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Purpose: Retinal pigment epithelial (RPE) cells serve as a supporter for the metabolism
and visual function of photoreceptors and a barrier for photoreceptor protection.
Morphology dynamics, spatial organization, distribution density, and growth patterns
of RPE cells are important for further research on these RPE main functions. To enable
such investigations within the authentic eyeball structure, a new method for estimat-
ing the three-dimensional (3D) eyeball sphere from two-dimensional tissue flatmount
microscopy images was investigated.

Methods: An error-correction term was formulated to compensate for the reconstruc-
tion error as a result of tissue distortions. The effect of the tissue-distortion error was
evaluated by excluding partial data points from the low- and high-latitude zones.
The error-correction parameter was learned automatically using a set of samples with
the ground truth eyeball diameters measured with noncontact light-emitting diode
micrometry at submicron accuracy and precision.

Results: The analysis showed that the error-correction term in the reconstructionmodel
is a valid method for modeling tissue distortions in the tissue flatmount preparation
steps. With the error-correction model, the average relative error of the estimated
eyeball diameterwas reduced from14% to 5%, and the absolute errorwas reduced from
0.22 to 0.03 mm.

Conclusions: A new method for enabling RPE morphometry analysis with respect to
locations on an eyeball spherewas created, an important step in increasing RPE research
and eye disease diagnosis.

Translational Relevance: This method enables one to derive RPE cell information from
the 3D eyeball surface and helps characterize eyeball volume growth patterns under
diseased conditions.

Introduction

The retinal pigment epithelium (RPE) is the
pigmented cell layer outside the neurosensory retina.
This layer is firmly attached to the underlying choroid
and the overlying retinal visual cells.1 In addition to

providing nutrients to retinal visual cells, this cell layer
performs numerous functions essential to the choroid
and the photoreceptors,2 including scattered light
absorption, transepithelial transport, spatial buffer-
ing of ions, maintenance of the visual cycle, phago-
cytosis of photoreceptor outer segments, and secre-
tion of growth factors and immunosuppressive factors.
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Without RPE cells, photoreceptor cells die, and the
choroid degenerates. Therefore RPE cells play an
important role in maintaining retinal homeostasis and
photoreceptor survival.

RPE aging is specifically involved in the pathogene-
sis of age-related macular degeneration (AMD).3–8
AMD is the leading cause of untreatable and
irreversible central vision loss and legal blindness
in industrialized countries.9–12 RPE cell morpholog-
ical characteristics, such as shape, size, number, and
geometric packing, provide informative features to
determine RPE aging. For example, the size of an
RPE cell in the fovea region is commonly smaller
than that in peripheral areas,4,13 and the average RPE
cell size increases with age.13,14 The RPE cell shape
is closer to a regular hexagon in the central regions
than in the outer zones.15,16 It is also known that the
number of RPE cells decreases with age.14,17–19 RPE
morphometries, such as cell density, eccentricity, form
factor, and percent of hexagonal cells, also vary with
aging and show significant topography-associated
features.19–21 Therefore accurate quantification of the
RPE cell morphometrics is essential for research and
clinical diagnosis of AMD.

RPE flatmount22 microscopy has been used
to quantitatively analyze RPE cell morphol-
ogy.4,6,18,19,21,23 However, the experimental proce-
dure for generating such a flatmount image usually
introduces significant RPE cell distortion and loss,
especially on the segmented lobe borders.22,23 This
makes it difficult to measure RPE cell morphology on
whole flatmount images accurately. In practice, regions
not close to the lobe borders are selected for analy-
sis.21,23 However, the morphometry features of whole
tissue flatmount images would provide more informa-
tive insights into RPE cell histology. To achieve this,
numerous digital image processingmethods24–31 can be
used to restore distorted or lost tissue regions in a RPE
flatmount image. However, because of the consider-
able variations in RPE cell morphometry,4,13,15,16,19,21
accurate determination of the RPE cell locations on
the three-dimensional (3D) eyeball model is a prereq-
uisite for digital image inpainting and restoration
analysis. The lack of methods for accurately locating
tissue regions on a 3D eyeball structure makes the
quantitative RPE cell morphometry analysis short
of the anatomic and geographic interpretation. The
geographic delineation of the 3D eyeball in current
research pivots around the eyeball physiological struc-
tures. The common terminologies used to depict the
geographic regions on the 3D eyeball surface include
fovea, optic nerve head, perifovea, parafovea, and the
peripheral areas from the central zones defined by the
fovea or optic nerve head. The definitions of these

locations of interest are imprecise and insufficient to
support further investigations of RPE cell quantita-
tive morphometrics. Furthermore, the quantification
of tissue location–specific dynamics of RPE cell
morphometry features, alignment orientation, and
spatial organization are important for research and
clinical investigations of AMD. Ideally, such investiga-
tions ought to be conducted in reference to authentic
3D eyeball structures. The loss of 3D eyeball structure
information in two-dimensional (2D) tissue flatmount
microscopy images presents a challenge for associat-
ing RPE cell features with the 3D eyeball anatomic
architecture.

To address this challenge, we propose the use of
a 3D sphere to model a 3D eyeball and a novel
method for recovering the 3D eyeball sphere size and
the corneal angle with 2D tissue flatmount images
through the least-squares approach. The proposed
method can effectively compensate for the estimation
error as a result of tissue distortion and achieve a
relative estimation error of 5.27% for the 3D eyeball
size by automatically learning an error-correction
term from the training dataset. The estimated 3D
eyeball size can be used to reconstruct the 3D digital
eyeball model and locate the tissue region on the
3D eyeball surface, providing accurate geographic
information about the RPE areas based on latitude
and longitude. This new technique enables promo-
tion of further development of quantitative RPE cell
morphometry analysis with respect to accurate eyeball
anatomic locations. With tissue location in reference
to the 3D eyeball surface determined by the proposed
method, digital image inpainting and restoration analy-
sis can be invoked to facilitate morphological analy-
sis across the whole tissue flatmount image. Therefore
the proposed new method for reconstructing the 3D
eyeball sphere with 2D flatmount microscopy images
can enhance our understanding of the relationships
between RPE cell morphology and spatial organiza-
tion and AMD histopathology, improving diagnosis
and treatment of AMD and facilitating personalized
medicine.

Methods and Data

Dataset

We estimated the sizes of 23 mouse eyeballs
from different independent projects with mouse RPE
flatmount microscopy images. The mouse eyeballs
included 13 eyes from C57BL/6J mice ranging in age
from postnatal day (P) 63 to P71 that were treated
with laser photocoagulation to induce choroidal
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neovascularization, 2 eyes from C57BL/6J mice at
P42, 3 eyes from 129/SV-E mice at P56 that were
treated with sodium iodate tail vein injection, and
5 eyes of C57BL/6J mice at P104 from a control
group without any specific treatment. The mice were
handled according to the Association for Research in
Vision and Ophthalmology (ARVO) guidelines, and
the study was approved by the Emory University
Institutional Animal Care and Use Committee. Mice
were euthanized using CO2 asphyxiation before dissec-
tion. After the enucleation process, the eyeball was
fixed in zinc formalin fixative (Z-fix; Anatech Ltd.,
Battle Creek, MI) for 10 minutes followed by washing
with phosphate-buffered saline three times. The fixed
eyeball was trimmed to remove extraocular fat and
muscles before size measurement was performed. The
mouse eyeball size was measured with a noncontact
light-emitting diode (LED) micrometer (model 7030M
with an LS-7601 controller and LS-H1W software;
Keyence America Corp, Itasca, IL) as previously
described.32 For five eyes from the control C57BL/6J
mice, the eyeball size measurement was performed with
a Keyence IM-6145 digital micrometer. The eyeball
was placed in two different positions, that is, axial
(anterior-posterior) and horizontal (equatorial), and
the device automatically measured the diameter of
each dimension. As we hypothesized that the eyeball
is a sphere with a slight corneal bulge, the ground
truth of the eyeball size was set with the equatorial
diameter, that is, the average of the superior-inferior
length and the nasal-temporal length. After the eyeball
size measurement, the RPE flatmount was prepared
with radial cuts from the center of the cornea back
toward the optic nerve. The iris and the retina were
removed with forceps, and additional incisions were
made at the ciliary body and cornea margin to relieve
tension from the sclera. Next, the RPE flatmounts were
stained for rabbit anti-ZO1 antibody (1:100 dilution,
catalog no. 61-7300; Invitrogen, Carlsbad, CA) and
goat anti-rabbit immunoglobulin G (IgG) secondary
antibody (catalog no. O11038; Invitrogen). The result-
ing flatmounts were imaged with a confocal imaging
system (model C1; Nikon Inc., Melville, NY) with
argon laser excitation at 488 nm. The confocal images
were digitally merged (Adobe Photoshop CS2; Adobe
Corp, San Jose, CA).

Eyeball Spherical Reconstruction Model

A 3D mouse eyeball modeled with a 3D sphere is
proposed. With this idealized model, we can have a
set of meridians when the spherical shell is cut along
lines of longitude. The more evenly cut the spheri-
cal shell, the more meridians this process produces.
After the meridians are unfolded and pushed down

from the sphere’s north pole to the tangent plane at
the south pole, the meridians become lines radiating
from the sphere’s south pole. On the resulting 2D
flatmount image plane, the tips of such lines lie on a
circle centered at the south pole. An “unfolding” result
is illustrated in Figure 1. Under ideal circumstances,
this circle is composed of the end points of infinite
number of unfolded meridians extending radially from
the south pole with a length of π × R, where R is the
radius of the sphere.

Because of the physical limitations in flatmount
practice, an eyeball can be cut only a limited number
of times (usually 4, but no more than 8). The result-
ing meridians are radially distributed on the plane
with the south pole as the common intersection point.
We define this plane as the “south pole plane.” In
addition, the latitude lines of the 3D sphere correspond
to 2D concentric circles centered on the south pole in
the resulting flat-mount plane. In the literature, it is
common to refer to the cut “sectors” of the eyecup as
“petals,” “lobes,” or “gores.” The reverse circumstance
is a common engineering or cartography problem: a
series of flat 2D patterns are cut to match 3D surfaces
without wrinkles or gaps. For example, a 3D globe of
Earth is assembled with a map on a 2D surface with
12 gores or sectors, and each sector corresponds to
30° of longitude. The gores are cut out and pasted
on a sphere; and there are few wrinkles.33 Many other
examples of the assembly of 3D bulging objects from
2D flat panels exist: parachutes, hot air balloons, tents,
domes, corners in heating, ventilation, and air condi-
tioning (HVAC) ductwork, and sails.

In this study, the reverse was performed. The eyecup
was treated as a 3D spherical shell, cut into lobes or
gores, and then flattened as much as possible, with the
south pole of each gore touching at one point at the
optic nerve head in the eye. The aim was to reduce the
number of cuts to minimize damage to the RPE cells
on the inner surface of the eyecup.

A schema of a 3D eyeball sphere model is shown
in Figure 2, where O and N are the center and the
north pole of the sphere, respectively. In Figure 2,
angle θ is formed by lines ON and OA where A is
an arbitrary point on the sphere. The south pole of
this sphere model corresponds to the optic nerve head;
the top dome of the sphere represents the cornea.
In this coordinate system, the length of the shortest
arc (i.e., the geodesic distance) from point A to south
pole S on the sphere is L = R × (π − θ ), where R
is the sphere radius. To clarify terminology, a line of
latitude for point A is “latitude A” and its correspond-
ing concentric circle after projection on the south pole
plane is “circle A”. The change in arc length during the
flatmount process is assumed to be negligible. There-
fore arc length L is identical to the radius of “circle A”
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Figure 1. Schema of 2D flatmount images from 3D eyeballs after cutting and unfolding. Ideal flatmount images of a sphere cut into (a) 100
and (b) 500 meridians unfolded from the north pole with the tip on the south pole fixed, respectively, are shown.

Figure 2. A schema of a 3D eyeball spherical model where O, N, and S are the center, north, and south poles of the sphere, respectively,
are shown. Point A is an arbitrary point on the sphere surface. The resulting lines ON and OA form the angle θ . Point C and D are on the line
OA and ON and equally distant from the origin O. South pole S of this spherical model corresponds to the optic nerve head; the top dome
of the sphere represents the cornea. The length of line OA is the sphere radius R, whereas the length of the arc from A to S on the sphere is
denoted as L = R × (π − θ ) in black. Additionally, the circle perimeter of the top dome is R × sin θ × 2π in blue; the length of the arc from
the north pole N to the south pole S is π × R in green.

on the 2D flatmount plane. With Figure 2, the length
of “latitude A” can be computed as R × sin θ × 2π .
The perimeter of “circle A” on the south pole plane
is L × 2π . If the sphere is evenly cut into four lobes
unfolded on the south pole plane, some gaps would
occur between the neighboring lobes. This is illustrated
in Figure 3(a). The sum of the lengths of all the gap
arcs (G) on “circle A” is G = L × 2π − R × sin θ ×
2π . From the previous discussion, L = R × (π − θ ).
Therefore the following equation governs the relation-
ship across the gap arc length (G) in the 2D south pole
plane, the geodesic distance from point A to the south
pole on the sphere, and the sphere radius:

G = 2π ×
(
L − R × sin

(
π − L

R

))
(1)

The arguments G and L in Equation (1) can be
measured from the flatmount images through image
processing. Thus sphere radiusR can be estimated with
such measures through least-squares curve fitting.34

Tissue Distortion Modeling

For production of flatmount images, the dissected
tissue lobes are flattened on the south pole plane, which
is the surface of a microscope slide. As the tissue lobes
originally cover the surface of a sphere, the flattening
procedure introduces tension and compression within
the tissue lobes and leads to some tissue distortion. The
zones a lobe covers in the northern latitudes tend to
need an additional, relaxing dissection cut for them to
lie flat, which introduces an additional gap. Given the
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Figure 3. Schema of flatmount tissues on the south pole plane. (a) A schema in which the sphere is evenly cut into four lobes and pushed
down to the south pole plane is shown. As an example of the concentric circles, the overlaid circle has radius L and perimeter L × 2π . The
yellow arcs represent the dome circle in Figure 2, with a length sum R× sin θ × 2π . Black arcs indicate gaps between the neighboring lobes,
and the resulting arc length sum is G = L × 2π − R × sin θ × 2π . (b) Solid arrows indicate the directions of the tissue distortions in the
flattened lobe. The yellow ring indicates the equatorial zone of the sphere. The gray crosshatched areas represent the cornea components
in the eyeball.

location-invariant tissue elasticity, the lobe tissue arc
lengths before and after dissections are approximately
constant, whereas the interlobe gaps vary substantially
according to the latitude,much like 2Dmap projections
in geographic representations of Earth on a globe.35

A collective set of forces, in aggregate, a “flattening
force,”push the lobes flat on the glass slide. The flatten-
ing force includes gravity, surface tension, tamping
forces of the dissecting tools, and force caused by the
downward pressure of the overlying coverslip. These
forces are resisted by a cohesive force in the tissues.
However, there is no resistive force at the cuts, allow-
ing the splayed eyecup to lie approximately flat.

Although the flattening procedure inevitably
changes the relative cell locations and the associ-
ated radiating meridians, tissue cohesion resists such
deformation, resulting in gaps between the lobes. The
gap between two lobes at any one point is small near
the south pole and larger everywhere else, depending
on the location of the point. The relationships among
the flattening effect, tissue cohesion, and the size of
the gap where dissection cuts were made are shown
in Figure 4, where the sphere latitude perimeter is
compared with the concentric circle perimeter. The
sphere latitude perimeter reflects the uncut tissue,
whereas the concentric circle perimeter indicates the
outcome of the flattening force that splays out the
lobes of the cut eyecup. The net effect of these two
factors determines how the spherical shell of the
RPE-choroid-sclera were deformed into several flat
lobes. The two perimeters increase with the increase
in L in the southern hemisphere; that is, L ≤ R ×

π /2. On the northern hemisphere (i.e., L > R × π /2),
the tissue width starts to decrease with the increase
in L. By contrast, the gap arc length continues to
increase. In higher-latitude zones of the northern
hemisphere, the gap arc length between lobes is much
larger than the tissue lobe widths. Ultimately, at the
tips of the lobes, tissue vanishes, and the gaps close to
become a continuous circle with radius R × π . The
cut lobes may have irregular shapes in any zone (or
latitude) because of the difficulty of the dissection, as
shown in Figure 5(a). However, the proposed model as
depicted by Equation (1) is fully applicable regardless
of latitude or hemisphere.

Tissues off the lobe middle axis are subject to some
distortion after the flattening process with the distor-
tion directions shown in Figure 3(b). Because of tissue
deformations, the measured length of the gaps between
the lobes in the flatmount image can be different
from that of the ideal case described by Equation (1).
Therefore an error term E is introduced to compensate
for this tissue distortion effect:

G − E = 2π ×
(
L − R × sin

(
π − L

R

))
(2)

Given the location-invariant tissue elasticity, the
extent of the tissue distortion on each concentric circle
is approximately proportional to the tissue mass on
that circle. Therefore the error term is designed to be
positively correlated with sin θ , and defined as E =
k × sin θ , where k is an unknown tissue distortion
coefficient that depends on how 3D eyeball tissues are
flattened to the 2D flatmount. With this error term,
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Figure 4. A plot illustrating the change between the sphere latitude perimeter and the concentric circle perimeter. Given R is the sphere
radius, the sphere latitude perimeter (red), the concentric circle perimeter (green), and their difference (i.e., the gap length in blue) as a
functionof concentric circle radius L are plotted. The sphere latitudeperimeter reflects tissue cohesion,whereas the concentric circle perime-
ter suggests the effect of the flattening force.

Figure 5. Flatmountmicroscopy image analysis andmeasurement. (a) A typical flatmountmicroscopy image is shown. The orange compo-
nent at the tip of each lobe corresponds to the cornea in the northern hemisphere. (b) A processed image is shown. The flatmount image is
transformed into the hue, saturation, value (HSV) color space, and Otsu’s threshold is applied to the saturation channel for differentiation of
the background regions in yellow and the foreground tissue regions. An example concentric circle is illustrated in red. The number of pixels
on the red circle over the background region in yellow is counted to measure the length of the gap between lobes G. A red point on the
optic nerve head is annotated at the origin of the concentric circles. The four blue points (i.e., lobe-marker points) are used to determine the
middle axis lengths of four lobes:M1,M2,M3, andM4.

the proposed model considering the tissue deformation
effect becomes:

G = 2π ×
(
L −

(
R − k

2π

)
× sin

(
π − L

R

))
(3)

Flatmount Image Analysis and Measurement

The parameters G, L, and k in Equation (3) must
be known before sphere radius R can be estimated.

The length of the gaps between lobes G and the radius
of the concentric circle on the 2D flatmount plane
L can be directly derived from the flatmount image
by counting the number of pixels with image process-
ing methods. The tissue distortion coefficient k can be
determined with Equation (3) using training samples
with known ground truth R.

As the corneal section of an eyeball does not contain
any visual neurons, it was cut before flatmount images
were produced. Moreover, it was easier to flatten the
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cut lobes onto the south pole plane (i.e., the micro-
scope slide) after the corneal section was removed
during the tissue preparation procedure. The result-
ing flatmount images were transformed into the hue,
saturation, value (HSV) color space, and Otsu’s thresh-
old was applied to the saturation channel for differ-
entiation of the background and foreground tissue
regions. The detected background region is illustrated
in Figure 5(b) with yellow. The red point is the origin of
the concentric circles. The four blue points are selected
as the distal points on the lobe middle axis and called
the lobe-marker points. They are used to determine
the middle axis lengths of four lobes: M1, M2, M3,
and M4. The middle axis length is the distance from
the origin to a lobe-marker point. In this implementa-
tion, Aperio ImageScope V12.3.336 was used to mark
these critical marker points manually on the flatmount
images.

Next, a set of concentric circles that are 1-pixel thick
were drawn centered on the origin. The value of this
circle radius was derived from an arithmetic array LArr
∈ [1, Mmin], where Mmin = min

n
{Mn}, n = 1, 2, 3, 4.

For each circle with the radius Li ∈ LArr, the number
of circle pixels in the background region was counted
to measure the length in-between lobe gaps Gi ∈ GArr.
The length of the arithmetic array was set to be 500 in
the implementations. The maximum of the lobe middle
axis length Mmax = max

n
{Mn}, n = 1, 2, 3, 4 was used

to estimate corneal angle θ after sphere radius R was
estimated.

Estimation of Tissue Distortion Coefficient,
Sphere Radius, and Corneal Angle

As an unknown tissue distortion coefficient k was
introduced in Equation (3) to correct the tissue distor-
tion error, it was necessary to estimate k before we
could calculate sphere radius R and corneal angle
θ . The error-correction term can be learned from a
number of samples with known ground truth R by
the least-squares algorithm in the model. As all tissues
were prepared similarly, the resulting tissue distor-
tion coefficients were similar. As one tissue distor-
tion coefficient k was estimated from each such sample
with a known R, the mean of the tissue distortion
coefficients was taken as the learned k for further R
estimation. To solve R from Equation (3) with the
least-squares method, the optimization process was
prevented from converging to a trivial solution (i.e., R
≈ 0) by setting the initial value for R much larger than
0, (e.g., 100). With the estimated R, the corneal angle θ

can be readily found as:

θ = π − L
R

(4)

where L = max
n

{Mn}, n = 1, 2, 3, 4. Addition-
ally, Equation (4) can be used to calculate the latitude
of any 2D flatmount region on the 3D eyeball sphere
surface. In this case, L is the radius of the correspond-
ing concentric circle measured with the 2D flatmount
image.

Results

Investigations of Estimation Error by Distinct
Latitude Zones

To systematically investigate estimation error
sources, the error effect of the data points from the low-
and high-latitude zones was qualitatively analyzed.
Evaluating the error effect from the low-latitude zones,
the tissue distortion coefficient k was estimated based
on Equation (3) with data points excluding those
from the low-latitude zones. In the evaluations, the
last 10%, 20%, and 30% of data points (i.e., 50, 100,
and 150 data points from the 500 data points) in close
proximity to the low-latitude zones were removed from
LArr and GArr, respectively. Similarly to test the error
effect from the high-latitude zones, the tissue distor-
tion coefficient k was estimated based on Equation
(3) with data points excluding partial data from the
high-latitude zones. In the evaluations, the first 10%,
20%, and 30% of data points (i.e., 50, 100, and 150
data points from the 500 data points) in close proxim-
ity to the high-latitude zones were removed from
LArr and GArr, respectively. The resulting estimates
of the tissue distortion coefficient k from 23 samples
based on the full dataset and partial data points
excluding some from the low- and high-latitude zones
are shown in Table 1 and Figure 6(a-b), respectively.
Additionally, partial data points were removed from the
low- and high-latitude zones, and the resulting devia-
tions in the estimated tissue distortion coefficient k
from the reference estimate with the full data point set
are shown in Figure 6(c-d). The fitting curves associ-
ated with the tissue distortion coefficients estimated
with distinct data point sets excluding some from the
low- and high-latitude zone in one typical sample are
shown in Figure 6(e–f).

The estimate of tissue distortion coefficient k
decreased as more data points from the low-latitude
zones were removed as shown in Figure 6(a). Addition-
ally, the estimated k shown in Figure 6(b) remained
at about the same value as more data points were
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Table 1. Estimates of the Tissue Distortion Coefficient k With Full Data Points and Partial Data Points Excluding
Some From the Low- and High-Latitude Zones

Data Averaged k/2π (mm)

All data points 0.1355
90% of data points (excluding 10% from the low-latitude zones) 0.1176
80% of data points (excluding 20% from the low-latitude zones) 0.1046
70% of data points (excluding 30% from the low-latitude zones) 0.0915
90% of data points (excluding 10% from the high-latitude zones) 0.1357
80% of data points (excluding 20% from the high-latitude zones) 0.1373
70% of data points (excluding 30% from the high-latitude zones) 0.1406

removed from the high-latitude zones. The difference
between the tissue distortion coefficient k estimated
with the full and distinct partial data point sets was
further computed. The relative difference by percent-
age for each sample is plotted in Figure 6(c) and
(d) in which partial data were removed from low-
and high-latitude zones, respectively. It is notice-
able that the tissue distortion coefficient dropped
significantly when more data points were removed
from the low-latitude zones for most samples shown
in Figure 6(c), whereas the tissue distortion coefficient
did not change significantly (<5%) when more data
points were removed from the high-latitude zones for
the vast majority of the samples shown in Figure 6(d).
Furthermore, the same patterns were observed with
the curve fitting results shown in Figure 6(e) and (f) .
In Figure 6(e), the interlobe gap-fitting curves associ-
ated with distinct tissue distortion coefficients deviate
by a larger decrease from the theoretic tissue inter-
lobe gaps from Equation (1) as more data points were
removed from the low-latitude zones. In contrast, all
interlobe gap-fitting curves associated with distinct
tissue distortion coefficients were close to each other
when partial data points were removed from the high-
latitude zones. The difference in the error compensa-
tion term k/2π estimated between all and partial data
points for each sample was computed. The resulting
variances of the error compensation term difference
associated with different partial datasets are presented
in Table 2. The variances with partial data excluded
from the low-latitude zones were consistently larger
than those estimated with partial data excluded from
the high-latitude zones by at least three orders of
magnitude.

All these results suggest that the data points from
the low-latitude zones contributed more to the gap
error than those from the high-latitude zones in
the southern hemisphere. These experimental results
also corroborated our hypothesis that the local inter-
lobe tissue gap error E due to tissue distortion

in Equation (2) increases when the latitude decreases,
suggesting the equatorial zones have larger gap errors
than the polar zones. Based on this conclusion that the
low-latitude zones have a larger impact on gap error
than the high-latitude zones, data points from the low-
latitude zones have a more influential impact on the
gap-radius fitting results than the same number of data
points from the high-latitude zones. Additionally, we
can conclude that the interlobe gap error is more sensi-
tive to themanual artifacts in low-latitude zones than in
high-latitude zones during the tissue flatmount prepa-
ration procedure.

Estimation of 3D Eyeball Sphere Radius R
and Corneal Angle θ

The 3-fold, 5-fold, and leave-one-out (LOO) cross-
validation (CV) strategies were used to evaluate the
performance of themodel described in Equation (3) for
the estimation of the eyeball radius. The CV process
divided the dataset into training and testing samples
with different strategies. The training samples were
used to estimate the tissue distortion coefficient k
in Equation (3). The mean of the estimated tissue
distortion coefficients was computed for estimating
the eyeball radius of the testing samples. Addition-
ally, the estimates from the non-error-correction model
described in Equation (1) were used as results from a
control group.

The 3-fold CV randomly partitioned the 23 samples
into 3 portions with 8, 8, and 7 samples, respectively.
The 5-fold CV randomly partitioned the dataset into
5 portions with 5, 5, 5, 4, and 4 samples, respec-
tively. With 3-fold and 5-fold CV experiments, the
tissue distortion coefficient was learned from all but
1 portion, and the learned tissue distortion coeffi-
cient was used to estimate the eyeball sphere radius
with Equation (3). The 3-fold and 5-fold CVs were
implemented 20 times with different random genera-
tors, respectively. The LOO-CV split the 23 samples
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Figure 6. Estimates of the tissue distortion coefficient k based on full and partial data points. The estimates of tissue distortion coefficient
k are plotted from 23 samples based on the full dataset and partial data points excluding 10%, 20%, and 30% of data points from (a) the
low-latitude zones and (b) the high-latitude zones. Differences in tissue distortion coefficient estimate k between the full data point set and
the partial dataset with partial data point removal from the (c) low-latitude and (d) high-latitude zones. A typical tissue flatmount image
is shown with its fitting curves associated with tissue distortion coefficient k estimated with the full dataset and partial data points not
including some from the (e) low-latitude and (f ) high-latitude zones. These fitting curves are associated with tissue distortion coefficient k
estimated with distinct data point sets: (blue solid) theoretic tissue interlobe gaps from Equation (1) with the ground truth radius; (red solid)
full dataset; (green dashed) partial data points with 10% of data points excluded; (blue dash-dotted) partial data points with 20% of data
points excluded; (purple dotted) partial data points with 30% of data points excluded.
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Table 2. The Variance of Difference in the Error Compensation Term k/2π Estimated Between All and Partial Data
Points With Some Data Points Removed From the Low- and High-Latitude Zones

Removed Data Point Percentage Data Removed From Low-Latitude Data Removed From High-Latitude

10% 1.94E-04 7.78E-08
20% 7.29E-04 5.49E-07
30% 1.46E-03 5.81E-06

Table 3. Standard Deviation of the Estimated Eyeball
Radius of the 23 Samples With the 3-Fold and 5-Fold CV

Sample Index 3-Fold CV 5-Fold CV

1 1.43E-02 1.02E-02
2 1.77E-02 1.34E-02
3 1.24E-02 9.71E-03
4 1.61E-02 8.50E-03
5 1.60E-02 9.80E-03
6 1.11E-02 6.98E-03
7 1.27E-02 8.30E-03
8 1.34E-02 9.25E-03
9 1.00E-02 7.22E-03
10 9.25E-03 6.44E-03
11 1.72E-02 1.26E-02
12 1.29E-02 9.12E-03
13 8.47E-03 9.31E-03
14 1.56E-02 9.64E-03
15 8.89E-03 9.15E-03
16 1.60E-02 1.01E-02
17 1.20E-02 8.47E-03
18 1.56E-02 9.17E-03
19 1.33E-02 6.19E-03
20 1.10E-02 8.77E-03
21 1.63E-02 1.05E-02
22 1.49E-02 8.41E-03
23 1.16E-02 7.11E-03
Minimum 8.47E-03 6.19E-03
Maximum 1.77E-02 1.34E-02
Median 1.33E-02 9.15E-03
Mean 1.33E-02 9.06E-03

23 times. Each time, one sample was left out as the
testing sample, and the remaining 22 samples were used
to learn the tissue distortion coefficient. After the CVs
were repeated 20 times, there were 20 estimated eyeball
sphere radius values for each samplewith the 3-fold and
5-fold CV experiments, respectively. Some descriptors,
such as the minimum, maximum, median, and mean,
of the sample-wise radius estimate standard deviation
with 3-fold and 5-fold CV experiments are presented
in Table 3. Results in Table 3 show that the sample-
wise radius estimate standard deviation from the 3-fold

and 5-fold CV are much smaller than the individ-
ual eyeball radius that ranged from 1 to 2, suggest-
ing 20 estimates for each sample were closely scattered
around the mean. Therefore it validated the use of the
average estimate to represent the 20 estimates of each
sample in the 3-fold and 5-fold CV experiments. The
estimated eyeball radius is shown with the CVmethods
in Figure 7. The difference in the radius estimates
from the different CV methods was negligible. There-
fore the LOO-CV estimates were used to represent the
eyeball radius. In addition to the three CVmethods, the
tissue distortion coefficient with all samples, that is, all-
sample strategy, was learned. The fact that estimates
from all three CV strategies were similar to those from
the all-sample strategy demonstrates the strong robust-
ness of the proposed model described in Equation (3).

The eyeball radius ground truth was plotted and
compared with the estimates with the tissue distor-
tion coefficient from the LOO-CV strategy, shown
in Figure 8. With the relative radius difference percent-
age, the 23 samples were divided into 3 estimation
accuracy classes in Table 4: (1) less than or equal to 5%,
(2) larger than 5% but less than or equal to 10%, and
(3) larger than 10%. Of these 23 samples, 14 samples
(i.e., 60.87%) were in the first class, with less than 5%
error. The second class (greater than 5% but less than
10% error) had 7 samples (30.43%). Only 2 samples had
more than 10% error (i.e., 15.79% and 17.84%, respec-
tively). The average radius difference and the relative
radius difference percentage were 0.03 mm and 5.27%,
respectively. Two tissue flatmount microscopy image
examples from each class are shown in Figure 9.

In Figure 8, the radius estimates from the error-
correction model described by Equation (3) and the
ideal model described in Equation (1) are compared.
The radius difference and the relative radius difference
percentage between the ground truth and the estimates
of the 23 samples are shown in Table 5. The resulting
average radius difference and relative radius difference
percentage were 0.22 mm and 14.05%, respectively.
The average radius difference from the error-correction
free model was one order of magnitude higher than
that from the proposed model considering tissue defor-
mation described in Equation (3). Additionally, the
relative difference percentage from the error-correction
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Figure 7. Estimates of eyeball radiuswith distinct tissue distortion coefficient strategies. The eyeball radius estimates fromdistinct learning
methods are shown for the tissue distortion coefficient and compared with the eyeball ground truth: three-fold CV, five-fold CV, LOO-CV,
and the all-sample strategy (i.e., the tissue distortion coefficient learned from 23 testing samples applied to the same 23 testing samples).

Figure 8. Radius comparison with the ground truth, the radius estimated with the tissue distortion coefficient using the LOO-CV strategy,
and the estimate from the model without the tissue deformation correction term.

free model was nearly three times as large as that
from the error-correction model. These results suggest
the salient effectiveness of the error-correction model
described in Equation (3).

Finally, corneal angle θ was calculated
with Equation (4) after eyeball sphere radius R was
estimated. The estimated corneal angle θ can help
characterize tissue surface coverage on the 3D eyeball
sphere, and this measurement is helpful in analyzing
microphthalmia, profound myopia or hyperopia, and
many other eye diseases. The estimated radius R and
corneal angle θ from 23 samples are shown in Table 6.
Additionally, the estimates using the LOO-CV
strategy for learning the tissue deformation coeffi-
cient are shown in Supplementary Figure S1.

Software Interface Development

This modeling and estimation method was imple-
mented in Python. Users provide annotations on the
critical marker points, such as the concentric circle
origin, lobe-marker points in Figure 5(b), for each
flatmount image using Aperio ImageScope,36 save the
annotation file in the image folder and invoke the
software to process all images in a batch mode. To
further promote software dissemination and usage, a
graphic user interface (GUI) is provided in MATLAB
(MathWorks Inc., Natick, MA). The MATLAB GUI
integrates the manual labeling process with the compu-
tational estimation process and makes it easier to use
the software. The user interfaces for estimation of the
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Table 4. The Difference and the Relative Difference Percentage With the Eyeball Radius Ground Truth and
Estimates by Our Model Described in Equation (3)

Sample Index Radius Difference (mm)
Relative Radius

Difference Percentage (%)
Estimation

Accuracy Class

3 0.01 0.57 Class #1: [0%, 5%] 14 samples
18 0.01 0.83
22 –0.01 0.89
5 –0.02 1.12
12 0.02 1.55
8 0.03 1.67
15 –0.03 1.83
13 –0.03 2.06
20 –0.04 2.38
2 –0.04 2.52
17 0.04 2.61
19 –0.05 3.08
14 0.05 3.23
21 –0.08 4.90
11 –0.09 6.17 Class #2: (5%, 10%] 7 samples
1 –0.13 7.55
16 –0.13 8.14
4 0.15 8.85
9 0.14 9.14
7 0.14 9.24
10 0.14 9.28
6 0.25 15.79 Class #3: (10%, 20%] 2 samples
23 0.29 17.84
Mean 0.03 5.27

LOO-CV method is used to learn the tissue distortion coefficient. By the estimate relative difference percentage, the 23
samples are divided into three estimation accuracy classes based on the relative difference percentage.

tissue distortion coefficient and the eyeball size are
shown in Supplementary Figure S2. The interface on
the top was developed to estimate the tissue distor-
tion coefficient k using sample flatmount images with
known size. With the “Load” button, users can load
an Excel file (Microsoft Corp., Redmond, WA) with
the following information: image name, image path,
ground truth eyeball size, and unit conversion ratio
(i.e., microns per pixel). Within this interface, users can
then mark the concentric circle origin with the “Set”
button and lobe-marker points with the “New” button
for each image. After all images are marked, the inter-
face can be used to estimate the tissue distortion coeffi-
cient for each image and export results to an Excel
file with the “Export” button. The graphic interface
at the bottom is used to estimate the eyeball diame-
ter for each flatmount image with the learned tissue
distortion coefficients. It loads the learned tissue distor-
tion coefficients in the previous step and computes
the average tissue distortion coefficient. Additionally,

it loads an Excel file that includes information about
the image names, image path, and unit conversion ratio
(i.e., microns per pixel). Users use this interface tomark
the concentric circle origin and lobe-marker points and
export another Excel file containing estimated diame-
ters for eyeballs.

Discussion

RPE cell morphology, mass orientation, and spatial
organization play a vital role in better character-
izing and understanding RPE histopathology and
physiology.21,37–39 Despite extensive investigations on
this topic, current quantitative RPE cell analyses
with histology slides lack accurate eyeball geographic
location information. Analysis of RPE cells without
reference to their geographic locations is a bottleneck
in understanding RPE cell organization. To address
this challenge, a novel modeling method for recovering
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Figure9. Representative tissueflatmountmicroscopy imageexamples fromthree classes are illustratedwith the relative error: (left column)
≤5%, (middle) 5%–10%, and (right) >10%. Two flatmount microscopy image samples from each class are shown. The sample number and
the relative error are above each sample image.

individual 3D eyeball size from a 2D tissue flatmount
microscopy image was proposed in this study. Such a
technical method enables RPE features extracted from
a 2D flatmount image to be mapped to a recovered 3D
eyeball structure, allowing better insights according to
their 3D locations.

The proposed method is novel and addresses
research problems in several aspects. First, the method
enables researchers to estimate (1) the eyeball size with
a sphericalmodel, and (2) the field of view of the retina-
RPE in the form of an angle. Thus we can quantita-
tively investigate if there is a size or shape mismatch
between the front and the back of the eye, which
provides inferences about eye development, growth,
maturation, and emmetropization. To the best of our
knowledge, this is the first computational method
developed to estimate this field of view angle in the
mouse or any other species. This method does not
require financial investment or operational skills in
professional measurement instruments, including laser
micrometer instrumentation.Additionally, thismethod
enables eyeball structural information to be recovered
from flatmount images in which no previous eyeball
measurements were recorded. For eyeball samples with
previous measurements with instruments, this method
can serve as a computational tool for a check. As
the eyeball measurements with specific instruments
must be performed in a timely manner following a
regimented protocol, such measuring processes are not

forgiving of operator error. Because of the computa-
tional nature of this model-based method, it can be
invoked repeatedly at any time during or after the
course of the experiments.

The estimation model described in Equation (3)
introduced the error-correction term to compensate
for the tissue deformation during the eyeball flatten-
ing process. With qualitative analysis and careful
observations, the distortion error term was assumed
to be proportional to sin θ . The quantitative analy-
ses supported the validity of this assumption and
indirectly corroborated the tissue distortion analysis.
A substantial difference was noted across samples
by the variation of the tissue distortion coeffi-
cients k estimated by distinct data points with some
removed from the low-latitude zones, which is shown
in Figure 6(c). The difference between the interlobe
gaps measured from the flatmount image and the
associated fitting curve for this gap indicated the varia-
tion of the tissue distortion coefficient k estimated with
distinct partial data points. Curve fitting plots associ-
ated with samples 4, 1, and 16, representing relatively
large, medium, and small differences betweenmeasured
and fitting interlobe gap curves, are shown in Figure 10,
respectively. The variations in the tissue distortion
coefficient estimated with distinct partial data points
were found to be large, medium, and small, respectively,
and are shown in Figure 6(a). However, this correlation
did not change the underlying trend that exclusion of
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Table 5. The Difference Between the Eyeball Radius Ground Truth and Estimates by Our Model Described
in Equation (1) Without Tissue Deformation Correction Term, and the Resulting Relative Difference Percentage

Sample No. Radius Difference (mm) Relative Radius Difference Percentage (%)

1 0.11 6.58
16 0.13 8.34
19 0.15 9.46
11 0.14 9.63
13 0.15 9.81
21 0.16 10.17
20 0.17 10.64
15 0.17 11.10
22 0.17 11.36
2 0.20 11.69
5 0.20 11.92
3 0.21 12.09
18 0.20 12.76
12 0.19 12.87
8 0.21 13.55
17 0.21 13.83
14 0.26 16.21
10 0.27 18.40
9 0.30 19.13
7 0.30 19.99
4 0.35 20.37
6 0.39 24.97
23 0.46 28.27
Mean 0.22 14.05

data points from low-latitude zones led to a decrease in
the estimated tissue deformation coefficient. In refer-
ence to the ground truth eyeball radius measured with
noncontact LED micrometry at submicron accuracy
and precision, the proposed method, considering the
effects of tissue deformation, achieved 0.03 mm and
5.27% for the average radius difference and the average
relative radius difference percentage, respectively.

Note that k/2π ranged from 0.05 mm to approx-
imately 0.25 mm, with an average of approximately
0.13 mm. As shown in Table 6, the ground truth
value for the eyeball radius ranged from 1.47 to 1.71
mm, with an average of approximately 1.58 mm. By
numeric comparisons, the numeric value of k/2π was
less than R by an order of magnitude. As the average
k/2π was used to correct the estimation error in R
in Equation (3), the impact of the sample variation in
k on the radius R estimation was limited. In the experi-
ments, the least-squares algorithmwas used to estimate
k and R simultaneously. However, this simultaneous
approach resulted in inexact estimates of k and R.
Therefore we conclude that it is essential to estimate k
before R.

To assure the effectiveness of the proposed method,
we suggest the following sample cutting guidelines that
aim to make the resulting flatmount images suitable
for the proposed method. (1) The eyeball should be
cut radially along the longitudes all the way down to
the optic nerve center as much as possible. (2) Each
cut should be stopped equally close to the optic nerve
center. (3) The resulting lobes should have equal lobe
widths. (4) The recommended cutting lobe number is
either 4 or 8. In general, a larger lobe number results
in better sample flattening, but at the cost of a larger
likelihood of tissue loss. Therefore we recommend 4
or 8 lobes as an appropriate tradeoff. For the four-
lobe strategy in particular, a small incision cut at the
middle of each lobe’s distal top is recommended to
reduce tension. (5) Poor-quality flatmounts cannot
be salvaged with sophisticated analyses. Technicians
must practice the flatmounting technique before
proceeding. The scissor cuts must be straight and on
axis, starting close to the center of the cornea. The
RPE surface cannot be scratched. The tissues cannot
be overfixed, which results in heavy wrinkling and
puckering. Minimized tissue loss or deformation
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Table 6. Eyeball Sphere Radius and Corneal Angle θ Estimated From the Error-Correction Model by Equation (3)
Using 3-Fold, 5-Fold, LOO-CV, and the Error-Correction Free Model by Equation (1) are Presented

Sample
Index

Ground Truth
Radius

3-Fold CV
Radius

5-Fold CV
Radius

LOO CV
Radius

Correction Free
Model Radius

3-Fold CV
Theta

5-Fold CV
Theta

LOO CV
Theta

Correction Free
Model Theta

1 1.68 1.81 1.81 1.81 1.57 91.35 91.32 91.27 77.85
2 1.68 1.72 1.71 1.72 1.48 85.77 85.66 85.90 70.75
3 1.71 1.70 1.69 1.70 1.50 84.97 84.83 84.99 72.54
4 1.71 1.56 1.56 1.56 1.36 81.46 81.80 81.66 67.43
5 1.64 1.66 1.66 1.66 1.44 86.21 86.30 86.32 72.47
6 1.56 1.31 1.31 1.31 1.17 72.64 72.65 72.61 59.48
7 1.52 1.38 1.38 1.38 1.22 76.50 76.29 76.51 62.62
8 1.55 1.52 1.52 1.52 1.34 80.21 80.18 80.21 66.50
9 1.55 1.41 1.41 1.41 1.25 65.54 65.46 65.48 51.33
10 1.49 1.35 1.35 1.35 1.22 64.04 64.06 64.06 51.10
11 1.47 1.55 1.56 1.56 1.33 87.57 87.84 87.89 71.79
12 1.52 1.49 1.49 1.49 1.32 79.32 79.23 79.22 66.12
13 1.53 1.57 1.56 1.56 1.38 82.77 82.58 82.55 69.72
14 1.58 1.53 1.53 1.53 1.32 86.61 86.47 86.38 71.89
15 1.58 1.60 1.61 1.60 1.40 83.62 83.81 83.61 69.59
16 1.57 1.70 1.70 1.70 1.44 83.91 83.94 83.89 66.62
17 1.55 1.51 1.51 1.50 1.33 78.22 78.27 78.15 64.89
18 1.59 1.58 1.57 1.57 1.38 81.74 81.62 81.54 68.08
19 1.62 1.67 1.67 1.67 1.46 88.08 88.09 88.12 75.39
20 1.58 1.61 1.62 1.61 1.41 85.04 85.22 85.01 71.17
21 1.57 1.64 1.64 1.64 1.41 89.18 89.13 89.21 73.98
22 1.54 1.55 1.55 1.55 1.36 83.50 83.63 83.66 70.35
23 1.62 1.33 1.33 1.33 1.16 65.01 65.04 65.17 48.47

The units for radius and corneal angle are millimeter and degree, respectively.

is suggested during the dissection and cutting
processes.

The number of lobes is a factor that affects the
quantification accuracy. On one hand, a large number
of lobes can help reduce the tissue distortion by reduc-
ing tissue tension or compression. However, a large
lobe number significantly increases the tissue cutting
difficulty. As tissues are soft, cutting an eyeball into a
large number of lobes presents a challenge to surgi-
cal skills. Additionally, a large number of lobes in
flatmount practice tend to result in uneven tissue
cutting, significant tissue deformation, and even tissue
loss problems. These violations of the suggested cutting
guidelines, in turn, would introduce greater noise in
the image measurements and lead to increased error.
On the other hand, the number of cuts cannot be too
small. Too few lobes result in wide lobes with severe
tissue tension. During the flattening procedure, strong
tension within a lobe may lead to tissue tears or severe
tissue distortion, both contributing to a larger estima-
tion error. Therefore either 4 or 8 lobes are recom-
mended.

With the estimated eyeball radius, regions of inter-
est from the 2D flatmount image can be mapped to

the 3D eyeball surface. Therefore this method can
promote development of RPE cell in situ morphol-
ogy analysis without loss of 3D eyeball structures and
facilitate histopathology image analysis for enhanced
studies of RPE cell morphometry for eye-related
diseases.6,21 Notably, a large number of in situ nonin-
vasive fundus imaging technologies have emerged
recently, including adaptive optics optical coher-
ence tomography,40,41 adaptive optics scanning laser
ophthalmoscopy,42–44 and fluorescence adaptive optics
scanning light ophthalmoscopy,45,46 among others.
With advances in these imaging technologies, RPE
morphometry analyses become more important in eye
disease research, diagnosis, and treatment. Themethod
proposed in this study initiates the effort of construct-
ing a 3D digital eyeball with 2D RPE tissue flatmount
microscopy images and makes it possible to leverage
image restoration approaches24–31 for such efforts. As
the RPE layer is naturally a 3D anatomy structure in
a 3D space, it is clinically and biologically meaning-
ful to derive more key information about RPE cell
morphometry, orientation, and spatial organization
on the 3D eyeball surface. Additionally, the proposed
method can be used to facilitate quantitative biometric
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Figure 10. Representative samples with relatively large (top), medium (middle), and small (bottom) differences between measured and
fitting interlobe gap curves. Flatmount tissue images of samples 4, 1, and 16 are on the left. Their interlobe gap curve fitting plots are on
the right. The blue curve represents the measured gaps derived from flatmount imaging data; the red curve is the fitting curve derived
from Equation (3).

characterization of mice eyeball size that is related to
abnormalities in refractive or ocular development.32
Such traits as eyeball volume recovered by the proposed
method can also help researchers and clinicians better
understand eye growth patterns under certain disease
conditions,47–50 the mechanisms vision systems follow
to maintain visual clarity,51,52 and key genes affecting
visual pathways.53–58

Although the proposed method enables estimation
of a 3D eyeball structure from the corresponding 2D
flatmount image, it can be further improved in the
following ways in the future. (1) The dissection process
might be improved by etching or partially eroding
the sclera to relax the tissue to reduce wrinkling or
bulging. (2) To accommodate the tissue deformation
effect during the flatmount procedure, we assume such
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deformation is related to geographic changes in fiber
thickness, orientation, and biomechanical properties
of the sclera.59 This can be enhanced by development
of a better model for characterizing individual tissue
deformation specific to a customized tissue flatmount
preparation process. (3) The process for identifying
the concentric circle center and lobe-marker points
can be automated to enable high-throughput image
analysis of a large number of flatmount microscopy
images. (4) As the anteroposterior axis is slightly differ-
ent (1%–2% longer) from the sagittal or horizontal
axes in some 3D eyeballs,60 the 3D geometric sphere
for modeling a 3D eyeball may be further improved
with a 3D ellipsoid. However, it would be challeng-
ing in such methodology development, as we need
to simultaneously estimate more parameters in the
3D ellipsoid model, such as the lengths of the three
major axes, the polar angle (i.e., the angle respect
to the polar axis), and the azimuthal angle (i.e., the
angle of rotation from the initial meridian plane).
Because of the substantial increase in the number of
model parameters for estimation, the resulting method
would become much more computationally expen-
sive. Furthermore, given the limited measuring infor-
mation derived from flatmount images, this change
to the ellipsoid model would challenge the estima-
tion robustness. Finally, it is operationally challeng-
ing to satisfy the ellipsoid model requirement during
the sample preparation procedure. Making the 3D
ellipsoid computational method as simple as possi-
ble, it is ideal to place the eyeball in a perfectly
upright position. However, this is challenging to
achieve in practice as eyeballs are made of soft
tissues.

Conclusions

A new method was developed for estimating the
3D eyeball radius and the corneal angle from the 2D
flatmount microscopy image, allowing for morphology,
orientation, and spatial organization variation analysis
of RPE cells in reference to their locations on the origi-
nal 3D eyeball structure. To compensate for estima-
tion error as a result of tissue deformation during
the tissue flatmount production process, we proposed
an error-correction term in the model to effectively
mitigate the tissue distortion impact. Compared with
the ground truth, the proposedmethod considering the
tissue deformation effect achieved 0.03 mm and 5.27%
for the average radius difference and the average relative
radius difference percentage, respectively. Based on the
estimated eyeball radius, it is easy to map tissue regions

in a flatmount image to the 3D eyeball surface. This
work presents promising potential to promote RPE
cell analysis with histopathology tissues for eye disease
research, diagnosis, and treatment. To the best of our
knowledge, this is the first of such work pioneering
the method for reconstructing the 3D eyeball structure
from 2D flatmount microscopic images.
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