
cancers

Article

Proteomic Discovery of Biomarkers to Predict
Prognosis of High-Grade Serous Ovarian Carcinoma

Se Ik Kim 1,† , Minsun Jung 2,† , Kisoon Dan 3, Sungyoung Lee 4, Cheol Lee 2,
Hee Seung Kim 1 , Hyun Hoon Chung 1, Jae-Weon Kim 1, Noh Hyun Park 1, Yong-Sang Song 1 ,
Dohyun Han 3,* and Maria Lee 1,*

1 Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080,
Korea; seikky@naver.com (S.I.K.); bboddi0311@gmail.com (H.S.K.); chhkmj@gmail.com (H.H.C.);
kjwksh@snu.ac.kr (J.-W.K.); pnhkhr@snu.ac.kr (N.H.P.); yssong@snu.ac.kr (Y.-S.S.)

2 Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
jjunglammy@gmail.com (M.J.); fejhh@hanmail.net (C.L.)

3 Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082,
Korea; kisoona@snuh.org

4 Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea; biznok@snu.ac.kr
* Correspondence: hdh03@snu.ac.kr (D.H.); marialeemd@gmail.com (M.L.); Tel.: +82-2-2072-1719 (D.H.);

+82-2-2072-2842 (M.L.)
† These two authors contributed equally as first authors.

Received: 30 January 2020; Accepted: 24 March 2020; Published: 26 March 2020
����������
�������

Abstract: Initial identification of biomarkers predicting the exact prognosis of high-grade serous
ovarian carcinoma (HGSOC) is important in precision cancer medicine. This study aimed to
investigate prognostic biomarkers of HGSOC through proteomic analysis. We conducted label-free
liquid chromatography-mass spectrometry using chemotherapy-naïve, fresh-frozen primary HGSOC
specimens, and compared the results between a favorable prognosis group (progression-free survival
(PFS) ≥ 18 months, n = 6) and a poor prognosis group (PFS < 18 months, n = 6). Among 658
differentially expressed proteins, 288 proteins were upregulated in the favorable prognosis group and
370 proteins were upregulated in the poor prognosis group. Using hierarchical clustering, we selected
α1-antitrypsin (AAT), nuclear factor-κB (NFKB), phosphomevalonate kinase (PMVK), vascular
adhesion protein 1 (VAP1), fatty acid-binding protein 4 (FABP4), platelet factor 4 (PF4), apolipoprotein
A1 (APOA1), and α1-acid glycoprotein (AGP) for further validation via immunohistochemical (IHC)
staining in an independent set of chemotherapy-naïve primary HGSOC samples (n = 107). Survival
analyses revealed that high expression of AAT, NFKB, and PMVK were independent biomarkers for
favorable PFS. Conversely, high expression of VAP1, FABP4, and PF4 were identified as independent
biomarkers for poor PFS. Furthermore, we constructed models predicting the 18-month PFS by
combining clinical variables and IHC results. Through leave-one-out cross-validation, the optimal
model was based on initial serum CA-125, germline BRCA1/2 mutations, residual tumors after surgery,
International Federation of Gynecology and Obstetrics (FIGO) stage, and expression levels of the six
proteins. The present results elucidate the proteomic landscape of HGSOC and six protein biomarkers
to predict the prognosis of HGSOC.

Keywords: ovarian neoplasms; high-grade serous carcinoma; proteomics; immunohistochemistry;
prognosis

1. Introduction

Ovarian cancer, one of the most fatal gynecologic malignancies, is a global burden with 295,414
new cases and 184,799 deaths estimated each year [1]. Ovarian cancer is the fifth leading cause of
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female cancer-related deaths in the United States [2]. The predominant histologic type is high-grade
serous ovarian carcinoma (HGSOC) [3], for which aggressive cytoreductive surgery followed by
taxane- and platinum-based chemotherapy is an established standard of care [4,5]. Although the initial
response rate is high, patients with HGSOC, especially those at advanced stages, eventually experience
relapse [6]. In the era of precision medicine, it is important to initially identify biomarkers to accurately
predict the exact prognosis of HGSOC to facilitate personalized treatment.

Mass spectrometry (MS)-based proteomics has been widely used to characterize molecular
components and underlying mechanisms associated with various malignancies such as colorectal [7],
breast [8], lung [9], and ovarian cancers [10–12]. Currently, this emerging technology is used for
high-throughput analysis for simultaneous quantification of numerous proteins and discovery of
prognostic biomarkers in individual samples. The Clinical Proteomic Tumor Analysis Consortium
(CPTAC) provides proteogenomic insights into HGSOC by performing extensive proteomic profiling
and correlating results with data contained in The Cancer Genome Atlas (TCGA) database [10]. However,
these biomarkers need to be subjected to specific validation studies before being clinically applied.

In this study, we performed label-free quantitative proteomic analysis of chemotherapy-naïve,
fresh-frozen primary ovarian cancer tissues to elucidate prognostic protein biomarkers of HGSOC.
We then validated our findings via immunohistochemical (IHC) staining in an independent dataset.

2. Results

2.1. Patient Characteristics in the Proteomic Analysis

Clinicopathologic characteristics of 12 patients with HGSOC, for whom proteomic analysis was
performed, are presented in Table S1. Mean patient age was 56.5 years (range 42.0–74.1 years).
No differences in patient age, menopausal status, or family history of breast cancer were observed
between the good and poor prognosis groups. Initial serum levels of CA-125, International Federation
of Gynecology and Obstetrics (FIGO) stage, and residual tumor after primary debulking surgery (PDS)
were also similar between the two groups. Of the 12 patients, 4 and 2 patients harbored germline
BRCA1 and BRCA2 mutations, respectively, while the other 6 patients harbored wild-type BRCA1/2.
The median length of observations was 58.1 months, during which 11 patients (91.7%) experienced
disease recurrence. Patients in the good prognosis group had significantly better progression-free
survival (PFS) than those in the poor prognosis group (median, 26.0 vs. 16.9 months; p = 0.001)
(Figure S1).

2.2. Results of Proteomic and Bioinformatic Analyses

2.2.1. Global Proteomic Analysis of Ovarian Cancer Tissues

To identity prognostic biomarkers for HGSOC, we performed MS-based label-free quantification
using chemotherapy-naïve, fresh-frozen cancer tissues resected from the primary (non-metastatic)
ovarian mass intraoperatively during the debulking surgery (n = 12); the good and poor prognosis
groups contained six patients per group (Figure 1A). To expand the coverage of the identified
ovarian proteome, we used pooled samples to generate a spectral library including 8520 protein groups
corresponding to 93,355 unique peptides (Table S2). In the individual samples, 7839 protein groups were
identified at a false discovery rate (FDR) of 1%. On average, 5900 protein groups were quantified per
sample (Figure 1B). Signal intensities for total quantified proteins spanned approximately seven orders
of magnitudes (Figure 1C), with several well-known ovarian cancer markers, such as apolipoprotein
A1 (APOA1), transthyretin (TTR), synuclein gamma (SNCG), stratifin (SFN), mesothelin (MSLN), DnaJ
heat shock protein family (Hsp40) member A1 (DNAJA1), WAP four-disulfide core domain 2 (WFDC2),
serine protease 8 (PRSS8), V-set domain containing T cell activation inhibitor 1 (VTCN1), insulin like
growth factor binding protein 3 (IGFBP3), AT-rich interaction domain 1A (ARID1A), tumor protein
p53 (TP53), vascular endothelial growth factor A (VEGFA), and notch receptor 1 (NOTCH1), being
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identified [13]. Pearson’s correlation coefficients were correspondingly high at 0.82–0.84 for inter- and
intra-tissue replicates (Figure S2).
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Figure 1. Proteomic analysis of ovarian cancer tissues with respect to survival outcome: (A) the protocol
for proteomic analysis; (B) total number of proteins identified in each group of samples; (C) dynamic
range of candidate biomarkers for high-grade serous ovarian carcinoma. MS, mass spectrometry.

On assessing tumor purity, using the ESTIMATE tool in the R package, mean (± standard deviation)
tumor purity score across the samples was 80.0 (± 1.7) and 74.8 (± 3.0) in the good and poor prognosis
groups, respectively, indicating that the tumor purity was adequate to distinguish the tumor’s signal
from those of other cells (Figure S3) [14].

2.2.2. Label-Free Quantification

Furthermore, we compared the good and poor prognosis groups via principal component analysis
(PCA) of a filtered list with approximately 6128 proteins (with 70% of valid intensity-based absolute
quantification (iBAQ) values in at least one group). Although tumor proteomes correlated regardless
of prognosis (Figure S2), the two groups were independently separated (Figure 2A).

To obtain functional insights into the proteomic data, we constructed a volcano plot to compare the
expression levels between the good and poor prognosis groups. Pairwise comparisons via a t-test and
filtering (p < 0.05; fold-change, > 1.5) revealed significant alterations in 658 proteins, of which 370 were
upregulated and 288 were downregulated in the poor prognosis group (Figure 2B and Table S3). Gene
ontology (GO) enrichment analysis revealed that proteins upregulated in the good prognosis group were
significantly enriched for terms such as “nucleobase-containing small molecule metabolism”, ”positive
regulation of superoxide anion generation”, “acute inflammatory response”, “cellular component
biogenesis”, and “autophagy” (Figure 2C and Table S4). In contrast, proteins upregulated in the poor
prognosis group were significantly enriched in ”extracellular matrix organization”, ”wound healing”,
”muscle system process”, “vesicle-mediated transport”, “single-organism catabolism”, and “antigen
processing and presentation“ (Figure 2D and Table S4).
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upregulated proteins in the poor prognosis group.

2.2.3. Selection of Candidate Prognostic Biomarkers

Further, we analyzed our proteomic data using the R/Bioconductor package “geNetClassifier
(GNC)” [15] to rank proteins with the greatest discriminant power in an unbiased manner (Figure 3A).
In total, 229 proteins exceeded the posterior probability cut-off (>0.95) and were used in training
the support vector machine (Table S5). The lowest error rate achieved by GNC was 0.08 (8%) and
corresponded to 41 proteins.

Among the top 20 proteins ranked through support-vector-machine analysis, 13 overlapped
with significantly differentially expressed proteins (DEPs) (Figure 3B). After reviewing the data of
each protein in the Human Protein Atlas database (https://www.proteinatlas.org) and evaluating
the association between its expression and survival outcome in various malignancies, we selected
phosphomevalonate kinase (PMVK), vascular adhesion protein 1 (VAP1), fatty acid-binding protein 4
(FABP4), and platelet factor 4 (PF4) as our biomarker candidates.

We further selected prognostic biomarker candidates on the basis of the following parameters: (1)
significantly differentially expressed between the two groups, revealed through the t-test (p < 0.05);
(2) quantification of expression in all samples; (3) presence of survival outcome data based on their
expression in other malignancies; (4) availability of a commercial antibody; and (5) potential clinical
utility (e.g., probability of being found in the blood). Thus, α1-antitrypsin (AAT), nuclear factor-κB
(NFKB), APOA1, and α1-acid glycoprotein (AGP) were selected as additional biomarker candidates.

https://www.proteinatlas.org
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Figure 3. Selection of prognostic biomarker candidates using unbiased machine learning:
(A) Discriminant power plots of the up-regulated gene (phosphomevalonate kinase, PMVK) in
the good prognosis group and the up-regulated gene (platelet factor 4, PF4) in the poor prognosis
group; (B) volcano plot with the 13 statistically significant differentially expressed proteins.

2.3. Validation of Protein Biomarkers through IHC Analysis

Prognostic validation of protein biomarkers was performed using tissue specimens obtained from
107 HGSOC patients, including the 12 patients whose tissue specimens were subjected to proteomic
analysis. Clinicopathologic characteristics of 107 patients with HGSOC are presented in Table 1.
The percentage of advanced-stage (FIGO III/IV) disease was 91.6% (98/107). Of these 107 patients,
102 (95.3%) underwent PDS, while 5 (4.7%) underwent neoadjuvant chemotherapy (NAC) followed
by interval debulking surgery. Optimal debulking (no gross residual tumor) was achieved in 68.2%
(73/107). Germline BRCA1/2 mutations were observed in 50.5% (54/107). Median length of observation
was 23.7 months; during this observation, 51 patients (47.7%) experienced relapse. The median PFS
was 26.0 months, and the three-year PFS rate was 22.2%.

Table 1. Clinicopathologic characteristics of the patients who underwent prognostic validation.

Characteristics All (n = 107, %)

Age, years
Mean ± SD 55.6 ± 10.1
Menopause 69 (71.9)

Personal history of breast cancer 16 (15.0)
Family history of breast cancer 4 (3.7)

Family history of ovarian cancer 5 (4.7)
Serum CA-125, IU/ml

Median (range) 677.5 (5.1–11,630.0)
FIGO stage

I-II 9 (8.4)
III 68 (63.6)
IV 30 (28.0)

Primary treatment strategy
PDS 102 (95.3)
NAC 5 (4.7)

Residual tumor after PDS/IDS
No gross 73 (68.2)

<1 cm 21 (19.6)
≥1 and <2 cm 7 (6.5)
≥2 cm 6 (5.6)

Recurrence
No 56 (52.3)
Yes 51 (47.7)

No post-operative chemotherapy (within recurrent disease) 1 (0.9)
PSR 1 (within recurrent disease) 38 (35.5)
PRR (within recurrent disease) 12 (11.2)
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Table 1. Cont.

Characteristics All (n = 107, %)

Platinum sensitivity
Platinum-sensitive 2 72 (67.3)
Platinum-resistant 12 (11.2)

Germline BRCA mutation
BRCA1 37 (34.6)
BRCA2 17 (15.9)

Both 0
1 PSR was defined as relapse ≥6 months after completion of taxane- and platinum-based chemotherapy, whereas
PRR as relapse <6 months. 2 In addition to PSR, the patients who completed taxane- and platinum-based
chemotherapy and did not experience disease recurrence during at least six months of follow-up period were
considered platinum-sensitive. Abbreviations: CA-125, cancer antigen 125; FIGO, International Federation of
Gynecology and Obstetrics; IDS, interval debulking surgery; NAC, neoadjuvant chemotherapy; PDS, primary
debulking surgery; PRR, platinum-resistant recurrence; PSR, platinum-sensitive recurrence; SD, standard deviation.

Herein, we used chemotherapy-naïve, formalin-fixed paraffin-embedded (FFPE) cancer tissues
cut from the primary (non-metastatic) ovarian mass (n = 107). For the 12 patients, the specimens were
the same as those used for proteomic analysis. Among the DEPs, AAT, NFKB, PMVK, VAP1, FABP4,
PF4, APOA1, and AGP were subjected to further prognostic validation through IHC staining. Most
tumor cells presented cytoplasmic and/or membranous staining patterns, except for VAP1, FABP4, PF4,
and AGP, which occasionally displayed focal nuclear staining. APOA1 and AGP were also detected in
the fibrotic stroma and inflammatory cells (Figure S4).

We then compared patient survival outcomes with respect to the expression levels of each protein
and observed significant differences in PFS for the six proteins as follows: the group of patients with
high expression levels of AAT, NFKB, and PMVK presented better PFS than those with low expression
levels (p = 0.024, p = 0.009, and p = 0.005, respectively). For VAP1, FABP4, and PF4, the high expression
group presented a reduced PFS relative to the low expression group (p = 0.010, p = 0.010, and p = 0.002,
respectively). However, the PFS did not significantly differ between patients with high and low
expression levels of APOA1 and AGP, as determined through IHC staining (Figure 4).
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Figure 4. Comparison of progression-free survival (PFS) based on the expression levels of proteins: (A)
α1-antitrypsin (AAT); (B) nuclear factor-κB (NFKB); (C) PMVK; (D) vascular adhesion protein 1(VAP1);
(E) fatty acid-binding protein 4 (FABP4); (F) PF4.

We further compared the clinicopathologic characteristics of patients with high and low expression
levels of the six relevant protein biomarkers. No differences in expression levels were observed with
respect to patient age (≥55 vs. <55 years), FIGO stage (I–II vs. III–IV), or germline BRCA1/2 mutational
status (mutation vs. wild-type) between the high and low expression groups. Patients with high NFKB
expression levels achieved no gross residual tumor after surgery more commonly than those with
low NFKB expression levels (86.7% vs. 61.0%; p = 0.020). On assessing the platinum sensitivity of
patients with respect to the expression profile of each protein, we observed a significant difference
only for PVMK; patients with high PVMK expression levels were more sensitive to platinum-based
chemotherapy than those with low PMVK expression levels (95.3% vs. 75.6%; p = 0.023) (Table S6).

On multivariate analyses adjusting patient age at diagnosis, initial serum CA-125 level, FIGO stage,
residual tumor after surgery, and germline BRCA1/2 mutational status, high expression of AAT, NFKB,
and PMVK were identified as independent favorable prognostic biomarkers for PFS (AAT (adjusted
hazard ratio (aHR), 0.398; 95% confidence interval (CI), 0.207–0.768; p = 0.006), NFKB (aHR, 0.424;
95% CI, 0.196–0.920; p = 0.030), and PMVK (aHR, 0.430; 95% CI, 0.228–0.809; p = 0.009)). In contrast,
high expression of VAP1, FABP4, and PF4 were considered independent poor prognostic biomarkers
for PFS (VAP1 (aHR, 1.911; 95% CI, 1.089–3.354; p = 0.024), FABP4 (aHR, 1.908; 95% CI, 1.093–3.331;
p = 0.023), and PF4 (aHR, 2.071; 95% CI, 1.139–3.765; p = 0.017)) (Table 2).



Cancers 2020, 12, 790 8 of 16

Table 2. Factors associated with progression-free survival.

Characteristics
Multivariate Analysis

aHR 95% CI aHR 95% CI aHR 95% CI aHR 95% CI aHR 95% CI aHR 95% CI

Age, years p = 0.072 p = 0.667 p = 0.879 p = 0.417 p = 0.332 p = 0.365
≥55 vs. <55 1.755 0.951–3.238 1.133 0.641–2.005 1.046 0.586–1.866 1.265 0.717–2.230 1.327 0.750–2.349 1.300 0.737-2.295

CA-125, IU/ml p = 0.028 p = 0.061 p = 0.103 p = 0.066 p = 0.124 p = 0.157
≥700 vs. <700 1.911 1.073-3.405 1.720 0.976–3.031 1.603 0.909–2.826 1.695 0.965–2.977 1.553 0.886–2.721 1.500 0.856–2.628

FIGO stage p = 0.470 p = 0.182 p = 0.260 p = 0.304 p = 0.281 p = 0.255
III–IV vs. I–II 2.149 0.270–17.098 4.010 0.522–30.829 3.220 0.421–24.652 2.920 0.379–22.499 3.066 0.400–23.498 3.227 0.429–24.274

Residual tumor after PDS/IDS p = 0.057 p = 0.183 p = 0.019 p = 0.142 p = 0.118 p = 0.137
Gross vs. No gross 1.732 0.985–3.048 1.474 0.833–2.608 2.020 1.124–3.630 1.531 0.868–2.703 1.578 0.891–2.794 1.538 0.872–2.711

Germline BRCA status p = 0.085 p = 0.101 p = 0.425 p = 0.094 p = 0.088 p = 0.162
Mutation vs. WT 0.598 0.333–1.073 0.614 0.343–1.099 0.780 0.424–1.436 0.600 0.329–1.091 0.594 0.326–1.081 0.654 0.361–1.186

AAT p = 0.006
High vs. Low 0.398 0.207–0.768

NFKB p = 0.030
High vs. Low 0.424 0.196–0.920

PMVK p = 0.009
High vs. Low 0.430 0.228–0.809

VAP1 p = 0.024
High vs. Low 1.911 1.089–3.354

FABP4 p = 0.023
High vs. Low 1.908 1.093–3.331

PF4 p = 0.017
High vs. Low 2.071 1.139–3.765

Abbreviations: aHR, adjusted hazard ratio; CI, confidence interval; CA-125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; IDS, interval debulking
surgery; PDS, primary debulking surgery; WT, wild-type; AAT, α1-antitrypsin; NFKB, nuclear factor-κB; PMVK, phosphomevalonate kinase; VAP1, vascular adhesion protein 1; FABP4,
fatty acid-binding protein 4; PF4, platelet factor 4.
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Furthermore, we constructed models predicting 18-month PFS by combining clinical variables and
IHC results. Here, we considered two types of models: regression- and score-based. The performance of
predictive models was evaluated via the leave-one-out cross validation method for the regression-based
models. The best model included the following variables: initial serum CA-125 levels (≥700 vs. <700
IU/mL), germline BRCA1/2 mutational status (mutation vs. wild-type), residual tumor after surgery
(gross vs. no gross), FIGO stage (III–IV vs. I–II), and expression levels (high or low) of the six protein
biomarkers on IHC staining of ovarian cancer tissue. For the regression-based model, the estimated
areas under the receiver operating characteristic curves (AUCs) from the training and test datasets
were 0.898 and 0.776, respectively. In the score-based model, the scores of each predictor (0 or 1) were
added to give a total score. Samples with the total score ≥7 were classified as “high-risk”, and showed
an AUC of 0.855. Both regression- and score-based models displayed better performance than those
comprising only clinical variables (Table S7).

3. Discussion

In the current study, we performed label-free liquid chromatography-mass spectrometry
(LC-MS/MS)-based proteomic analysis on chemotherapy-naïve, fresh-frozen primary HGSOC tissues.
Upon validation with complementary IHC staining for FFPE HGSOC tissue specimens, we identified
six protein biomarkers to predict the prognosis of HGSOC; expression levels of AAT, NFKB, PMVK,
VAP1, FABP4, and PF4 in ovarian cancer tissue were associated with PFS.

AAT, encoded by SERPINA1 in humans, is a serine protease inhibitor that influences tumor
behavior depending on the context and/or cancer type. Consistent with our results, enrichment of
SERPINA1 mRNA was associated with a good prognosis in HGSOC [16]; however, no association
was observed between survival of patients with HGSOC and AAT expression levels, as assessed
via IHC staining [17]. Two previous studies evaluated serum AAT levels in patients with epithelial
ovarian cancer and reported that AAT may contribute to a differential diagnosis and help predict
chemoresistance [18,19].

NFKB is constitutively activated in several cancers. The p100 subunit of NFKB, a precursor of the
active p52 subunit, has been suggested to counteract the tumorigenic effects of p52 in breast cancer [20].
In ovarian cancer, NFKB p52 promoted cancer progression, resulting in an unfavorable prognosis [21].
To our knowledge, our study is the first to report the association between high expression of NFKB
p100 and improved PFS in patients with HGSOC.

Furthermore, this study shows that PMVK, an enzyme involved in cholesterol synthesis
and lipid metabolism, can be considered a novel prognostic biomarker for HGSOC. In estrogen
receptor-positive breast cancer, high expression of PMVK gene was positively associated with responses
to chemotherapeutic agents [22]. Similarly, herein, high expression of PMVK, assessed via IHC
staining, was significantly associated with platinum sensitivity and improved the survival of patients
with HGSOC.

VAP1, an adhesion molecule mediating interactions between various inflammatory and endothelial
cells, may be associated with tumor invasion and metastasis. High expression of VAP1 was associated
with a lower overall survival in breast cancer [23,24]. In our study, VAP was identified as a poor
prognostic factor for PFS in patients with HGSOC.

A previous study reported that FABP4 promotes HGSOC progression by mediating lipid
metabolism in cancer cells [25]. Furthermore, the present results indicate that high expression
of FABP4, assessed via IHC staining, was associated with a poor PFS.

PF4 is a platelet-activating chemokine that induces thrombocytosis and thromboembolism. High
serum PF4 levels were associated with poor survival and an increased risk of venous thromboembolism
in patients with pancreatic adenocarcinoma [26]. According to a microarray study using 51 HGSOC
samples, increased expression of PF4 mRNA was negatively associated with patients’ overall
survival [27]. Similarly, our study results also indicate that high expression of PF4, assessed via
IHC staining, was associated with a reduced PFS.
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APOA1 and AGP are acute-phase reactants, and their serum levels have been assessed in epithelial
ovarian cancer to assess their potential as diagnostic or prognostic predictive biomarkers [28–31].
However, tissue expression and clinical implications of APOA1 and AGP in HGSOC have not been
determined. In the current study, we revealed that expressions of APOA1 and AGP in HGSOC cancer
tissues were not associated with patient survival outcomes. Furthermore, in several tissue microarray
(TMA) cores, APOA1 and AGP were expressed strongly only in the stroma and inflammatory cells,
but not in cancer cells, suggesting the host immune response to cancer.

A potential limitation of our study is that the menopausal status may have influenced the
expression levels of AAT, NFKB, PMVK, VAP1, FABP4, and PF4. However, during the proteomic
analysis, the proportion of menopausal women was the same between the good and poor prognosis
groups (66.7%). Moreover, during subsequent IHC analysis for prognostic validation, the patients’
ages were adjusted for multivariate analyses to identify the prognostic factors for PFS.

Since the CPTAC presented a proteomic landscape of 169 HGSOC tumors [10], several studies
have focused on HGSOC using MS-based proteomics. Coscia et al. performed integrative proteomic
profiling of ovarian cancer cell lines and HGSOC tumors and revealed two distinct clusters, epithelial
and mesenchymal, which displayed different clinical outcomes [11]. Dieters-Castator et al. performed
label-free quantitative proteomic analysis using 10 fresh-frozen HGSOC tissues and 10 fresh-frozen
endometrioid carcinoma tissues, and identified diagnostic biomarkers specific to endometrioid
carcinoma. Furthermore, the eight-marker panel, generated in that study, showed good performance
in discriminating endometrioid carcinoma from HGSOC [12].

Unlike previous studies focused on a differential diagnosis or clustering of HGSOC, this study
aimed to investigate protein biomarkers predicting survival outcomes. IHC staining on FFPE HGSOC
tissue specimens revealed that expression levels of the six protein biomarkers were not different between
the early-stage and advanced-stage disease, and between diseases with high and low initial serum
CA-125 levels. Nevertheless, our results indicate that high expressions of AAT, NFKB, and PMVK are
favorable prognostic biomarkers for PFS, whereas high expressions of VAP1, FABP4, and PF4 are poor
prognostic biomarkers for PFS. These six protein biomarkers, along with well-known prognostic factors
including the stage and size of residual tumors, are expected to increase the accuracy of predicting
relapse after primary treatment. Such improvements in prognostic prediction would facilitate the
development of individualized therapies. For instance, if a patient is identified as being at high risk
for recurrence, she may receive intraperitoneal chemotherapy or bevacizumab maintenance therapy
in addition to the standard treatment and would be placed on a frequent surveillance schedule for
earlier detection of relapse. Moreover, each of the six protein biomarkers, identified in our present
study, can be considered a target for novel molecular therapeutic agents against HGSOC. However,
further translational studies using cell lines and cancer tissues are essential for assessing biological
effectiveness of the protein biomarkers and for identifying relevant pathways.

Herein, we performed IHC staining to validate candidate prognostic protein biomarkers. IHC is
more cost-effective and simpler to use in the clinical setting than DNA or RNA PCRs and exome- or
transcriptome-level next-generation sequencing methods. IHC can be utilized for prognosis prediction
immediately during pathologic examination of the tissue obtained during ovarian cancer surgery.

For further studies validating a predictive model consisting of all the six protein biomarkers,
we calculated the estimated powers for various sample sizes and censoring rates, which were drawn
from a simple simulation study (p < 0.05; 1000 replicates), using the estimates from our multivariate
model and the predictor frequencies from our dataset (Figure S5).

This study has several limitations. First, owing to the retrospective study design, issues such
as selection bias might exist. Second, the sample size used in our study may be insufficient for
further discovery and validation of protein biomarkers. Third, external validation of our study
results is necessary. Fourth, additional studies, elucidating the mechanisms of action of each protein
biomarker, were not performed herein. Lastly, we did not evaluate interactions between among these
protein biomarkers. Despite these limitations, we faithfully applied a two-step approach consisting
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of proteomic and bioinformatic analyses and subsequent IHC staining for HGSOC tissue to identify
prognostic protein biomarkers. Moreover, we developed predictive models comprising the six protein
biomarkers and clinical variables for 18-month PFS of HGSOC patients. Such models displayed better
prediction potential than those comprising only clinical variables. Especially, the proposed predictive
model was further simplified as a score-based model, which provides comparable performance and
substantial intuitiveness.

4. Materials and Methods

This retrospective study was approved by the Institutional Review Board of Seoul National
University Hospital (SNUH; No. C-1712-083-907), and conducted in accordance with the Declaration
of Helsinki.

4.1. Study Design

This study included two steps: (1) proteomic and bioinformatic analysis for biomarker discovery;
and (2) IHC staining for prognostic validation of candidate biomarkers (Figure S6).

In the first step, we used fresh-frozen primary (non-metastatic) ovarian cancer tissues obtained
intraoperatively and stored at the SNUH Human Biobank for research purposes. We identified patients
who met the following inclusion criteria: (1) older than 18 years; (2) diagnosed with HGSOC between
June 2012 and December 2016; (3) underwent PDS; and (4) agreed to donate biospecimens and provide
written informed consent. Patients with any malignancy other than ovarian cancer, those who received
NAC, those with insufficient clinical data or those lost to follow-up, or those with severe co-morbidities
were excluded. On the basis of their PFS, patients were divided into the favorable (good) prognosis
group (≥18 months) and poor prognosis group (<18 months). In total, 12 patients from the two groups
(6 for each group) were selected for further proteomic analysis, and proteomic profiles were compared
between the two groups.

In the second step, we used FFPE primary (non-metastatic) ovarian cancer tissues stored in the
pathology archive of SNUH. In contrast with the first step, we identified patients meeting the following
inclusion criteria: (1) older than 18 years; (2) diagnosed with HGSOC between June 2012 and December
2018; (3) whose ovarian cancer tissue was obtained during chemotherapy-naïve status (such as at
the time of PDS, or during diagnostic laparoscopy in case of NAC); and (4) agreed to donate their
pathologic specimens for research purposes and provided written informed consent. Patients with
insufficient clinical data or those lost to follow-up or those with severe co-morbidities were excluded.
In total, 107 patients with primary HGSOC were included in this step.

4.2. Proteomic and Bioinformatic Analyses

4.2.1. Tissue Preparation

Tissue samples were prepared using filter-aided sample preparation (FASP), as previously
described [32]. Briefly, frozen tissue samples were homogenized using lysis buffer (4% sodium dodecyl
sulfate (SDS), 2 mM Tris(2-carboxyethyl)phosphine (TCEP), and 0.1 M Tris-HCl pH 7.4), and protein
concentration was determined using a reducing agent-compatible bicinchoninic acid (BCA) protein
assay kit (Thermo Fisher Scientific, Waltham, MA, USA) in accordance with the manufacturer’s
instructions. To eliminate contaminants, we performed acetone precipitation using 250 µg of the lysate
at –20 ◦C. Each protein pellet was dissolved in 50 µL reduction buffer (4% SDS, 0.1 mM dithiothreitol
(DTT), and 0.1 M Tris-HCl, pH 7.4) and heated at 95 ◦C for 15 min. The reduced proteins were loaded
onto a 30 K spin filter (Millipore, Billerica, MA, USA), and buffer was exchanged for UA solution (8 M
urea in 0.1 M Tris-HCl, pH 8.5) via centrifugation. After triple UA exchanging, the reduced cysteines
were alkylated with 0.05 M iodoacetamide (IAA) in UA solution for 30 min at ambient temperature in
the dark. Thereafter, UA buffer was exchanged for 40 mM ammonium bicarbonate (ABC), and the
samples were digested with trypsin (enzyme to substrate ratio of 1:100) at 37 ◦C for 16 h. Further, the
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digested peptides were harvested via centrifugation, and an additional elution step was performed
using 40 mM ABC and 0.5 M NaCl.

4.2.2. Desalting and Peptide Fractionation of Individual Samples

Peptide concentrations were measured using the tryptophan fluorescence (WF) assay, as previously
described [33]. Digested peptides (20 µg) were acidified with trifluoroacetic acid (TFA) and then
loaded directly onto house-made Stage-Tip with polystyrenedivinylbenzene-reversed phase sulfonate
(SDB-RPS) material [34]. StageTip was washed thrice with 100 µL 0.2% TFA. Three fractionations were
performed using elution buffer 1, 2, and 3. All eluted peptides were dried in a SpeedVac centrifuge.

4.2.3. Offline High-pH Reversed-Peptide Fractionation for Library Construction

For library construction, pooled peptides were fractionated via high pH reversed-phase liquid
chromatography (RPLC) using an Agilent 1290 bioinert high performance liquid chromatography
(HPLC) (Agilent, Santa Clara, CA, USA) equipped with an analytical column (4.6 × 250 mm, 5 µm),
as previously described [32]. Solvent A consisted of 15 mM ammonium hydroxide in water, and
solvent B consisted of 15 mM ammonium hydroxide in 90% acetonitrile (ACN). The peptides were
separated along a gradient of 5%–35% ACN at a flow rate of 0.2 mL/min. In total, 96 fractions were
concatenated to mix different parts of the gradient into 24 fractions. The fractions were lyophilized
and stored at −80 ◦C until MS analysis.

4.2.4. LC-MS/MS Analysis

All LC-MS/MS analyses were conducted using an Ultimate 3000 UHPLC system (Dionex,
Sunnyvale, CA, USA) coupled with Q-Exactive HF-X mass spectrometry (Thermo Fisher Scientific,
Waltham, MA, USA), as previously described with some modifications [32]. Peptides were separated on
a two-column system equipped with a trap column (300 µm × 5 mm) and an analytic column (75 µm ×
50 cm), using 90-min gradients from 7% to 32% ACN at a flow rate of 300 nl/min. Column temperature
was maintained at 60 ◦C using a column heater. For label-free quantification using the data-dependent
acquisition (DDA) method, a survey scan (350 to 1650 m/z) was acquired with a resolution of 70,000 at
m/z 200. A top-15 method was used to select the precursor ion with an isolation window of 1.2 m/z.
MS/MS spectra were acquired at a higher-energy collisional dissociation (HCD)-normalized collision
energy (NCE) of 30 with a resolution of 17,500 at m/z 200. Maximum ion injection durations for the full
and MS/MS scans were 20 and 100 ms, respectively.

4.2.5. Data Processing

All MS raw files were processed using MaxQuant (version 1.6.1.0) [35]. MS/MS spectra were
searched against the Human Uniprot protein sequence database (December 2014 with 88,657 entries)
using the Andromeda search engine [36]. Primary searches were performed using a 6 ppm precursor
ion tolerance for total protein-level analysis. MS/MS ion tolerance was set to 20 ppm. Cysteine
carbamidomethylation was set as a fixed modification. Protein N-acetylation and methionine oxidation
were considered variable modifications. Enzyme specificity was set to full tryptic digestion. Peptides
with a minimum length of six amino acids and up to two missed cleavages were considered. The required
FDR was set to 1% at peptide, protein, and modification levels. To maximize the number of quantification
events across samples, we enabled the “Match between Runs” option on the MaxQuant platform.

4.2.6. Label-Free Quantification and Statistical Analysis

For label-free quantification, the iBAQ algorithm was used as part of the MaxQuant platform [37].
Briefly, iBAQ values, determined using MaxQuant, were the raw intensities divided by the number of
theoretical peptides. Thus, iBAQ values were proportional to molar quantities of the proteins. Perseus
software was used for statistical analysis [38]. First, we eliminated proteins identified as “reverse”
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and “only identified by site”. After filtering values of at least 70% in each group, missing values were
imputed using a width of 0.3 and down shift of 1.8. Finally, data were normalized using a width
adjustment function, which subtracts the medians and scales all values in a sample to yield equal
interquartile ranges (IQRs) [39]. For pairwise proteome comparisons, we performed a two-sided t-test
with a significance level (p-value) of <0.05 and fold-change of >1.5. Support vector machine analysis
was performed using the R/Bioconductor package “GNC” [15].

4.2.7. Bioinformatic Analysis

GO enrichment analysis was performed using the DAVID bioinformatics resources (https://david.
ncifcrf.gov/). GO-terms and corresponding p-values were subsequently submitted to ReViGO [40], and
visualized using high semantic similarity-based treemaps. Tumor purity was assessed using the R
package “ESTIMATE” on the basis of the expression levels of marker genes in stromal and immune
cells [41].

4.3. Validation via IHC Analysis

4.3.1. TMA Construction

Prognostic implications of protein biomarkers, identified through proteomic analyses, were
validated via IHC staining using a separate dataset consisting of chemotherapy-naïve, FFPE cancer
tissues resected from the primary (non-metastatic) ovarian mass intraoperatively during debulking
surgery (PDS cases) or diagnostic laparoscopy (NAC cases) (n = 107). After tissues were retrieved
from the pathology archive of SNUH, they were histologically assessed through hematoxylin and
eosin staining. To construct a TMA, three cores (2 mm in diameter) per patient were embedded in new
recipient FFPE blocks using a trephine apparatus (Superbiochips Laboratories, Seoul, Korea).

4.3.2. IHC Staining

IHC staining for AAT, NFKB, PMVK, VAP1, FABP4, PF4, APOA1, and AGP was performed using
4 µm thick TMA sections using a Benchmark autostainer (Ventana, Tucson, AZ, USA) in accordance
with the manufacturer’s instructions (Table S8).

Because IHC staining of these eight antibodies and its prognostic effects was not previously
evaluated in HGSOC, we determined the optimal cutoff values for each IHC staining, based on the
sample distribution and prognostic significance (Table S8). Briefly, the extent (0–20%, 20–50%, 50–70%,
70–100%) and intensity (absent, weak, moderate, strong) of cytoplasmic/membranous immunoreactivity
were semi-quantitatively assessed. Thereafter, the expression level of each protein was dichotomized
into high versus low expression (Figure S4).

4.4. Statistical Analysis

Descriptive statistics were used to describe clinicopathologic characteristics of the study population.
Patient characteristics were compared between the good and poor prognosis groups, and between
groups showing low and high expression of each protein biomarker. We used Student’s t and
Mann–Whitney U tests to compare continuous variables, and Pearson’s Chi-squared and Fisher’s
exact tests to compare categorical variables. Kaplan–Meier methods with log-rank test were used for
survival analysis. Multivariate analysis was performed using a Cox proportional-hazards model, and
aHRs and 95% CIs were calculated. These analyses were conducted using SPSS software (version 25.0;
SPSS Inc., Chicago, IL, USA). All statistical tests were two-sided, and a p-value < 0.05 was considered
statistically significant.

We constructed regression- and score-based models predicting 18-month PFS using clinical
variables and IHC results of 107 patients with primary HGSOC. To evaluate the performance
of regression-based predictive models, we performed leave-one-out cross-validation with the
consideration of a small sample size. In brief, leave-one-out cross-validation constructs n models

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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repetitively, by training the model with n-1 samples and testing with the remaining one, where n is
the sample size. This analysis was repeated for all samples, and n predicted values were obtained on
the basis of n models. We computed AUC using the predicted values and the observed values of the
response variable. Finally, we simplified the regression-based model into a score-based model. In this
study, each predictor has a single binary value, either 0 or 1. We inverted the original values of the
predictors with a negative coefficient (0/1 to 1/0) so that all the direction of effects be positive. Then, a
total score for the prediction of 18-month PFS was determined by simply adding all the predictors
without coefficient.

5. Conclusions

In conclusion, we successfully generated a proteomic landscape of HGSOC and identified six
protein biomarkers to predict the prognosis of HGSOC. These biomarkers are potentially applicable
for the development of novel molecular therapeutic agents in the future. Further translational studies
and prospective validation studies are warranted to determine the underlying mechanisms of action
and interactions among these biomarkers.
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S3: Assessment of tumor purity in the good and poor prognosis groups; Figure S4: Representative images of
high expression and low expression of each protein. (a) AAT; (b) NFKB; (c) PMVK; (d) VAP1; (e) FABP4; (f) PF4;
(g) APOA1; (h) AGP; Figure S5: Power analysis of a multivariate model consisting of the six protein biomarkers
with variable sample sizes and censoring rates; Figure S6: Flow diagram illustrating the overall study design;
Table S1: Clinicopathologic characteristics of the patients who underwent proteomic analysis; Table S2: List of
total identified proteins; Table S3: List of differentially expressed proteins between good and poor prognosis
groups; Table S4: Results of gene ontology enrichment in differentially expressed proteins; Table S5: Ranked
protein list obtained using ”geNetClassifier”; Table S6: Comparisons of patients’ clinicopathologic characteristics
by immunohistochemical staining results; Table S7: Comparisons of performance among the developed models
predicting 18-month progression-free survival; Table S8: Information on antibodies used in this study and
interpretation of results obtained via immunohistochemical staining.
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