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Abstract

CommunityRx (CRx), an information technology intervention, provides patients with a per-

sonalized list of healthful community resources (HealtheRx). In repeated clinical studies,

nearly half of those who received clinical “doses” of the HealtheRx shared their information

with others (“social doses”). Clinical trial design cannot fully capture the impact of informa-

tion diffusion, which can act as a force multiplier for the intervention. Furthermore, experi-

mentation is needed to understand how intervention delivery can optimize social spread

under varying circumstances. To study information diffusion from CRx under varying condi-

tions, we built an agent-based model (ABM). This study describes the model building pro-

cess and illustrates how an ABM provides insight about information diffusion through in

silico experimentation. To build the ABM, we constructed a synthetic population (“agents”)

using publicly-available data sources. Using clinical trial data, we developed empirically-

informed processes simulating agent activities, resource knowledge evolution and informa-

tion sharing. Using RepastHPC and chiSIM software, we replicated the intervention in silico,

simulated information diffusion processes, and generated emergent information diffusion

networks. The CRx ABM was calibrated using empirical data to replicate the CRx interven-

tion in silico. We used the ABM to quantify information spread via social versus clinical dos-

ing then conducted information diffusion experiments, comparing the social dosing effect of

the intervention when delivered by physicians, nurses or clinical clerks. The synthetic
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population (N = 802,191) exhibited diverse behavioral characteristics, including activity and

knowledge evolution patterns. In silico delivery of the intervention was replicated with high

fidelity. Large-scale information diffusion networks emerged among agents exchanging

resource information. Varying the propensity for information exchange resulted in networks

with different topological characteristics. Community resource information spread via social

dosing was nearly 4 fold that from clinical dosing alone and did not vary by delivery mode.

This study, using CRx as an example, demonstrates the process of building and experi-

menting with an ABM to study information diffusion from, and the population-level impact of,

a clinical information-based intervention. While the focus of the CRx ABM is to recreate the

CRx intervention in silico, the general process of model building, and computational experi-

mentation presented is generalizable to other large-scale ABMs of information diffusion.

Author summary

CommunityRx (CRx) is a clinic-based intervention that provides patients with informa-

tion about community resources for health-maintenance and promotion. Prior work

found that nearly half of people exposed to CRx share their resource information with

others. This study describes construction of and experimentation with an agent-based

model (ABM) to examine the potential impact of CRx and other health information inter-

ventions on the broader community via social spread or “dosing” from people directly

exposed to the intervention. We show how we integrated clinical trial, demographic and

epidemiologic data and expert informant insights to develop and assign behaviors to a

synthetic study population (agents). Using CRx clinical trial data, we then delivered the

intervention to these agents and simulated information spread. We describe in silico
experimentation to illustrate insights about information spread generated by the ABM

that complement clinical trial findings. This study shows how data from individual-level

clinical and population studies can be used to create a computational laboratory to assess

the broader impact of a health information intervention. In addition to inspiring integra-

tion of individual-level and systems science approaches to the study of health information

interventions, this study enables peer review to inform model iteration and

experimentation.

Introduction

Over the last five years, with the shift to value-based care, community resource referral tech-

nologies have been adopted by many U.S. health systems.[1–3] These platforms, which aim to

connect patients to community-based resources for health-related socioeconomic needs (e.g.

food and housing support, transportation) serve to advance health systems’ population health

care delivery models and their efforts to mitigate inequities due to social and structural deter-

minants of health and disease.[4,5] Mainstream data sources about healthful community

resources are commonly outdated, idiosyncratic, analog, lack eligibility information and must

be accessed outside the usual clinical informatics workflow.[3,6] As a result, clinician and

patient efforts to make use of these resources to promote health or manage with illness are

often frustrating and inefficient.[3] Sustainability of these interventions in healthcare practice

depends not only on their seamless integration with usual clinical workflows, but also on their

demonstrated impact on individual and population health-related outcomes and costs.
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parameter space characterization experiments are

publicly available at https://github.com/jozik/

community-rx).
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In contrast to medical drug and device interventions, information interventions delivered

by a clinician to a patient can quickly spread to other community members through social net-

works. Evidence suggests that social networks can potentiate the impact or credibility of

health-related information [7,8] and that patients generally view information obtained from a

clinician as highly trustworthy.[9] Therefore, information spread through social networks

from an intervention delivered in the clinical setting has the intriguing potential to meaning-

fully impact people in the community beyond those who directly received the intervention.

Alternatively, negative information or misinformation spread could be harmful to individual

and public health efforts. However, traditional clinical trial designs, which typically assess the

impact of an intervention on the individual patient, do not capture the dynamic, multi-level

impact of information-based health interventions.

CommunityRx is a scalable, evidence-based information technology intervention designed

together with a broad diversity of stakeholders, including residents, on Chicago’s South Side to

promote population health by connecting patients to health-promoting community resources

(“resources”).[10,11] CommunityRx was created, in part, due to systematic deficiencies in

mainstream data sources which under-represent health-promoting businesses and organiza-

tions in higher poverty communities.[6] These deficiencies impede the efforts of healthcare

professionals to meaningfully and equitably execute on clinical best practice guidelines that

indicate a wide range of community resources for various health conditions.

The primary mode by which CommunityRx disseminates resource information is via the

“HealtheRx,” a printed list of local resources personalized to the patient’s age, gender, home

address, health conditions and preferred language (Fig 1). A HealtheRx is auto-generated at

the point of medical care using software algorithms integrated with the electronic medical

record (EMR) to match individuals to an indicated set of community resources (Fig 2). With

the press of a digital button in the EMR by a clinician (e.g. physician, nurse or clerk), extant

data in the patient’s chart (e.g., age, gender, home address, preferred language, ICD-9/10

codes) are consumed into the CommunityRx algorithm to generate a HealtheRx.

Indicated resources for each condition and status are informed by best clinical practice

guidelines, expert opinion and community member input about self-care activities for more

than 30 common health conditions (e.g., diabetes, hypertension, obesity), social conditions

(e.g. food insecurity, housing instability, domestic violence) and statuses (e.g., newborn,

Fig 1. Sample HealtheRx generated for a patient with cancer.

https://doi.org/10.1371/journal.pcbi.1009471.g001
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adolescent, pregnant). Each HealtheRx includes resources to address an individual’s basic

needs (e.g. food, housing), physical and mental wellness (e.g. fitness, nutrition, yoga), disease

self-management (e.g. smoking cessation, weight loss) and caregiving (e.g. cancer support,

respite care, home hospice) needs. Clinicians deliver the HealtheRx to patients at discharge

from a medical visit, including emergency and hospital care. An independent quasi-experi-

mental study of CRx comparing people who received one or more HealtheRx to matched con-

trols found a significant decrease in hospitalization among Medicare beneficiaries and a

decrease in emergency department utilization among Medicaid beneficiaries.[10,12,13] Cost

savings over the short term were modest to neutral. Delivery of the intervention by a clerk is

less costly than delivery by a nurse or physician. Experimentation is needed to inform the low-

est cost delivery method while maintaining information spread to the broader population.

Inspired by the Kilbridge et al. prescription management process for drugs, community

resource prescribing requires several steps.[11,14] The community resource prescribing “deci-

sion-making” process is initiated during the clinical encounter, supported by the software

algorithms described above. The personalized prescription is auto-generated from extant data

in the patient’s EMR (e.g. age, gender, home address, preferred language, problem list) plus

any new data (e.g. a new diagnosis or social risk) entered during the visit. Once the HealtheRx

is generated and printed, it is “fulfilled.” Fulfillment begins with “evaluation” when a clinician

or clinical staff member reviews the HealtheRx with the patient and is “dispensed” when the

patient contacts or visits the community resource provider. The community resource is

“administered” when the patient uses, receives or consumes the recommended resources. Kil-

bridge’s drug e-prescribing model does not contemplate the possibility of sharing or diffiusion

(although prescription medications are sometimes shared).[15] However, in the CRx iteration

of the e-prescribing process model, we did anticipate that prescribed information could be

shared. We therefore designed our primary research to assess for sharing.

With initial funding from a Center for Medicare and Medicaid Innovation award (3/2013-

5/2015, “CRx-1”), CRx generated 253,479 HealtheRxs for more than 113,000 patients over a 30

month period.[11] The HealtheRxs were typically delivered by a physician, nurse or clinical

clerk, depending on local site preferences. All patients living in the target geography were

Fig 2. Visualization of how a HealtheRx is Generated Using Data from a Patient Electronic Medical Record and

the CommunityRx Software Algorithm.

https://doi.org/10.1371/journal.pcbi.1009471.g002
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eligible, including tens of thousands of people with cancer, cardiovascular disease, pulmonary

disease, obesity and other common chronic conditions. In a telephone survey of 458

HealtheRx recipients ages 18–93 years enrolled in CRx-1, 71% reported that they learned

about a new resource from the HealtheRx and 83% reported the HealtheRx was “very useful.”

In a subsequent real-world clinical trial (CRx-2), 411 patients ages 45–74 years were followed

for three months after receiving a HealtheRx. Key outcomes, including self-efficacy for finding

and knowledge about healthful community resources improved.[10,16] In addition, the CRx-1

and 2 studies yielded evidence of both intervention and information spread. Soon after the

intervention was deployed at the first community health center, a physician “hacked” the CRx

system in order to be able to use the intervention at a clinic site where he worked outside the

target geography, thereby causing unexpected, but desirable spread of the intervention to

other communities.[11] In CRx-1, 49% of participants reported sharing resource information

from their HealtheRx with at least one person;[11] this finding was replicated in CRx-2.[10]

Additionally, about half of nurses and physicians who participated in CRx-2 also shared

HealtheRx information with others.[17] The repeated finding that information from the clini-

cal intervention spread beyond the HealtheRx recipients to a more general population moti-

vated a systems science approach to evaluating the impact of CRx.

Systems science methods are increasingly being used to complement traditional epidemio-

logic and ecological studies,[18] although few clinical trials have incorporated a systems sci-

ence approach. Observational and experimental studies can occur in tandem with, and

inform, the building of computational models.[19–21] Agent-based modeling (ABM) is a sys-

tems science simulation methodology that captures emergent behavior among individuals

(“agents”) as a function of interactions between agents and their environment. ABM is particu-

larly useful for studying phenomena affected by second-order effects resulting from stochastic

and network interactions (e.g. the population-level effect of an individual-level intervention

where individuals interact with and affect each other’s behavior).[22] Additionally, ABM

enables linkage of individual choice behavior to emergent population-level outcomes (like

total clinic visits or other health maintenance activities). In contrast to other methods (e.g. dif-

ferential equations modeling) these micro-to-macro level dynamics make ABMs particularly

well suited to study an informational intervention. ABM can also serve as an efficient adjunct

for experimentation that is outside the limited scope of a clinical trial or too time-consuming

or otherwise costly to conduct in vivo.

ABM has been used to examine the spread of infectious disease[23–25], effects of environ-

mental exposures [26,27] and health-related interventions and policies.[28–36] Barbrook-

Johnson et al. used ABM to examine the effects of the TELL ME intervention, an information-

based intervention that deployed public health communication strategies to reduce the spread

of influenza.[36] The TELL ME ABM was designed to predict the effect of communication

strategies on influenza spread, but did not run simulations specifically to model information

flow and dynamics. A description of the validated TELL ME ABM was presented as a teaching

tool, to demonstrate how such models can be used to inform policy, even in the absence of

complete data. Best practice dictates that the first step in any systems modeling development is

to create the proper model design and then subject the design to evaluation including peer

review.[37] We have previously described in the systems science literature the technical design

details of the ABM used in this study as well as the associated model validation.[38,39]

Informed by and extending this work, the goals of this study are to: (1) describe the inter-

disciplinary method of model building and data sources used to develop an ABM to study an

information-based health intervention, and (2) describe an in silico experiment to illustrate

how an ABM can generate insights to complement a clinical trial of an information-based

intervention. First, using the development of the CRx ABM as a case study, we describe
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interdisciplinary model building methods that could generalize to other information-based

healthcare interventions. Next, to illustrate how ABM experimentation can complement find-

ings generated using traditional clinical trial methods, we describe an in silico experiment to

deepen our understanding of the information sharing findings from related clinical trials. To

our knowledge, this is the first study to use ABM to examine the population-level information

diffusion dynamics resulting from a clinical information intervention.

Methods

1.0 Rationale for building the CommunityRx ABM

The CRx clinical trials provide first order evidence of information spread from the people

exposed to the intervention (patients and clinicians) to others in their social networks. The

CRx ABM was designed to simulate and experimentally probe, in silico, the flow and spread of

this information at scale, across the larger population under varying conditions. Spread of

community resource information from patients to others in the community is a desirable

dynamic that could serve as a force multiplier for CRx and other information-based health

interventions. Although we saw no empirical evidence of negative information or misinforma-

tion spread in prior studies, understanding the flow of negative or misinformation is also of

interest in future instances of the model. Here, we describe the interdisciplinary model-build-

ing process and one intervention delivery experiment conducted in silico to inform future iter-

ations and implementation of the intervention.

2.0 Interdisciplinary model-building process

The interdisciplinary process for building the CRx ABM involved several steps, informed by

extant literature[21] and illustrated in Fig 3. Investigators, including physician scientists from

the University of Chicago’s Biological Sciences Division and Consortium for Advances Science

and Engineering, and Argonne National Laboratory’s Decision and Infrastructure Sciences

Divsion, met regularly over the course of several years to: (1) come to a shared understanding

about and vocabulary to enable interdisciplinary study of the CRx intervention, (2) identify

and integrate public use, clinical trial and other data sources with the ABM drawing on com-

plementary expertise (e.g. the systems scientists were experienced with time use data and the

others were experienced with public health and trial data), (3) fill data gaps by designing and

implementing new data collection strategies drawing on qualitative research expertise of both

groups and survey research skills of the biomedical scientists, (4) describe and validate the

model,[39] and (5) design and implement in silico experimentation (a focus of this paper).

In addition to observational data from publicly available demographic, economic and epi-

demiologic datasets[10,11,40,41] and primary data collection from clinical trials, the CRx

ABM also used data sourced from expert informants. Expert informants—referred to as sub-

ject matter experts in the systems science literature—are commonly used in agent-based

modeling to fill gaps in extant data.[42] Among the expert informants involved in developing

the CRx ABM were people who lived in, shared demographic characteristics with and had

decades of experience serving and providing medical care for people in the target geography.

Primary data collection, including two clinical trials (CRx-1 and CRx-2), occurred in parallel

with the CRx ABM building, with each approach informing the other (Fig 3).

3.0 Overview of the CRx Agent-Based Model

Here, we provide an overview of the CRx ABM with an emphasis on how the ABM was built,

using the Grimm et. al. Overview, Design concepts and Details (ODD) summary protocol.[43]
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Comprehensive description of the model design, calibration and validation, including all of

the components indicated for a full ODD, have been previously published.[38,39] Language

used verbatim from the Grimm et. al. summary ODD template is italicized and bold in the sec-

tions below and many section headers derive directly from the Grimm protocol. The model

and workflow code used to implement the parameter space characterization experiments are

publicly available at https://github.com/jozik/community-rx. A description of model processes

that occur in every timestep is provided in Appendix A in S1 Text. The CRx ABM was imple-

mented in C++ using the Repast for High-Performance Computing ABM toolkit and the Chi-

cago Social Interaction Model (chiSIM) framework.[44–47] The CRx studies were approved

by the University of Chicago Institutional Review Board.

3.1 CRx ABM Purpose and Questions

The overall purpose of the CRx ABM is to (a) demonstrate the flow and spread of resource

info from primary agents (those who received one or more clinical doses or HealtheRxs) to

others in the community and (b) conduct experiments on how delivery of the HealtheRx and

other variable conditions can impact the flow and spread of information to the community.

Specifically, we are addressing the following questions: (1) Can we recreate, in silico, delivery

of the CRx intervention, including generation of personalized HealtheRxs (“clinical dosing”)?

(2) Can we recreate the underlying dynamics of resource information diffusion (“social dos-

ing”) following in silico delivery of an intervention delivered to primary agents at the point of

clinical care? (3) How does variation in clinical parameters (e.g. who delivers the HealtheRx to

the primary agent) affect information diffusion to the broader population?

Fig 3. Interdisciplinary process and timeline of clinical and computational trial activities with data inputs and

outputs.

https://doi.org/10.1371/journal.pcbi.1009471.g003
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3.2 CommunityRx ABM Patterns

To establish that we have created a working computational laboratory for experimentation, the

CRx ABM building process involved a systematic examination of patterns at the individual

and system level that are salient to the purpose of the model. To consider our model realistic
enough for its purpose, we used the following criteria: (a) the demographic characteristics of

the synthetic population would reflect those of the actual population, (b) the synthetic popula-

tion would exhibit diverse behavioral characteristics, including agent activity and knowledge

evolution patterns, (c) in silico delivery of the intervention would be replicated with high fidel-

ity, (d) large-scale information diffusion networks would emerge among agents exchanging

resource information, (e) varying the propensity for information exchange would result in net-

works with different topological characteristics. Examination of these patterns is presented in

the Results section of this paper.

3.3 CommunityRx ABM Entities

In general, the main components of a population-based ABM include model entities and

behaviors. Entities include a synthetic population of agents who statistically correspond to the

population in the study area and an environment, which typically refers to a physical environ-

ment. Behaviors include agent behaviors and a set of interactions for each agent, such as

receiving or sharing information.[42] The CRx ABM includes the following entities–a syn-

thetic population of agents and a geographical environment that together are statistically rep-

resentative of the community under study (16 ZIP codes on Chicago’s South Side, a

predominantly African American/Black demographic where the CRx intervention was created

and studied). The state variables characterizing these entities are listed in Table A in S1 Text.

Using the publicly available Synthetic Populations and Ecosystems of the World (SPEW)

2016 dataset (http://stat.cmu.edu/~spew/resources/),[40] we built a synthetic population of

people (agents) ages 16 years and older (the HealtheRx for people younger than 16 was typi-

cally given to an accompanying adult). The individual characteristics of the synthetic popula-

tion and their distribution are presented in the Results section and Table B in S1 Text.

Population characteristics were static.

Building the environment involved imbuing the model with the physical locations

(“places”) that agents could occupy within the 16 ZIP code (106 mi2) CRx study. This region

comprises a little less than half of Chicago’s geography. The physical environment included:

(1) households, workplaces and schools (data for these locations were also obtained from the

SPEW dataset); (2) healthcare sites (clinics) where agents could receive a HealtheRx, and (3)

health-promoting community-based organizations and business (places) where agents could

go to use services (“resources” are specific places providing specific services [e.g., fitness,

weight management, smoking cessation]) prescribed on the HealtheRx.

Agents could also co-locate at these places and exchange information about resources with

other agents. The locations of healthcare sites and places where resources were administered

(N = 4,903) were obtained from a 9/16/2016 snapshot of the dynamic CRx resource inventory.

The CRx resource inventory was built using two primary data sources: (1) MAPSCorps

(http://mapscorps.org), a dataset created by an organization that trains local youth who con-

duct an annual door to door survey of the name and location of every place providing services

in the target region[6,48] and (2) community health workers who conducted regular phone-

based surveys with places to capture the types of services provided at each location.[11,49]

Primary model behaviors include (a) processes of information sharing (how information

flows and spreads or diffuses from an individual agent to others in the community) and (b)
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decision behaviors (how agents choose to utilize resources as a function of information

received). These processes and behaviors are described below under “Important Processes.”

3.4 CommunityRx ABM spatial and temporal resolution

The CRx ABM is spatially explicit. Each place in the synthetic environment, including health-

promoting resources, are provided at an actual physical place with a fixed latitude and longi-

tude in the 16 ZIP code study region. Each time step in the model represents one hour of simu-

lated time and simulations are run for a period of at least 4 weeks. We generally observed

stable behavior by week 3 of the simulation. Agents are assigned specific activity schedules for

every 24 hours, representing a simulated day. The extent of the CRx ABM is in recreating the

CRx intervention within the defined spatial and temporal resolution.

Structurally, the CRx ABM is a time-stepped activity simulation in which agent states are

updated at each simulation time interval (hourly), based on agent behaviors and interactions.

Using a demographically matched, randomly selected daily activity schedule, the simulation

component of the model determines an agent’s activity for the current time step and moves

each agent to the activity’s location. Co-located agents share information about specific com-

munity resources based on the activity being performed. Based on information received and

retained through this process, each agent decides whether or not to perform certain health-

promoting activities (a subset of all possible activities) utilizing community-based resources

that were prescribed to the agent by the CRx intervention. Thus, we can derive population-

level metrics of resource information diffusion. Further, as a function of information diffusion

and agent decisions about health-promoting activities, we can also derive population-level

metrics of resource use. A description of model processes that occur in every time step is pro-

vided in the following subsection and summarized in paragraph 3 of Appendix A in S1 Text.

3.5 The most important model processes at every time step

3.5.1 Agent activity behavior. In addition to sociodemographic characteristics, agents

were imbued with activity schedules for each simulated day. Agent activity schedules were

developed from the publicly available 2016 American Time Use Survey (ATUS) dataset

(https://www.bls.gov/tus/data.htm).[40] This dataset included 10,493 activity schedules cover-

ing weekdays and weekends, each associated with the demographic characteristics of survey

respondents. By matching the SPEW and ATUS datasets on age, gender, race and ethnicity,

each agent in the synthetic population was assigned a daily activity schedule, in 1-hour incre-

ments, from a distinct set of available ATUS schedules for weekdays and for weekends.

This matching resulted in a set of available schedules for each agent ranging between 2 to

1496. For each simulated day, an agent was randomly assigned a unique activity schedule from

the set of available matched schedules. These daily schedule assignments resulted in agents

being co-located in unique places. Information sharing occurred when co-located individuals

interacted. The large range of available schedules for the daily random assignment was a

modeling choice to introduce randomness of available activity schedules for each demographic

subgroup in our agent population (alternatively, agents would follow the same schedules every

simulated day). While a larger sample of available schedules does indeed introduce stochasti-

city, it was deemed better than the case of having groups of agents with very few schedules,

which could result in unrealistically repetitive activity patterns. Future work will focus on the

implication of this randomization on the resulting co-location networks. We also do not

account for the seasonality of schedules due to the lack of available granular data. The implica-

tions of these modeling choices are a limitation of our model and the focus of future work.
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Using the ATUS data, we classified all activities into one of two subsets: (1) activities of

daily living (e.g., sleeping, washing and grooming, talking on the phone) or (2) physical and

mental health maintenance or promotion (“health maintenance”) activities at both the individ-

ual (e.g., health-related self-care, doing yoga) and household level (e.g., obtaining medical care

for a child or an adult in the household). Applying an iterative data collection and discussion

process with expert informants, we then compared the subset of health maintenance ATUS

activities to the complete list of service types listed on a HealtheRx (“service types” refers to

kinds of services [e.g., fitness, weight management, smoking cessation] that a place could offer

in contrast to a “resource” which refers to a specific place providing a specific service). Each

ATUS activity from this subset was mapped to one or more relevant HealtheRx places where

an agent might reasonably carry out that ATUS activity. For example, the ATUS activity “pro-

viding medical care to household children” was mapped to the HealtheRx services “fill pre-

scriptions,” “medical supplies,” and “home care.” Expert informants were presented with both

the subset of ATUS activities and HealtheRx service types and discussed the likelihood of an

agent using a service while performing an activity for each mapping until consensus was

achieved. Using the CRx resource inventory, each service type was associated with all places in

the physical environment that provided that service.

We computed the average number of minutes per week spent doing each activity for each

agent across all activity schedules that were demographically matched to that agent. Next, the

time per week during which a given HealtheRx service could be used was determined by sum-

ming each agent’s average time doing every ATUS activity mapped to that HealtheRx service

and dividing by the total number of agents for each matched schedule. This average was com-

puted within each of four age groups (<31, 31–45, 46–65, and 65+ years), weighted by the

number of people in the age group (Fig 4). These groups were defined using demographic, life

course and healthcare policy considerations and are consistent with commonly applied strata

for age in the clinical and population health literature.

3.5.2 Agent knowledge evolution. Agents maintained dynamic β scores for resources

they knew about. At initialization, agents were seeded with knowledge about resources using a

distance-based random assignment algorithm. Agents were seeded with knowledge of 10 to

100 resources located within a low distance radius (parameterized as 1 mile), 1 to 5 resources

within a medium distance (1–3 miles) and 1 to 5 resources for long distances (3+ miles). The

first two weeks were considered a burn-in period for the entire simulation. We generally

observed stabilized behavior by week 3 of the simulation. Results reported in this paper use

output from week 3 of the simulation.

The β scores were boosted by information dosing, a factor based on exposure to resource

information and the source of the information. Agents could be exposed to resource informa-

tion by doctors, nurses, clinical clerks, social contacts and by first-hand use of the resource.

The clinician sources provided information to agents by delivering a HealtheRx during a

healthcare visit at a clinic (“clinical dose”). Social dosing occurred when agents co-located at

places (e.g., a barber shop) and exchanged resource information (e.g. about the gym). Agents

used a resource by going to its location (subsequently referred to as just “use”). The functional

form of β score evolution and its parameterization were created in consultation with expert

informants and through sensitivity analyses as previously described.[39] The β score for agent

i about resource j at time t evolved according to the following functional form and is described

below:

b
t
i;j ¼ lðb

t� 1

i;j Þ
εxð1� b

t� 1
i;j Þþb

t� 1
i;j ð1Þ
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The decay parameter λ (0.991 for the simulation run producing Fig 5, with an allowable

range of values between 0.991 and 0.9994) accounted for receding knowledge of a resource.

The source of resource information was associated with a value, εx, where x 2 (Doctor, Nurse,
Clinical Staff, Use, Peer, None}. “Use” indicated an agent had been to or consumed a given

resource following the decision function in Eq 1.

For the simulation run used to produce Fig 5, the following values were used εx = {0.05,

0.15, 0.25, 0.2, 0.9, 1}. Sources expected to have a greater influence on the agent had higher

dosing values (corresponding to smaller εx values). As modeled, εx only accounts for the

Fig 4. Average minutes per week, stratified by age agents spent doing activities during which they could use a self-

care service listed on the HealtheRx; Chicago, Illinois 2016–2018.

https://doi.org/10.1371/journal.pcbi.1009471.g004

Fig 5. Exemplar instance of the evolution of three agents’ knowledge (Beta, β) of eight resources over time (λ of

0.991 used in this instance based on sensitivity analysis and model calibration previously reported in [39]);

Chicago, IL 2016–2018. Note: Each column (n = 3) represents a unique agent. Each row represents a unique resource

(n = 8). Each black dot indicates the β scores (left y-axis) at in point in time in hours (bottom x-axis). Information

dosing events (receipt of information about a given resource) that occurred during a given hour are indicated by

vertical lines as: receipt of a HealtheRx (blue), receipt of information about resources from a social contact (green) and

use of a resource (red).

https://doi.org/10.1371/journal.pcbi.1009471.g005
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source from which the information was received and not the type of resource information

received. This modeling choice was based on one of our specific questions: how does the infor-

mation source influence information diffusion dynamics? This question is salient to real-

world deliberations about how best to deliver community resource referrals in the clinical con-

text. The ABM is designed so it could easily be iterated to include a resource-specific informa-

tion dynamic. Furthermore, information dynamics may vary by factors like the stigma

associated with information about a given resource type (e.g. HIV/AIDS support group, food

pantry or substance use counseling). Future model development could be iterated to account

for this kind of dynamic. As referenced previously, the knowledge evolution process does not

account for a negative effect (where negative or incorrect information could lead to an agent

avoiding a specific resource). Although related studies have surfaced no evidence for negative

information spread, it is certainly possible. This factor is a limitation of the model left for

future model development.

Agents maintained knowledge about a maximum of 200 resources; resources with lower β
scores were replaced by resources with higher β scores over time. The assumption of a memory

load of 200 resources was made to represent the bounded knowledge and ability of the agents

to maintain information for their decision-making (described below). The CRx ABM allows

for the size and heterogeneity of agents’ cognitive capacity to be parameterized. Through the

dynamics of agents’ β scores, the CRx ABM models internal agent states with respect to

resource knowledge.

3.5.3 Agent information sharing behavior. Information sharing was also modeled to

depend on the nature of individuals’ activities (e.g., there is no information exchange when an

agent was sleeping, whereas information can be exchanged when co-located agents were

exercising in a gym). The propensity for an agent to receive information (“p-score”) was

dependent on the activity in which the agent was engaged. Each ATUS activity in our subsets

was assigned a propensity for information sharing. Information sharing was assumed to occur

between two or more co-located people by way of face-to-face conversation. (Therefore, infor-

mation shared digitally, for example, was not captured in the model.)

Because we found no extant data to inform assumptions about propensity for information

sharing during various activities, we surveyed expert informants in iterative rounds to generate

p-scores for each relevant activity. The survey elicited the likelihood (p-score = none, low,

medium, high) that the respondent would receive resource information from another person

while doing a given activity. For example, “sleeping” uniformly generated a p-score of “none.”

Activities like “helping household adults” and “grocery shopping” produced a p-score of

“medium” and “socializing, relaxing, and leisure as part of job” and “obtaining medical and

care services for household adult” produced scores of “high.” Agents at a location share infor-

mation with other co-located agents based on a threshold defined by the propensity for

resource information sharing during that activity and individual random draws against that

threshold. The characteristics of agents receiving information were not a factor in the informa-

tion sharing dynamic. The design of this mechanism was chosen to reflect the fundamental

information sharing dynamic commensurate with the expected propensity of resource infor-

mation sharing determined with expert opinion, and can be considered as a limitation

imposed by the data on the model. However, this information sharing dynamic does allow us

to compare social dosing effect to the direct clinical dosing effect. The parameter values for

these effects were critical to model calibration and was previously described in detail.[39]

3.5.4 Agent decision-making. We then developed processes for agents’ decisions about

using a resource (recall, defined as a specific service at a specific place). These decisions were

dependent on agents’ information-sharing behavior and their knowledge evolution. Each of

the parameters involved in the decision processes was informed by empirical data and expert
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opinion (Table A in S1 Text). Sensitivity analyses performed on selected parameters have been

previously described.[39]

The agent’s decision to use a resource was modeled as a binary choice A/B Decision Model.

Each activity was characterized by a decision type–A/B decision or not. Activities classified as

health maintenance or promotion activities (the activities that the CRx intervention targets)

faced an A/B decision choice. Other activities not related to health-maintenance behaviors did

not require a decision choice–agents would proceed with such activity at the designated loca-

tion. Agents presented with an ATUS activity in their daily schedule that was subject to an A/B

decision faced a choice to use a resource or not. For example, when presented with the ATUS

activity “fitness,” the agent chose whether to use a fitness facility (Decision A) or not (Decision
B). If the agent decided to use the resource, they proceeded with the activity in their schedule

mapped to that service. If they chose not to use the resource, they continued doing the previ-

ous activity in their schedule.

The following agent characteristics dictated the decision process for each agent i2P¸ where
P is the set of all agents:

i. natural activation level (αi), derived from Skolasky et al. [50]

ii. a function of their knowledge (βi,j) about a specific resource j2 R, where R is set of all
resources (e.g., a community center), where they could use a specific service (e.g. a gym),

iii. the distance to the resource for the agent (δi,j), and

iv. the inherent inertia that they needed to overcome for using that resource (γj).

An agent’s decision to use the resource, Decision A, was made when the agent’s activation

level (threshold) was exceeded by the agent’s combination of knowledge and effort required

(distance and inertia). The relationship at the time (t) is given by:

if
b
t
i;j

di;jgj
> ai; then Decision A; else Decision B ð2Þ

To provide an illustrative example–consider an agent following their daily hourly schedule

until they come to an activity requiring an A/B decision: go to a gym or not. The agent uses the

decision calculus described above to choose between the gym (A) or their current (B) activity.

If the agent knows of no gym, the β will be low. If the gym is far away, the δ will be high. The

agent will continue their previous activity (a B decision in Eq 2 above). The dynamic described

in Eqs 1 & 2 allow us to isolate and measure the effect of information dosing on knowledge

about and use of selected resources for health maintenance or promotion activities that were

the focus of the CRx intervention. The model does not include other health promotion and

maintenance activities occurring at other places, for example going for a walk outside or an

informal support group at a home.

3.6 CRx ABM submodel: Delivering the HealtheRx in silico

Because our ABM was designed to conduct in silico experimentation on the CRx intervention,

it includes a component submodel that enables simulated delivery of the HealtheRx to agents.

The CRx system’s algorithms (described above) used data recorded in each patient’s electronic

medical record to generate a HealtheRx at each clinical visit. To enable population-level exper-

imentation with the intervention, we implemented these HealtheRx algorithms as a submodel

in the CRx ABM and delivered HealtheRxs to agents presenting for healthcare visits. The accu-

racy of the in silico generation of the HealtheRx was compared against 26,558 HealtheRxs
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generated in vivo during the CRx-2 clinical trial (7/1/16-9/16/16) for residents of the target

region. We compared the resources listed on the in silico HealtheRx to the in vivo HealtheRx

based on each agent’s sociodemographic characteristics. Validation results for these compari-

sons were described.

To apply the in silico intervention to the synthetic population, agents were assigned health

conditions and a preferred language using data from the same 26,558 HealtheRxs. Agent char-

acteristics were statistically matched by gender, age, race and ethnicity to the patients for

whom the in vivo HealtheRxs had been generated. HealtheRxs were distributed to agents at

clinic locations where CRx was deployed in vivo during the CRx-1 and CRx-2 clinical trials.

[10,11]

3.7 Model implementation and validation

A comprehensive description of the model calibration and validation process has been previ-

ously published.[39] The Community Rx ABM determined each agent’s activity at every

hourly time step and moved agents to their corresponding locations. Agent state and location

changes were selectively logged, as were the different types of information dosing events. The

total number of agents who chose to use a specific resource following the A/B decision process,

was also logged. To calibrate and validate the model, we selected resource use in our agent

population for 10 specific resources (clinics) that required an A/B decision and calibrated our

parameter set where the model output (average resource use) was within a defined range of

empirically observed clinic visits. A random forest model was iteratively fitted to model evalua-

tions to characterize the model parameter space against observed empirical data.[39] Table A

in S1 Text describes the parameters used in the CRx ABM.

4.0 In silico experimentation

Experimentation was done using the Extreme-scale Model Exploration with Swift[51] frame-

work on the Midway2 computing cluster at the University of Chicago and the Bebop cluster at

Argonne National Laboratory.

4.1 Generating endogenous information diffusion networks

We simulated the information diffusion processes within the CRx ABM and generated endog-

enous information diffusion networks based on hourly snapshots of co-located agents

exchanging information based on εx values (described in Section 3.5.2) and the propensity to

share information. In these networks, individual agents were network “nodes,” and informa-

tion exchange events between agents were the network “edges.” The links in the networks sig-

nified the pathways through which information about resources was exchanged. We created

an exemplar age-stratified visualization of these networks using Gephi (https://gephi.org)

(Fig 6).

4.2 Experiments on propensity for information sharing

We ran computational experiments, varying input parameter values that governed the CRx

ABM’s information diffusion processes. This process helped us analyze how propensity to

share information (p-score) affects population level information networks. We parameterized

the low, medium and high p-scores into adjustable rates of information exchanges to modify a

fundamental generator of the information diffusion network. We show difference in network

degree distributions across different levels of p-scores (Fig 7).
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4.3 Experiment to determine optimal mode of CommunityRx intervention

delivery

To estimate the magnitude of the spread of HealtheRx information from social dosing alone,

we calculated the ratio of agents who retained HealtheRx information from social dosing

exclusively to those who retained HealtheRx information from clinical dosing (using logged

simulation data). Using a calibrated parameter set (technical description of model calibration

and validation are summarized in Section 3.7 and described in detail in [39]), we used the

ABM to run 4 week long simulations, with 15 runs for each of 3 HealtheRx delivery modes

(delivered by a physician, nurse, or clinical clerk). We generally observed stable behavior by

week 3 of the simulation. We used week 3 outputs to report results (the first two weeks were

Fig 6. Visualization of network pathways through which agents, stratified by age (16–25 years = orange, 65

+ years = purple) exchange information about resources; Chicago, Illinois 2016–2018.

https://doi.org/10.1371/journal.pcbi.1009471.g006

Fig 7. Differences in network degree distributions (distribution of total incoming and outgoing information

pathways) as the rates of information exchanged are adjusted higher, black to red to blue; Chicago, IL 2016–2018.

https://doi.org/10.1371/journal.pcbi.1009471.g007
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used as the burn-in period for the simulation). Parameter values for the 45 experimental runs

are shown in Table C and D in S1 Text. For qualitative comparison of geographic spread of

information across the 16 ZIP codes in the CRx ABM, we plotted the home location of agents

who retained information from direct clinical versus social dosing during week 3 of the simu-

lation (Fig 8 and Appendix B in S1 Text).

Results

Establishing a working model

The mean age of the synthetic population (N = 802,191) was 44 (range: 16–94). The majority

of the population was female (56%), non-Hispanic (84%), and African American or Black

(59%) (Table B in S1 Text).

Agents, on average, spent the most time engaging in activities during which they could use

the following HealtheRx service types: spiritual services, group exercise classes, walking

groups, help paying mortgage and rent, and getting fresh fruits and vegetables. The average

number of minutes per week agents spent doing activities mapped to these five self-care service

types varied by age (Fig 4). For example, compared to agents younger than 30 years old, agents

65 years and older spent, on average, 4.6 times more minutes per week doing activities where

they could use spiritual care services.

When we validated the in silico delivery of the HealtheRx against 26,558 HealtheRxs deliv-

ered in vivo during the CRx-2 trial, we found that 91% of community-based resources that

were listed on the in silico HealtheRxs exactly matched those listed on HealtheRxs generated in
vivo. The 9% discrepancy can be explained by two factors. In vivo, the CRx resource inventory

used to generate HealtheRxs was dynamic; places, and the services provided at those places,

were routinely updated (e.g., if a place stopped offering a service, it could be deleted from the

system). The in silico delivery of the HealtheRx used a static community resource database that

could not account for changes occurring during the in vivo comparison period, 7/1/16-9/16/

16. Secondly, in vivo, the HealtheRx was limited to 3 pages printed and included an average of

31 resources (range 2–40) whereas the in silico HealtheRxs all included 40 resources.

Agent knowledge about resources evolved over time, dependent on an agent’s information

dosing events. Fig 5 shows the β score dynamics for three agents’ knowledge about eight

Fig 8. Simulation of the geographic spread of community resource information via (A) clinical dosing and (B) social

dosing using the CRx agent-based model. Agents who received clinical dosing could also receive social dosing. The

base layer of this map was obtained from Stamen Maps available at https://stamen.com/open-source/.

https://doi.org/10.1371/journal.pcbi.1009471.g008
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different resources over time. As expected, resource knowledge increased over time with suc-

cessive information dosing events (i.e., receiving a HealtheRx, using a resource, or getting

information about a resource from another agent), especially those from sources with greater

influence (like receiving a HealtheRx and resource use) and decreased when information dos-

ing events did not occur.

By tracking information exchange events that occurred as agents moved through their

activity schedules, we generated emerging information diffusion networks. The links in net-

works signified the pathways through which information about community resources was

exchanged. An example diffusion network, generated over the course of a single hour for two

age groups—agents 16 to 25 years old and agents 65 or more years old—showed differential

clustering by age groups (Fig 6). Information exchange “hubs” ranging from predominantly

younger to predominantly older agents emerged.

As we adjusted the rate of propensity for information exchange from low to medium to

high, the network degree distributions changed (Fig 7); the number of links (pathways through

which information was exchanged) between agents increased. At the highest rate of informa-

tion exchange, the tail of the distribution extended across three orders of magnitude compared

to the lowest rate of information exchanged. Idealized network models have been shown to

exhibit exponential,[52] stretched exponential,[53] or scale-free[54] degree distributions. In

contrast, these emergent networks, endogenously generated from the local interactions of co-

located agents following their individualized schedules, displayed degree distributions with

complex structures, which are not as readily fit to simplified functional forms.

In silico clinical versus social dosing experiment

The geographic spread of HealtheRx information via social dosing far exceeded direct clinical

dosing alone (Fig 8). Compared to clinically dosed agents (mean = 29,028; range 27,271–

30,701), an average of 4.2 times more agents (range 3.9–4.6) retained HealtheRx information

from social dosing alone (mean = 123,562; range 118,175–126,658). Table E in S1 Text details

the results from each of the 45 simulation runs. The pattern of information spread by agents

receiving a HealtheRx at a clinic visit was similar when the HealtheRx was delivered by physi-

cians, nurses or clinical clerks (Appendix B in S1 Text).

Discussion

CRx is an information-based intervention that connects patients to healthful community

resources. In prior studies,[10,11] we discovered that nearly half of patients and clinicians who

received the intervention shared information about resources with others, providing evidence

of a potentially potent but previously unexplored pathway through which a clinic-based inter-

vention can impact population health. Based on these observations, this study describes how

we built a computational laboratory to facilitate the quantification of the population-level

impact of CRx. Prior studies of similar information-based interventions have relied on con-

ventional observational and experimental designs.[5] These designs capture the interventions’

individual-level impact, but not the population-level effects resulting from the ease with which

health-promoting information from the intervention can spread. Information technology is

enabling the rapid growth of information-based interventions in public health and health care.

[55] To our knowledge, ABM has not yet been used to study the population-level impact of a

health information intervention delivered during a clinical encounter.

In contrast to a clinical trial, a computational laboratory is designed to efficiently explore

“what-if” questions at large-scale. In the case of CRx, a clinical trial asked “What is the effect of

a community resource information intervention on middle age and older adult patients’ self-
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efficacy for self-care?” We conducted an experiment to address the question: “What is the

effect on information diffusion if the intervention is delivered by a physician versus a nurse

versus a clerk?” Overcoming experimental capacity of a single clinical trial, the ABM will also

allow us to ask other important questions like: “What if the patients who get the intervention

are young adults?” Or, “What if the intervention is delivered based on screening versus using a

universal approach? What will be the impact on health outcomes and how will the population

effects of the intervention be different?”

This study shows how an interdisciplinary team of biomedical and systems scientists collab-

orated to build a computational laboratory. We have demonstrated that it is realistic enough

for its purpose, by observing patterns that replicated intuitive or previously-known results. As

expected, we demonstrated that synthetic agents exhibited diverse behavioral characteristics,

reflective of the known geographic population, and that the synthetic intervention could be

delivered to these agents in silico. We also showed that agents’ resource knowledge evolved as

they were exposed to resource information and evolved differently depending on the informa-

tion source. We illustrated the emergence of information diffusion networks and how the

degree distributions of these networks changed as the values of key parameters like the propen-

sity of information sharing were varied. Lastly, we demonstrated the computational feasibility

of using highly granular activity data, an important feature of a study seeking ultimately to

uncover when, where and how information spreads between people in a population. Com-

bined with prior validation work, these results help to establish the model’s readiness for

hypothesis-testing experimentation.[38,39]

To illustrate the potential of the ABM as a complement to clinical methods, we also con-

ducted an in silico experiment to examine how specific resource information disseminates

from an individual exposed to the CRx intervention in a clinical setting (“clinical dose”) to

other individuals in the population through social dynamics (“social dose”). Through 45

experimental runs simulating mixing behaviors in a geographic population, this study finds

that personalized community resource information delivered to a patient during a healthcare

visit spreads to others in the community. Complementing the three-month trial’s observation

that the total number of people reached by HealtheRx information was at least double the

number of middle-aged and older patients in the intervention group [17], the ABM in silico
experiment estimates this ratio to be approximately 4-fold, when including all people ages 16

and older in the geographic population. We also find that the mode of clinical delivery (physi-

cian, nurse, clerk) likely has little relative impact on the magnitude or dynamics of spread, sug-

gesting that clinical implementation of community resource referral solutions might focus less

on who delivers the intervention and more on optimizing patient and clinician access to it.

These empirical and simulated observations give life to the concept of patient social dosing, a

previously overlooked mechanism, and potential force multiplier through which community

resource referral and other health-promoting information interventions may deliver value

beyond the patient who receives direct intervention during a healthcare visit. To our knowl-

edge, this is the first study to examine the population-level diffusion dynamics of a clinical

information intervention.

Most ABMs are built using data from extant literature, secondary datasets and expert infor-

mants.[42] In 2010, Morell and colleagues proposed an integrated approach where data and

insights generated through observational evaluations are used to drive building and parame-

terization of ABMs.[21] Public health researchers subsequently voiced support for this comple-

mentary approach.[19,20] Building on and extending these ideas, the CRx ABM was

constructed in tandem with both observational and experimental studies and was parameter-

ized using data from these studies. Building the ABM to simulate agent-level information shar-

ing, a dynamic observed in CRx trials, revealed a need to assign a propensity for information
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sharing during agent activities. Because we had not anticipated this data need at the outset of

the trial, we generated this parameter set by surveying expert informants. The addition of pri-

mary data collection to estimate the propensity for information-sharing during daily activities

would increase the value of population-based time use surveys, like ATUS, to in silico experi-

mentation with information-based interventions.

In parallel with ABM building, iteration and experimentation, we continue to operate clini-

cal observational and experimental trials to deepen our understanding of how information

about resources spreads and the impact of the resource information on a theory-driven set of

health and healthcare outcomes.[56,57] These empirical data from clinical trials will be used to

further parameterize and improve the ABM over time, which, in turn, will enable more

advanced in silico experimentation. For instance, the CRx ABM can be used to compare com-

munity resource use in relation to varying rates of information spread and network size and

other characteristics to inform assessments and decision-making regarding resource alloca-

tion. These, and other experiments, are a focus of future work.

Although ABM-based experimentation enables rapid iteration of community-wide trials

under varying conditions that would be infeasible to conduct in the real world, there are limi-

tations. The CRx ABM is driven by a decision-making model that is a simplified representation

of factors influencing how people decide to use health-promoting community resources. For

example, we only account for face-to-face information sharing, not other modalities like social

media. The validity of ABM-based experimentation is dependent on the salient factors cap-

tured by the underlying behavioral models. Some agent characteristics that are likely dynamic

in the real-world are static in this first iteration of the model (e.g., agent activation). Modeling

behavior change is an active area of systems science research;[58] we expect that new discover-

ies will inform iterations of our model over time. Also, the CommunityRx ABM only accounts

for knowledge about and use of local health-related resources that could be listed on the

HealtheRx. Health maintenance activities could occur outside of these resources (e.g., walking

in the neighborhood, an informal support group at someone’s home). We also have a limited

understanding of which and how many resources a person needs to maintain health, how this

information is retained in memory and how these factors vary among individuals. Lastly, the

propensity for information sharing during specific activities is an important variable in our

ABM, but our estimates may be limited by use of expert informant data. This limitation reveals

a data need that will be important to future computational studies of information-based inter-

ventions and presents an exciting opportunity for new empirical research. Although these are

important limitations, the in silico laboratory is flexible; we can iterate the decision model in

tandem with emergent empirical data and advances in the field more generally. Thus, while

the focus of the CRx ABM is on simulating the CRx intervention, the process of model build-

ing and computational experimentation presented is generalizable to other large-scale ABMs,

for example those modeling information diffusion processes. However, generalizability may be

limited because the model was validated only against the data that were used to inform the

model building.

We have demonstrated the process and feasibility of integrating clinical trials and systems

science methods to build a flexible laboratory for studying the population health impact of an

information-based intervention delivered to individuals at the point of medical care. By using

open source tools and sharing our methods,[38,39] we aim to build trust in our approach,

prompt feedback from peers, and enable others to use, iterate and learn from our model. In

addition to advancing knowledge specific to understanding and valuing the impact of CRx,

this work serves to advance knowledge and testing of a fast-growing range of information-

based health interventions being developed for delivery to promote patient and population

health.
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