
1. Introduction
Every year, millions of people in the United States are infected with the contagious respiratory illness known 
as the influenza, or flu, virus. Symptoms of influenza range from mild to severe, and in some cases require 
hospitalization that can even lead to death. In the United States, seasonal influenza outbreaks generally begin in 
fall and peak over the course of the winter or into the spring months (CDC, 2016). However, the driving factors 
behind this seasonality are not well understood. There are several hypotheses about possible influences on the 
transmission cycle including: changes in host immune capability, melatonin and vitamin D levels in winter, be-
havior (e.g., staying indoors and the effect of HVAC systems in winter), as well as environmental conditions like 
temperature, humidity, and UV irradiation (Lowen & Steel, 2014). Studies focused on the relationship between 
seasonal influenza and environmental conditions have found the strongest associations with temperature and hu-
midity in temperate regions of the world (Dalziel et al., 2018; Lowen et al., 2007; Lowen & Steel, 2014; Shaman 
et al., 2017; Soebiyanto & Kiang, 2014; Tamerius et al., 2019). This study focuses on the role of humidity as a 
driving factor of state-level seasonal influenza outbreaks in the contiguous United States.

It is theorized that the relationship between humidity and influenza might be explained by all or some the follow-
ing three mechanisms: (a) virus survival increases as humidity levels decrease; (b) droplet size decreases with 
decreasing humidity, allowing particles to travel farther and remain suspended in the air for longer; and (c) low 

Abstract In recent years, environmental factors, particularly humidity, have been used to inform influenza 
prediction models. This study aims to quantify the relationship between humidity and influenza incidence at 
the state-level in the contiguous United States. Piecewise segmented regressions were performed on specific 
humidity data from NASA's Atmospheric Infrared Sounder (AIRS) and incident influenza estimates from 
Google Flu Trends to identify threshold values of humidity that signal the onset of an influenza outbreak. Our 
results suggest that influenza incidence increases after reaching a humidity threshold that is state-specific. 
A linear regression showed that the state-specific thresholds were associated with annual average humidity 
conditions (R2 = 0.9). Threshold values statistically significantly varied by region (F-statistic = 8.274, 
p < 0.001) and of their 36 pairwise combinations, 13 pairs had at least marginally statistically significant 
differences in their means. All of the significant comparisons included either the South or Southeast 
region, which had higher humidity threshold values. Results from this study improve our understanding of 
the significance of humidity in the transmission of influenza and reinforce the need for local and regional 
conditions to be considered in this relationship. Ultimately this could help researchers to produce more accurate 
forecasts of seasonal influenza onset and provide health officials with better information prior to outbreaks.

Plain Language Summary The influenza, or flu, virus is a contagious respiratory illness that 
infects millions of people in the United States each year. Scientists from multiple disciplines have been using 
complex models to try and predict the start of seasonal outbreaks using a variety of information. Humidity has 
been shown in laboratory experiments to be a potentially important component of influenza transmission. This 
study uses historical estimates of influenza case numbers as well as humidity data to investigate the relationship 
between the two at the state-level across the contiguous United States. We found the humidity values that 
seemed to signal the onset of seasonal influenza differed by state and that in states with higher average annual 
humidity, the humidity value that “signaled” seasonal onset was also higher. Additionally, we found that there 
were regional patterns in our results. This work could improve our understanding of how humidity impacts 
influenza transmission and how we use humidity in models that aim to predict seasonal outbreaks.
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humidity dries out the mucous membranes of the nose leaving the subject more susceptible to infection when 
they encounter the virus (Lowen & Steel, 2014; Lowen et al., 2007). However, a more recent study by Kudo 
et al. (2019) presented further evidence for impaired host responses to influenza virus when in low humidity con-
ditions. They found that mice exposed to low relative humidity conditions had more severe influenza infections 
compared to those kept in high relative humidity environments and were not able to clear the virus from their bod-
ies' due to impaired physical mechanisms and immune systems responses. Not only did the mice in low humidity 
have difficulties in mucociliary clearance, they also showed signs of impaired tissue repair in their airways, and 
had lower production of interferon-stimulated genes that block virus spread.

While laboratory experiments on animals have utilized relative humidity to better understand the physical and im-
munological responses to influenza exposure (Kudo et al., 2019; Lowen & Steel, 2014; Lowen et al., 2007), from a 
modeling perspective, absolute humidity seems a better proxy for human conditions (Shaman et al., 2010, 2017). 
Absolute humidity is the mass of water vapor divided by the total volume of air, while relative humidity is the 
ratio of the vapor pressure to the saturation vapor pressure with respect to water and, perhaps most importantly, is 
influenced by temperature. Shaman et al. (2017) describe several reasons why absolute humidity is the more ap-
propriate measure for modeling in human populations. For example, outdoors, relative humidity is highest in the 
winter time, while absolute humidity is at its lowest (Lowen & Steel, 2014; Shaman et al., 2010, 2017). However, 
indoors, where people in high income countries such as the United States, spend the majority of their time in the 
winter months, both absolute and relative humidity are low (Lowen & Steel, 2014; Shaman et al., 2010, 2017). 
Therefore, outdoor absolute humidity is easily used to approximate indoor conditions, where the virus is more 
likely transmitted from person to person (Shaman et al., 2017). It is common for specific humidity to be used, in 
the context of meteorology and climate, as a replacement for absolute humidity, and this analysis, like Tamerius 
et al. (2019), follows that precedent. Specific humidity is the mass of water vapor divided by the total mass of air.

The analysis presented here contributes to the understanding of how local environmental conditions influence 
influenza transmission. While other studies have considered the impact of humidity on the magnitude and sea-
sonality of influenza outbreaks (Dalziel et al., 2018; Soebiyanto & Kiang, 2014; Tamerius et al., 2019), this work 
specifically investigates the onset of outbreaks. In turn, this can improve the use of variables such as humidity in 
models that attempt to predict the timing of seasonal epidemics (Shaman et al., 2010, 2017). Given that the best 
method for influenza prevention is an annual vaccine, an early warning system would allow local health workers 
and community members to be better prepared for the start of seasonal transmission. This study analyzes weekly 
averages from a decade of data to estimate the relationship between humidity and influenza at the state level for 
the contiguous United States and relates the patterns found to location specific average annual humidity condi-
tions. This study uses a novel combination of datasets including humidity from NASA's Atmospheric Infrared 
Sounder (AIRS) and incident influenza estimates from Google Flu Trends (GFT).

2. Data
The AIRS instrument on-board NASA's Earth Observing System Aqua satellite, launched in 2002, provides 
profiles of atmospheric conditions including temperature and humidity (e.g., Tian et al., 2013, 2017). Version 
6 (V6) Level 3 AIRS observations are available twice daily from an ascending (daytime, ∼1:30p.m. local time) 
and descending (nighttime, ∼1:30a.m. local time) path in a 1-degree by 1-degree grid (AIRS Science Team/Joao 
Teixeira, 2013). This study uses water vapor Mass Mixing Ratio (MMR) at the near-surface level as a substitute 
for specific humidity values. Water vapor MMR is the ratio of the mass of water vapor in an air parcel to the 
mass of dry air for the same parcel (i.e., g/kg dry air) and near surface MMR is a close proxy to specific humidity 
(Camuffo, 2014).

In 2008, Google launched the GFT product, which aggregated Google search queries on influenza activity for 
more than 25 countries (Olson et al., 2013). The data provide an estimated number of Influenza-Like-Illness (ILI) 
related physicians visits per 100,000 people for each week of the year (Ginsberg et al., 2009). In this context, a 
“case” is defined as a query for phrases and keywords such as “flu-like symptoms” or “influenza remedies” in a 
Google search engine (Ginsberg et al., 2009). These data are available as weekly estimates from the start of the 
2003 influenza season through the end of the 2015 season for select cities, the lower 48 contiguous states, and for 
all 10 Health and Human Services regions. This study focuses on the state-level data.
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There has been some discussion about the utility and accuracy of GFT data as 
an estimation for influenza incidence. In particular, there are arguments that 
GFT overestimates the burden of influenza infections, with the 2012–2013 
season being noted as a particularly extreme occurrence of this (Kandula 
& Shaman, 2019; Olson et al., 2013). This analysis acknowledges the lim-
itations of GFT as an estimation of influenza in the US and excludes data 
from the 2009–2010 pandemic and the documented overestimation of the 
2012–2013 to reduce the influence of these extreme conditions. Additionally, 
it should be noted that this is an analysis of weekly averages over several sea-
sons which may also reduce the impact of inconsistencies in the data.

3. Methods
3.1. Data Processing

AIRS 1-degree by 1-degree grid cells were averaged for the 48 contiguous 
states to generate state-specific MMR. For a given cell, the location of its 
center was used to pair the cell (as a whole) with a state. As mentioned pre-
viously, the daily AIRS data contains both an ascending and descending hu-
midity reading. These readings were averaged together to produce a single 
measurement for each day and then aggregated to the weekly time scale over 
the period 2003–2015 to complement the GFT data.

The GFT data is provided as weekly incidence estimates for each state. Not 
all states have data for the entire time period of interest (2003–2015), but 

this study processed what was available. In order to avoid skewing from extreme conditions and estimations, the 
H1N1 pandemic of 2009–2010 and the documented overestimation of GFT data for the 2012–2013 influenza 
season (Olson et al., 2013) were excluded from this analysis.

Both the AIRS and GFT datasets for each state were aggregated once more to find the average humidity and in-
fluenza conditions by week of the year over the 2003–2015 time period. Since the aim of this analysis is to better 
understand the humidity conditions leading up to and at the start of the influenza season, the weekly averages 
were restricted to the period from week 36, the beginning of September, to the peak average week for each state. 
“Peak average week” refers to the week of the year with the highest average influenza over the course of the time 
series. These averages were plotted versus influenza incidence and a segmented linear regression was fit to the 
data in order to estimate the breakpoint humidity value.

3.2. Segmented Regression

This analysis used segmented regression (Muggeo, 2008) to assess the association between humidity and ILI. 
Segmented regression is essentially a piecewise linear regression (Equation 1) whereby breakpoints (or knots, 𝐴𝐴 𝐴𝐴 ) 
are determined iteratively given a starting value. We estimate a one-breakpoint model with the following form:

� = �0 + �1� + �2(� − �̃)+ + ��(� > �̃)− (1)

where y is the dependent variable, ILI, x is the independent variable, humidity, 𝐴𝐴 𝐴𝐴0 is the intercept, 𝐴𝐴 𝐴𝐴1 is the slope 
describing the association between humidity and ILI before the breakpoint 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴2 is the slope describing the 
association between humidity and ILI after breakpoint 𝐴𝐴 𝐴𝐴 , and I is the indicator function (equal to 1 when true). 
To obtain the optimal estimate of the breakpoint, 𝐴𝐴 𝐴𝐴𝐴 , the linear model is fit iteratively. Through ��(� > �̃)− the 
breakpoint is updated by 𝐴𝐴 𝐴𝐴𝐴 = �̃�𝐴 + 𝐴𝛾𝛾∕ 𝐴𝛽𝛽2 . Additional details are available in Muggeo (2003) and Muggeo (2008).

Breakpoints indicate the intersection of parts of the line segment that have different slopes. In the context of this 
analysis, the “breakpoint humidity value” is the humidity level which precedes a sharp increase in influenza cas-
es. An example of this plot, for the state of Arkansas, can be seen in Figure 1 where the breakpoint approximation, 
located where the red and green colored segments intersect, is 0.0052 (note that the units are kg/kg because of the 
use of MMR as a humidity proxy, and because it is a ratio, units are not included from this point forward). This 
study suggests that the breakpoint signals the onset of an influenza outbreak and, for the example of Arkansas, 

Figure 1. Average weekly humidity versus average weekly incidence for 
Arkansas (2003–2015). The red and green lines represent the results of the 
segmented regression, their intersection is the breakpoint.
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once the local humidity conditions reach approximately 0.0052, the number of influenza cases could be expected 
to rise

3.3. ANOVA Analysis

We tested for regional differences in the extracted breakpoint values using an ANOVA regression. States were 
grouped according to the nine climatological regions previously defined by the National Centers for Environmen-
tal Information (Karl & Koss, 1984). Since the ANOVA analysis provides only an overall association, a Tukey 
Honest Significant Differences (HSD) test was used to determine which of the pairwise regional combinations 
had statistically significant differences.

4. Results
Figure 1 shows the 2003–2015 average weekly humidity versus the average weekly influenza incidence for the 
state of Arkansas. The one-breakpoint segmented regression is displayed by its piecewise linear shape (red and 
green lines) separated by the estimated breakpoint �̂ . For Arkansas, �̂  = 0.0052.

Scatter plots of weekly humidity climatology versus the average weekly influenza incidence, as seen in Figure 1, 
were created for each individual state and can be found in the Supporting Information S1. The scatter plots, with-
out the overlaying regressions, are also shown colored by their climatological region and arranged in their approx-
imate geographic position in the United States in Figure 2. Viewing the state-level plots in this manner reveals 
how this relationship varies over space by making clear the similarities in the “shape” of the onset of seasonal 
outbreaks, as well as highlighting potential limitations of the NOAA climatic groupings in this context. States 

Figure 2. Observed average weekly humidity (kg/kg) versus average Influenza-Like-Illness count for each state. The scatter plots for each state are colored by the 
corresponding NOAA region they were assigned for the ANOVA analysis and are arranged in their approximate geographic location.
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in the West and Northwest regions (California and Nevada; Oregon, Washington, and Idaho, respectively) have 
similarly steep increases in influenza cases at both higher and lower humidity values. In the Northeast region, 
the scatterplots show a smaller increase at higher humidity values and a generally lower increase in cases than 
the rest of the country at humidity values lower than the breakpoint. Finally, the “rounded” less distinct breaks, 
as compared to the West and Northwest, in the incidence/humidity relationship found in the South and Southeast 
regions are noted. The inclusion of Kansas in the South region is the most notable potential misfit of the NOAA 
regional classifications. Kansas appears to have the steeper more distinct slopes more similar to its northern 
neighbors Missouri, Nebraska, and Iowa than the more rounded shape and higher incidence rates seen in states 
to its south such as Oklahoma, Arkansas, and Texas. The adjusted R2 values, indicating how well the segmented 
regression model fit, range from 0.51 for the state of Michigan to 0.99 for California with a standard deviation of 
0.13. The complete list of adjusted R2 values can be found in Table 1 along with each states' estimated breakpoint 
values, all of which are grouped by climate region. These breakpoint values, �̂ , are displayed by state in Figure 3. 
In this figure, each state is represented by a box, once again displayed in its approximate geographic position in 
the US, and the color corresponds with the humidity value extracted at the breakpoint. States in the Southeast and 
Southern regions had generally higher breakpoint values and Florida and Wyoming have the highest and lowest 
breakpoints, respectively. The extracted humidity breakpoint values for each state were also plotted versus each 
states' average annual specific humidity and fitted with a linear regression (Figure 4). The overall relationship 
between these two humidity values has an R2 of 0.90 and the trend is highly linear.

In addition to spatial variation in the breakpoint, we also considered variation in the slopes of the piecewise 
regression as well as the week of the year that the breakpoint occurred. However, despite regional similarities 
in the “shapes” of the epidemic curves, there was little variation in these values between states and no distinct 
relationships with annual average humidity conditions as were seen with the breakpoint. Results from these tests 
can be seen in Figures S50–S53 in Supporting Information S1.

Finally, we have the results of the ANOVA regression and Tukey HSD test. State breakpoint values statistically 
significantly varied by region (F-statistic = 8.274, p < 0.001). All possible regional pairwise combinations from 
the Tukey HSD test are listed in Table 2 along with their differences in mean, upper and lower limits and the 
associated adjusted p-value. Of the 36 possible combinations, 13 of them were at least marginally statistically 
significant. All of the significant pairs included one of either the South or Southeast regions. These results can be 
seen graphically in the Supporting Information S1, which depicts the significant pairings in red.

5. Conclusions
The purpose of this analysis is to build upon previous works relating humidity to seasonal influenza outbreaks 
(Barreca & Shimshack, 2012; Chattopadhyay et al., 2018; Dalziel et al., 2018; Shaman & Kohn, 2009; Shaman 
et al., 2010; Soebiyanto & Kiang, 2014; Tamerius et al., 2019) by considering how the climate-influenza in-
teraction at the onset of seasonal outbreaks varies over space. Our findings are generally aligned with previous 
studies, in that they support humidity and influenza interaction theories (Barreca & Shimshack, 2012; Dalziel 
et al., 2018; Shaman & Kohn, 2009; Shaman et al., 2010; Tamerius et al., 2019). In contrast to the other findings, 
but similar to Tamerius et al. (2019), the analysis described here provides evidence that this interaction is relative 
to local annual humidity (Figure 4). This finding may have important implications for identifying the mechanism 
that drives the humidity and influenza interaction, as well as the use of humidity as a driver in influenza predic-
tion models.

As stated in the introduction, there were three early explanations for the importance of low humidity in influenza 
transmission. Of these three, it would be expected that the virus' survival threshold and the impact of humidity 
on particle size would be related to a humidity range that would apply in all locations, regardless of average local 
conditions. However, this study and the work presented by Kudo et al. (2019), show evidence that supports the 
third mechanism involving the role of the mucous membranes of the nasal cavity in protecting individuals from 
viruses, which are impacted by average local environmental conditions. Figures 2 and 3 both provide evidence 
of spatial variability in both incidence trends during an average influenza season and the breakpoint humidity 
values. The ANOVA and Tukey HSD test provide additional support for distinct regional trends, particularly in 
the South and Southeast regions as compared to the rest of the country (Table 2).
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Region State Abbreviation Estimated breakpoint (kg/kg) Adjusted R-squared value

Central Illinois IL 0.00389 0.799

Indiana IN 0.00350 0.973

Kentucky KY 0.00463 0.735

Missouri MO 0.00431 0.744

Ohio OH 0.00406 0.718

Tennessee TN 0.00474 0.960

West Virginia WV 0.00420 0.847

East North Central Iowa IA 0.00345 0.630

Michigan MI 0.00410 0.506

Minnesota MN 0.00325 0.545

Wisconsin WI 0.00366 0.613

Northeast Connecticut CT 0.00462 0.589

Delaware DE 0.00614 0.875

Massachusetts MA 0.00384 0.717

Maryland MD 0.00452 0.877

Maine ME 0.00346 0.908

New Hampshire NH 0.00296 0.716

New Jersey NJ 0.00470 0.865

New York NY 0.00407 0.660

Pennsylvania PA 0.00360 0.827

Rhode Island RI 0.00485 0.862

Vermont VT 0.00310 0.893

Northwest Idaho ID 0.00342 0.654

Oregon OR 0.00339 0.881

Washington WA 0.00336 0.947

South Arkansas AR 0.00532 0.793

Kansas KS 0.00387 0.697

Louisiana LA 0.00769 0.915

Mississippi MS 0.00724 0.772

Oklahoma OK 0.00545 0.916

Texas TX 0.00587 0.914

Southeast Alabama AL 0.00601 0.885

Florida FL 0.00937 0.911

Georgia GA 0.00644 0.955

North Carolina NC 0.00567 0.933

South Carolina SC 0.00604 0.938

Virginia VA 0.00455 0.969

Southwest Arizona AZ 0.00404 0.797

Colorado CO 0.00295 0.941

New Mexico NM 0.00326 0.913

Utah UT 0.00291 0.918

Table 1 
The Resulting Breakpoint Values Estimated From the Segmented Linear Regression Analysis, as Well as the Adjusted R2 
Values for the Regressions
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We believe that our results are consistent with that of Kudo et al. (2019) and that the impact of humidity might 
be better considered at the individual or more localized level. For example, populations adapted to more humid 
environments with large ranges of seasonal humidity may not be as susceptible to slight changes in humidity 
levels as those who live in drier climates with little seasonal variability. What is considered “low” humidity for 
a state such as Florida would still feel quite “high” for inhabitants of a state that is very dry, such as Wyoming, 
especially given that even the lowest seasonal ranges of humidity in Florida exceed the highest ranges of seasonal 
humidity in Wyoming. This is particularly notable given the significance of the impact of low humidity not only 
on the mucous membranes of the nasal passage but also immunological function outlined by Kudo et al. (2019), 
both of which have substantial impact on transmission and susceptibility. The linear regression of the estimated 
breakpoints versus annual average humidity shown in Figure 4 further supports this argument. In locations where 
the annual average humidity is higher, the humidity values associated with the breakpoints, that this analysis 
argues signal the onset of the highest weeks of influenza incidence, is also higher. This linear relationship and 
insight into potential local thresholds could be used to enhance current prediction models. Additionally, it could 

Table 1 
Continued

Region State Abbreviation Estimated breakpoint (kg/kg) Adjusted R-squared value

West California CA 0.00446 0.994

Nevada NV 0.00293 0.899

West North Central Montana MT 0.00294 0.631

North Dakota ND 0.00274 0.609

Nebraska NE 0.00339 0.792

South Dakota SD 0.00306 0.588

Wyoming WY 0.00233 0.893

Note. The states are grouped into the NOAA regions used for the ANOVA analysis.

Figure 3. Each box represents a state, denoted by its state abbreviation (state abbreviations are listed in Table 1 for reference), and is colored according to the humidity 
value (kg/kg) at the breakpoint which was determined with segmented regression. Wyoming has the lowest breakpoint humidity value and Florida has the highest.



GeoHealth

SERMAN ET AL.

10.1029/2021GH000469

8 of 12

be used to identify a more precise “environmental flu season” that is dictated by real-time humidity conditions as 
opposed to a general time period of October to March.

This finding is partially in agreement with the work of Barreca and Shimshack  (2012). Barreca and Shim-
shack (2012) performed a regression analysis for 30 years of humidity and influenza mortality data for a collec-
tion of urban counties in the US. They found that the strength of the association with humidity and temperature 
depended on the counties' average humidity conditions over the course of the year. Specifically, they found that 
for counties that were considered to have “high” average humidity during the year, associations were stronger 
between mortality and low winter humidity. In “low” average humidity counties and those that were generally 
colder, mortality was more strongly correlated with temperature. While we are not considering mortality data, the 
differences between “high” average humidity versus “low” average humidity counties is notable.

Furthermore, Tamerius et al. (2019) also suggest that seasonal characteristics of influenza vary by regional cli-
matological characteristics across the US. Their investigation of “cross-seasonal,” or summer transmission, found 

Figure 4. Average annual humidity values (kg/kg) for each state (x) versus the extracted breakpoint for humidity (y) with a simple linear association (blue line).
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that the country's more tropical locales, such as Florida and Hawaii, had higher cross-seasonal transmission and 
lower seasonal transmission. This may explain the low incidence values seen for peak weeks in our analysis for 
Florida and the more gradual increases in slope as the influenza seasons progress in the South and Southeast 
when compared with the West coast of the country where there are sharp increases in slope at humidity levels 

Region comparison

Difference 95% confidence interval Adjusted

In means Lower Upper p-value

East North Central-Central −0.00057 −0.00253 0.00139 0.988

Northeast-Central −0.00002 −0.00153 0.00149 1.000

Northwest-Central −0.00080 −0.00295 0.00136 0.949

South-Central 0.00172 −0.00002 0.00346 0.054 .

Southeast-Central 0.00216 0.00042 0.00390 0.006 **

Southwest-Central −0.00090 −0.00285 0.00106 0.847

West-Central −0.00050 −0.00300 0.00201 0.999

West North Central-Central −0.00130 −0.00312 0.00053 0.352

Northeast-East North Central 0.00055 −0.00127 0.00238 0.984

Northwest-East North Central −0.00023 −0.00261 0.00216 1.000

South-East North Central 0.00229 0.00027 0.00430 0.016 *

Southeast-East North Central 0.00273 0.00072 0.00475 0.002 **

Southwest-East North Central −0.00033 −0.00253 0.00188 1.000

West-East North Central 0.00008 −0.00263 0.00278 1.000

West North Central-East North Central −0.00073 −0.00282 0.00137 0.964

Northwest-Northeast −0.00078 −0.00281 0.00125 0.937

South-Northeast 0.00174 0.00015 0.00332 0.023 *

Southeast-Northeast 0.00218 0.00059 0.00376 0.002 **

Southwest-Northeast −0.00088 −0.00270 0.00094 0.808

West-Northeast −0.00048 −0.00288 0.00192 0.999

West North Central-Northeast −0.00128 −0.00296 0.00041 0.267

South-Northwest 0.00252 0.00031 0.00472 0.015 *

Southeast-Northwest 0.00296 0.00075 0.00516 0.002 **

Southwest-Northwest −0.00010 −0.00248 0.00228 1.000

West-Northwest 0.00030 −0.00255 0.00315 1.000

West North Central-Northwest −0.00050 −0.00278 0.00178 0.998

Southeast-South 0.00044 −0.00136 0.00224 0.996

Southwest-South −0.00262 −0.00463 −0.00060 0.004 **

West-South −0.00221 −0.00476 0.00034 0.134

West North Central-South −0.00301 −0.00491 −0.00112 <0.001 ***

Southwest-Southeast −0.00306 −0.00507 −0.00104 <0.001 ***

West-Southeast −0.00266 −0.00520 −0.00011 0.036 *

West North Central-Southeast −0.00346 −0.00535 −0.00157 0.000 ***

West-Southwest 0.00040 −0.00230 0.00311 1.000

West North Central-Southwest −0.00040 −0.00249 0.00170 0.999

West North Central-West −0.00080 −0.00341 0.00181 0.983

Note. Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1. The differences in mean breakpoints between pairwise combinations, lower and upper limits 
of the 95% confidence interval, as well as the statistical significance of the comparisons are listed.

Table 2 
Results From the Tukey Honest Significant Difference Test on All of the Possible Regional Pairwise Combinations
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lower than the breakpoint (Figure 2). Generally, our results are in agreement with the suggestion that there is a 
regional or localized trend to the influenza-climate interaction. This finding is important as it could ultimately 
lead to an opportunity for more generalized regional predictions in addition to more localized state predictions. 
Identifying these regional transmission patterns could better inform public health campaigns and the distribution 
bulletins about increased influenza activity.

Further work is needed to determine whether the trends seen in this analysis are influenced by population char-
acteristics or additional underlying climatic conditions. Although there is increasing evidence for the impacts of 
local climate (Barreca & Shimshack, 2012; Dalziel et al., 2018; Shaman et al., 2010; Soebiyanto & Kiang, 2014; 
Tamerius et  al.,  2019; Towers et  al.,  2013), interdisciplinary research has also shown network and mobility 
functions (Brownstein et  al.,  2006; Chao et  al.,  2010; Gao et  al.,  2015; Grais & Ellis,  2004; Maliszewski & 
Wei, 2011; Pei et al., 2018), demographics (Chitnis et al., 2010; Gounder et al., 2014; Kwan-Ghett et al., 2009; 
Placzek & Madoff, 2014; Suryaprasad et al., 2013; Thompson et al., 2011; Wegner & Naumova, 2011), antigenic 
characteristics (Du et al., 2017; Towers et al., 2013), as well as socioeconomic status (Chandrasekhar et al., 2017; 
Hadler et al., 2016; Kumar et al., 2015; Ponnambalam et al., 2011; Sloan et al., 2015; Tam et al., 2014) impact 
our vulnerability to contracting influenza, our prevention behaviors, and our perception of risk. Additional inter-
disciplinary work, similar to that of Chattopadhyay et al. (2018), is needed to parse out the complex, non-linear 
transmission dynamics of the timing, magnitude, and spatial distribution of influenza outbreaks, which are not 
addressed by the regression framework used in this analysis. Additionally, more flexible, polynomial regressions 
may improve upon the results presented here. Future studies should also consider the spatial scale at which this 
analysis may be applicable, as another limitation of this study is its use of data aggregated at the state-level. 
State-level data, particularly for humidity, can not address intrastate variability in environmental conditions.

Results from this study improve our understanding of the significance of humidity in the transmission of influ-
enza. They also reinforce the need for local and regional conditions to be considered in this relationship. Un-
derstanding the variations in this interaction at multiple levels of spatial and temporal resolution, as well as for 
varying locales, will help researchers to produce more accurate forecasts of seasonal influenza onset and provide 
health officials with better information prior to outbreaks.
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