated for functional groups of fungi.
Significant ( p , 0.05) effects are indicated in italics. Abbreviations: ECM, ectomycorrhizal fungi; AP, animal parasites; MP, mycoparasites; LIC, lichens and
lichenicolous fungi; PP, plant pathogens; SAP, saprotrophs.

index effects ECM AP1MP LIC PP SAP

richness (S ) treatment (warming) 0.0168 0.3932 0.069 0.6171 0.2476

tundra type (dry versus moist) 0.2692 0.604 ,0.0001 0.531 0.5854

treatment � tundra type 0.0176 1 0.5795 0.4854 0.0477

Shannon’s diversity (H ) treatment (warming) 0.2623 0.0881 0.0782 0.494 0.0324

tundra type (dry versus moist) 0.1237 0.0309 ,0.0001 0.036 0.2213

treatment � tundra type 0.8647 0.7132 0.844 0.4612 0.0023

Simpson’s diversity (D) treatment (warming) 0.373 0.0541 0.2935 0.6529 1

tundra type (dry versus moist) 0.1313 0.0368 0.0001 0.0693 1

treatment � tundra type 1 1 0.5028 0.6529 0.001
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We sampled 100 soil cores across 20 plots: five replicate plots

in the OTCs and control plots in each tundra type, with five ran-

domly collected soil cores of 2 cm diameter and 20 cm depth per

plot which were mixed and lyophilized. We extracted DNA

using the Macherey–Nagel NucleoSpin-Soil kit. PCR and

sequencing of the ITS2 (internal transcribed spacer 2) rDNA

were done as described earlier [10–12]. We generated 4 047 811

reads using Ion 318TM Chip (http://dx.doi.org/10.5061/dryad.

2fc32).
(b) Bioinformatics
Primers and adapters were removed and poor-quality ends were

trimmed off using 0.02 error probability limit in Geneious Pro

5.6.1. Sequences were truncated to 200 bp and sequences with

expected error more than 1 were discarded using USEARCH v. 8.0

[13]. The remaining 1 632 682 sequences were collapsed into

unique sequence types on a per-sample basis while preserving

read counts. After discarding singletons, 1 092 238 high-quality

sequences were grouped into 4069 operational taxonomic units

(OTUs) with USEARCH at 97% sequence similarity, while excluding

9026 (0.3%) chimeric sequences. We identified 3501 OTUs based

on the UNITE fungal database, discarding OTUs with less than

70% similarity to any fungal sequence.

We assigned ecological functions to 1655 OTUs based on

taxonomic identities of the matching reference sequences and fol-

lowing functional classifications in [14]: arbuscular mycorrhizal (5

OTUs), animal parasitic (18), ectomycorrhizal (417), lichenicolous

(9), lichenized (156), mycoparasitic (39), plant pathogenic (134)

and saprotrophic (877) fungi. Because of low richness, arbuscular

mycorrhizal fungi were excluded, while animal- and mycoparasites

were combined, as were lichens and lichenicolous fungi.
(c) Statistical analyses
For each functional group, OTU richness (S), Shannon’s and

Simpson’s diversity indices were calculated in PC-ORD v. 6.0 [15]

based on abundance matrix and were compared using two-way

ANOVA to test for effects of warming, tundra type and their

interaction. We visualized changes in community composition

of functional groups with non-metric multidimensional scaling

(NMDS) based on presence–absence data with Bray–Curtis

distance and 500 iterations in PC-ORD. We tested for statistical

difference in fungal community composition among tundra

types and treatments using multi-response permutation pro-

cedure (MRPP). We prepared Venn diagrams of the five major

functional groups to show the number of shared OTUs among

tundra and treatment types using VENNY [16].
We assessed the effect of warming on abundance on a per-

OTU basis by comparing DNA sequence counts (Hedges’ D)

and calculating the mean effect size with 95% confidence intervals

using METAWIN v. 2.0 [17]. Using sequence read counts as a proxy

for abundance (biomass) is constrained owing to interspecific

differences in copy number and length of ITS [18]. However, for

individual OTUs, changes in sequence counts can indicate relative

changes in abundance (biomass) [18]. We compared per-OTU

mean read counts across the control and warmed plots to calculate

effect sizes with variance and calculated mean effect size

with 95% confidence interval for each functional group. This

approach allowed us to depict the variation in responses of indi-

vidual OTUs to warming and evaluate the overall responses of

functional groups.
3. Results
(a) Diversity measures
Tundra type had the strongest effect on lichens, where all

diversity measures were significantly higher in the dry

tundra (table 1). Similarly, in the animal- and mycoparasitic

fungi, both Shannon’s and Simpson’s diversity indices were

higher in the dry tundra, even though differences in richness

were insignificant. Warming only affected richness in

ectomycorrhizal fungi, with strong decrease in the moist

tundra, although Shannon’s and Simpson’s diversity indices

were not significantly affected. A similar, but somewhat

weaker trend was seen in lichens. Shannon’s diversity

decreased in saprotrophic fungi, even though neither richness

nor Simpson’s diversity was strongly affected. The interaction

of warming and tundra type showed significant decrease in

richness in ectomycorrhizal and saprotrophic fungi, and only

in saprotrophs regarding Shannon’s and Simpson’s diversity.

(b) Community composition
NMDS analyses resulted in two-dimensional solutions with

final stress values of 0.11101 (animal- and mycoparasites),

0.09244 (ectomycorrhizal fungi), 0.05238 (lichens and licheni-

colous fungi), 0.12336 (plant pathogens) and 0.07267

(saprotrophs), with final instability values less than 0.00001.

The NMDS plots revealed strong structuring in all functional

groups with tundra type being the most influential variable

(table 2 and figure 1). Similarly, Venn diagrams indicated

that a substantial fraction of OTUs were unique to a tundra
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Figure 1. Non-metric multidimensional scaling (NMDS) ordination plots for functional groups of arctic fungal communities in the warmed and control plots in the
dry and moist tundra types based on presence – absence. M ¼ moist tundra, D ¼ dry tundra, C ¼ control, T ¼ warming.

Table 2. Effects of tundra type and warming on community composition of functional groups of fungi as calculated using multi-response permutation
procedure. Significant p-values are indicated in italics.

functional groups

tundra type warming in dry tundra warming in moist tundra

effect (A) p effect (A) p effect (A) p

ectomycorrhizal 0.15236 ,0.00001 0.0219 0.07663 0.10865 0.00197

animal parasites and mycoparasites 0.1153 0.00002 0.01459 0.69563 0.14281 0.00196

lichens and lichenicolous fungi 0.21142 ,0.00001 0.00677 0.28502 0.15166 0.01258

plant pathogens 0.18262 ,0.00001 0.04895 0.03357 0.09515 0.00308

saprotrophs 0.19335 ,0.00001 0.01331 0.16814 0.08925 0.00389
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type (electronic supplementary material, figure S1). Warming

had strong effect on the fungal community in the moist tundra,

where community composition was significantly different
between treatment and control in all functional groups. How-

ever, in the dry tundra, only plant pathogens showed

significant treatment effect on composition (table 2).
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Figure 2. (a) Responses of individual OTUs in the functional groups to warming. Each vertical line represents the effect of warming on mean DNA sequence read
count with variance for a fungal OTU. Positive and negative effects indicate increased and decreased abundance in the warmed plots, respectively. (b) Summarized
responses of functional groups of arctic fungi to warming. The values represent the mean effect size and 95% confidence interval from meta-analyses of all OTUs in
the functional group in question. Abbreviations: AP, animal parasites; ECM, ectomycorrhizal fungi; LICH, lichens and lichenicolous fungi; MP, mycoparasites; PP, plant
pathogens; SAP, saprotrophs. (Online version in colour.)
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(c) Abundance at the species-level
Sequence read counts of most OTUs differed between the

control and treatment as indicated by non-zero effect values

and their variance intervals (figure 2a). Meta-analyses of

trends of the individual OTUs per functional group indicated

significant changes only in the moist tundra, where we

observed significant decline in ectomycorrhizal, lichenized

and saprotrophic fungi, as well as significant increase in
animal pathogens, while mycoparasites and plant pathogens

showed non-significant decline (figure 2b).
4. Discussion
Tundra type greatly affected fungal communities, with shifts

in composition and OTU abundance in response to warming
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being stronger in the moist as opposed to the dry tundra.

Because most fungal symbiotic plants occur in both

vegetation types, the profound fungal compositional differ-

ences between moist and dry tundra are probably caused

by well-known differences in fundamental abiotic attributes,

such as snow cover, active layer depth, soil moisture, nutri-

ents and temperature [7]. The accumulating evidence in this

and other studies [8,19] suggests that warming responses of

fungal and plant communities probably are predicated on

soil water conditions and resulting differences in productivity

among tundra types.

Changes in communities of arctic fungal functional groups

have been scarcely documented, except in ectomycorrhizal

fungi [10]. The compositional differences between the warmed

and control plots in all functional groups indicate that even in

groups without major changes in richness, the turnover is sub-

stantial. Although such compositional shifts are particularly

evident in the moist tundra, parasites, ectomycorrhizal fungi

and pathogens also display clearly visible warming-induced

changes in the dry tundra (figure 1 and table 2).

The high proportion of OTUs with marked changes in

abundance is striking (figure 2a). Even in the dry tundra,

where the overall effect size of warming was not significant,

most OTUs showed a clear trend, with only a small fraction of

OTUs seemingly unaffected by warming. This indicates that

response to warming probably is species-specific within

these broad ecological groups.

Overall trends were more profound in the moist tundra,

where significant changes were observed in most functional

groups (figure 2b). The only increase was in animal parasites,

which is in agreement with observed warming-induced

increases in insect abundance [20]. All OTUs of animal para-

sites in the moist tundra were positively affected by

warming and even in the dry tundra this group showed the

largest, although not significant, increase. Abundance decrease

in ectomycorrhizal fungi may have functional implications

and the fact that several ectomycorrhizal fungi showed

positive response to warming, while most were negatively

affected, indicates substantial shift in the community. The
strong decrease in lichen abundance underlines their decrease

in cover due to increased shading by shrubs in the warmed

moist tundra [8]. In the dry tundra, where shading is minimal,

several lichens benefited from warming (figure 2a). The

decrease in saprotrophs is surprising in the light of non-

significant changes in richness (above) and previous findings

on warming-induced increase in litter accumulation [8] and

in microbial decomposition rates [21]. However, distinct

species-specific responses to warming were revealed also in

saprotrophic taxa.

In this paper, we provide evidence that long-term exper-

imental summer warming has profound effects on

community composition and abundance of functional

groups of arctic fungi. We also underline that, while there

are similarities within functional groups, changes in occur-

rence and abundance in response to warming tend to be

species-specific, and may be masked when communities are

compared at higher taxonomic levels. Therefore, we rec-

ommend that studies of arctic fungal communities (for

example, their roles in nutrient cycling) take into account

species-level differences. Finally, we advocate the integration

of taxonomic and functional data into climatic models to

better understand the influence of climate on soil microbial

community structure and function and their contributions

to climate-linked processes.
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