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Abstract: There are many beam models to simulate the variable thickness functionally graded
material (FGM) beam, each model has advantages and disadvantages in computer aided engineering
of the mechanical behavior of this beam. In this work, a new model of beam is presented to study the
mechanical static bending, free vibration, and buckling behavior of the variable thickness functionally
graded material beams. The formulations are based on modified first order shear deformation theory
and interpolating polynomials. This new beam model is free of shear-locking for both thick and thin
beams, is easy to apply in computation, and has efficiency in simulating the variable thickness beams.
The effects of some parameters, such as the power-law material index, degree of non-uniformity
index, and the length-to-height ratio, on the mechanical behavior of the variable thickness FGM beam
are considered.

Keywords: Model; modified first order shear deformation; variable thickness beam; FGM; finite
element method

1. Introduction

Beams are used widely in engineering fields, such as aerospace, mechanical, and civil engineering,
and so on. Researchers have proposed various analytical and numerical methods to analyze static
bending, free vibration, and buckling of beams. Chakrabortyet al. [1] developed a new beam element
model based on first order shear deformation theory (FSDT) for static bending, free vibration of
thermo-elastic FGM beams. Khan et al. [2] simulated the static bending and free vibration analysis of
FGM beams using the finite element method (FEM) and zig-zag theory. Wang et al. [3] and Lee et al. [4]
applied Euler-Bernoulli beam theory to analyze the free vibration of FGM beams. The nonlinear
bending of a two-directionally FGM beam was considered by Li et al. [5] using the generalized
differential quadrature method (GDQM). Jafari et al. [6] used analytical approximation for nonlinear
vibration analysis of Euler-Bernoulli beams. Alshorbagy et al. [7] used FEM to analyze free vibration
of a Euler-Bernoulli beam made of FGM. Oreh et al. [8] employed FEM for stability and free vibration
analysis of a Timoshenko beam. Li et al. [9] applied an analytical solution to investigate relations
between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams.
Farhatnia et al. [10] used first order shear deformation theory and GDQM for buckling analysis of FGM
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thick beams. Kien et al. [11] used the analytical solution for static bending, free vibration, and buckling
analysis of axially loaded FGM beams. Sina et al. [12] used FSDT and the analytical solution for free
vibration analysis of FGM beams. To avoid shear correction factor in the first order shear deformation,
the higher-order shear deformation theory (HSDT) was developed. Static bending of FGM beams
was investigated by Kadoli et al. [13] using HSDT and FEM. Thai et al. [14] applied the analytical
solution and HSDT for bending and free vibration analysis of FGM beams. The nonlinear bending
of FGM beams was studied by Gangnian et al. [15] using HSDT and the differential quadrature
method. Celebi et al. [16] applied different beam theories for free vibration analysis of FGM beams.
Hadji et al. [17] used exponential shear deformation theory and the analytical solution to study
static bending and free vibration of FGM beams. Based on different higher-order beam theories,
Simsek [18] analyzed the fundamental frequency of FGM beams. Ghumare et al. [19] developed a
new fifth-order shear and normal deformation theory to analyze static bending and elastic buckling of
P-FGM beams. Li et al. [20] used higher-order theory for static and dynamic analyses of functionally
graded beams. Li et al. [21] have developed an exact frequency equation for free vibration analysis
of axially FGM beams. According to the mentioned studies, although HSDT has overcome the shear
locking phenomenon without the correction factor, it increases the number of degrees of freedom,
has complex formulations, and still needs reduced integration. In addition, due to the simplicity of
FSDT, it has been modified and improved by many scientists, so that a modified first order shear
deformation is employed in this study to developed a new beam model.

In practical projects, when using beams with variable thickness, the system not only is lighter,
but also the aesthetics of the structures can be enhanced. Motaghian et al. [22] developed a new Fourier
series solution for free vibration analysis of non-uniform beams resting on elastic foundation using
Euler-Bernoulli beam theory. Shahba et al. [23] applied the differential transform element method
and differential quadrature element method of lowest order to simulate the free vibration analysis of
tapered Euler-Bernoulli beams made of axially FGM. The large displacement of a tapered cantilever
FGM beam was studied by Kien [24,25] using FEM. Hassanabadi et al. [26] investigated free and
forced vibration of non-uniform isotropic beams using orthonormal polynomial series expansion.
Tong et al. [27] developed an analytical solution for free and forced vibrations analysis of stepped
Timoshenko beams and used approximate analysis of generally non-uniform Timoshenko beams.
Tang et al. [28] developed an exact frequency equation for free vibration analysis of exponentially
non-uniform functionally graded Timoshenko beams. Huang et al. [29] analyzed the free vibration
of axially FGM Timoshenko beams with a non-uniform cross-section using a power series function.
Calim [30] applied the complementary functions method for transient analysis of axially FGM beams.
Abadi et al. [31] investigated the free vibration of variable cross-section beams using the asymptotic
solution. Xu et al. [32,33] provided elasticity solutions to analyze the static bending of a variable
thickness beam and multi-span beams with variable thickness under static loads. Banerjee et al. [34]
applied the dynamic stiffness method to study free vibration of rotating tapered beams. Zenkour [35]
studied the elastic behavior of a variable thickness beam using the analytical solution and FSDT.
Lin et al. [36] analyzed geometrically nonlinear bending of variable thickness FGM beams using
the meshless method. Nevertheless, the analytical method is an inefficient and complex method for
studying variable thickness structures, while FEM proves a convenient, simple, and highly effective
method. However, locking can occur with the basic element types when using FEM. To overcome shear
locking, reduced integration was used, but reduced integration can cause unwanted behavior, which is
the spurious mode or hour-glassing in a mesh of multiple elements [37]. Another way to prevent shear
locking is the method of incompatible modes. The incompatible mode elements can be formulated
as low-order enhanced strain elements, in which strains (those corresponding to the incompatible
displacements) are added to the usual strains derived from the compatible displacements. Although the
incompatible mode elements are best suited to model pure bending, incompatible mode elements can
cause spurious modes when geometrically nonlinear displacement analysis with small displacements
and small strain conditions [38]. On the other hand, the use of incompatible mode elements can
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provide difficulties in large strain analysis; for such an analysis, the displacement/pressure (or u/p
formulation) elements are more reliable and effective [37,39].

FGM is microscopically inhomogeneous composites fabricated from a mixture of ceramics and
metals. FGM plates, beams, and shells can be considered as a multi-coated thin-walled composite
mechanical components structures, making it possible to obtain specific mechanical properties, such
as superior stiffness-to-weight ratio, high strength, and high damping. The damping efficiency of
the coating systems was discussed by some researchers [40–45]. In these works, the theoretical and
experimental results show that the coating structure obtained the best balance between the strength
and the damping capacity, which is important for reducing the mechanical vibrations. Due to its
outstanding features, the FGM has been extensively used in engineering applications, including nuclear
power plants, spacecraft, turbine engines, and automotive and biomechanical applications [46–51].
Because of an increasing use of the FGM for many engineering applications nowadays, further studies
for mechanical behaviours of structures made of FGM are necessary.

The main purpose of this contribution is to develop a new beam model based on modified first
order shear deformation theory. The proposed beam model is simple in its formulation and free of
shear locking without reduced integration. The proposed beam model is used for static bending, free
vibration, and buckling analysis of a variable thickness beam made of FGM to demonstrate its accuracy
and effectiveness.

The organization of this paper is as follows. In Section 2, a brief review of first order shear
deformation theory is presented. In Section 3, a modified first order shear deformation for the
beam model is given. Next, in Section 4, based on modified first order shear deformation and
interpolating polynomials, a new beam model is developed. In addition, the element stiffness matrix,
element mass matrix, and element force vector are constructed. Section 5 focuses on verification and
numerical analysis for static bending, free vibration, and buckling responses of variable thickness FGM
beams. In addition, the effects of some parameters on the mechanical behavior of the FGM beam are
investigated. In the conclusion section, some discussions and highlights of the proposed beam model
are given.

2. Basic Equations of First Order Shear Deformation Theory of a Timoshenko Beam

The axial displacement, u, and the transverse displacement, w, at any point based on FSDT of a
Timoshenko beam are given by: {

u(x, y, z) = −zψ(x)
w(x, y) = w0(x)

(1)

where w0 is the transverse displacement at the middle axial beam, and ψ is the angle of
cross-section rotation.

In small deformation, we have:
∂w
∂x

= ψ + θ (2)

The bending moment resultant and shear force are taken by:

M = D
∂ψ

∂x
, Q = S

(
∂w
∂x

+ ψ

)
(3)

in which:
D = EI, S = kGA (4)

is flexural rigidity and shear rigidity, respectively, E is the Young’s modulus and G = E/[2(1 + ν)] is
the shear modulus, ν is Poison’s ratio, k is the shear correction factor, and I and A are, respectively,
the second moment of area and cross-section area of the beam.
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Equilibrium of moment and transverse forces leads to:

∂M
∂x
−Q = 0,

∂Q
∂x

= 0 (5)

Substituting Equations (3) and (4) into (5) results in:

D
S

∂2ψ

∂x2 −
(

∂w
∂x + ψ

)
= 0,

∂2w
∂x2 + ∂ψ

∂x = 0
(6)

3. Modification First Order Shear Deformation for the New Beam Model

Assuming that the total deflection consists of bending deflection and a contribution of transverse
shear, the angles of the cross-section slope are the result of pure bending angles and shear angles as
shown in Figure 1:

w = wb + ws, ψ = −∂wb
∂x

+ θ (7)

the subscripts, b and s, denote the bending and shear deflection, respectively.

Materials 2019, 11, x FOR PEER REVIEW  4 of 26 

 

0, 0
M Q

Q
x x

 
− = =

 
 (5) 

Substituting Equations (3) and (4) into (5) results in: 

2

2

2

2

0,

0

D w

S xx

w

xx






  
− + = 

  

 
+ =


 (6) 

3. Modification First Order Shear Deformation for the New Beam Model 

Assuming that the total deflection consists of bending deflection and a contribution of 

transverse shear, the angles of the cross-section slope are the result of pure bending angles and shear 

angles as shown in Figure 1: 

, b

b s

w
w w w

x
 


= + = − +


 (7) 

the subscripts, b and s, denote the bending and shear deflection, respectively. 

)a )b

)c )d

z
b sw w w= +

x x

z



x

zz

sw

x

bw
O O

O O

bw

x
 


= − +



bw

x



= −



 

Figure 1. The beam model with bending and shear deflection. (a) Total deflection and rotation, (b) 

pure bending and rotation, (c) transverse shear deflection, (d) shear angle rotation. 

By substituting Equation (7) into Equation (6) it is possible to separate the variables of two 

different displacement fields: 

2 2

2 2

b

s

wD D
w

x S Sx x




  
+ = − 

   
 (8) 

2

2

sw

xx

 
= −

  
(9) 

Equation (8) and Equation (9) have three unknown components, ,b sw w , and  , are satisfied if 

bw  = −  and sw  = . That implies b sw w= −  and 0b sw w w= + = , that solution is trivial since   is 

an arbitrary function. Therefore, Equation (8) and (9) have a realistic solution when: 

Figure 1. The beam model with bending and shear deflection. (a) Total deflection and rotation, (b) pure
bending and rotation, (c) transverse shear deflection, (d) shear angle rotation.

By substituting Equation (7) into Equation (6) it is possible to separate the variables of two
different displacement fields:

∂

∂x

[
D
S

∂2wb
∂x2 + ws

]
=

D
S

∂2θ

∂x2 − θ (8)

∂2ws

∂x2 = − ∂θ

∂x
(9)

Equation (8) and Equation (9) have three unknown components, wb, ws, and θ, are satisfied if
w′b = −θ and w′s = θ. That implies wb = −ws and w = wb + ws = 0, that solution is trivial since θ is
an arbitrary function. Therefore, Equation (8) and (9) have a realistic solution when:

D
S

∂2wb
∂x2 + ws = 0 (10)

Then:

ws = −
D
S

∂2wb
∂x2 (11)
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Substituting Equation (11) into Equation (9), the total deflection is:

w = wb −
D
S

∂2wb
∂x2 (12)

4. The Variable Thickness FGM Beam Element Model

The variable thickness FGM beam with length, L, as depicted in Figure 2 is considered.

Materials 2019, 11, x FOR PEER REVIEW  5 of 26 

 

2

2
0b

s

wD
w

S x


+ =


 (10) 

Then: 

2

2

b

s

wD
w

S x


= −


 (11) 

Substituting Equation (11) into Equation (9), the total deflection is: 

2

2

b

b

wD
w w

S x


= −


 (12) 

4. The Variable Thickness FGM Beam Element Model 

The variable thickness FGM beam with length, L , as depicted in Figure 2 is considered. 

Ceramic

Metal

0 /2h

0h
( )h x

x

A

A

b

A A−

h

 

Figure 2. Modeling of variable thickness FGM beam. 

The height of the beam varies along the axial of beam:  

( )h h x=  (13) 

The material of the beam is made of two partial materials, those are metal and ceramic. The 

ratio of values of materials assumes that it varies through the z -direction with the power-law 

[46–50]: 

1
, 1

2

p

c c m

z
V V V

h

 
= + + = 
 

 (14) 

where ,c mV V  are, respectively, the volume fraction of the ceramic and metal, p  is the gradient 

index of the volume fraction, and ( )h h x=  is the thickness of the beam. The subscripts, ,c m , 

denote the ceramic and metal constituents, respectively. 

The effective material properties, ,P  such as Young’s modulus, ,E  and mass density,   are 

expressed using the rule of mixture [46–50]: 

( )( ) c m c mP z P P V P= − +  (15) 

The Poisson’s ratio,  , is assumed constant in this study. 

A two-node beam element with two degrees of freedom per node is expressed here. The 

bending deflection may be expressed as follows: 

b bw = P a  (16) 

where a  is the coefficient vector with unknown terms ia  of the approximation polynomial, and 

bP  is bending polynomial, which may be demonstrated as: 

Figure 2. Modeling of variable thickness FGM beam.

The height of the beam varies along the axial of beam:

h = h(x) (13)

The material of the beam is made of two partial materials, those are metal and ceramic. The ratio
of values of materials assumes that it varies through the z-direction with the power-law [46–50]:

Vc =

(
z
h
+

1
2

)p
, Vc + Vm = 1 (14)

where Vc, Vm are, respectively, the volume fraction of the ceramic and metal, p is the gradient index
of the volume fraction, and h = h(x) is the thickness of the beam. The subscripts, c, m, denote the
ceramic and metal constituents, respectively.

The effective material properties, P, such as Young’s modulus, E, and mass density, ρ are expressed
using the rule of mixture [46–50]:

P(z) = (Pc − Pm)Vc + Pm (15)

The Poisson’s ratio, ν, is assumed constant in this study.
A two-node beam element with two degrees of freedom per node is expressed here. The bending

deflection may be expressed as follows:
wb = Pba (16)

where a is the coefficient vector with unknown terms ai of the approximation polynomial, and Pb is
bending polynomial, which may be demonstrated as:

Pb =
[

1 ξ ξ2 ξ3
]

(17)

where ξ = 2x−le
le

is a non-dimensional coordinate.
The shear deflection is taken by:

ws = Psa (18)

According to (11), the terms of shear polynomial are:

Ps = −
[

0 0 2α 6αξ
]

(19)
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α =
4D
Sl2

e
(20)

The total deflection of the beam may be presented in the following form:

w = (Pb + Ps)a (21)

The angles of rotation of the face sheet beam can be expressed as:

ψ = − ∂Pb
∂x a = − 2

le
∂Pb
∂ξ a

= − 2
le

[
0 1 2ξ 3ξ2

]
a

(22)

Substituting the values of the node coordinate, ξi into Equation (21) and Equation (22), the nodal
displacement of beam element is obtained as:

δ = Ca (23)

where δT =
[

w1 ψ1 w2 ψ2

]
and:

C =
1
le


le −le (1− 2α)le (6α− 1)le
0 −2 4 −6
le le (1− 2α)le (1− 6α)le
0 −2 −4 −6

 (24)

The coefficient vector, a, can be determined from nodal displacement vector:

a = C−1δ (25)

Substituting Equation (25) into Equation (16) and (18), the bending and shear deflection can be
presented as follows:

wb = PbC−1δ (26)

ws = PsC−1δ (27)

The total deflection of the beam may be expressed as:

w = (Pb + Ps)C−1δ = PC−1δ (28)

where:
P = Pb + Ps (29)

4.1. The Element Stiffness Matrix

The strain energy of bending deflection may be expressed as:

Πe
b =

1
2

∫ le

0

∫ h(x)/2

−h(x)/2
κT

b

[
E(z)(z− hn(x))2

]
κbdzdx (30)

where [κ]bκb is the bending curvature, which can be presented in the form:

κb =

[
−∂2wb

∂x2

]
= −∂2Pb

∂x2 C−1δ = − 4
l2
e

∂2Pb
∂ξ2 C−1δ (31)



Materials 2019, 12, 404 7 of 23

Given:

Hb =
4
l2
e

∂2Pb
∂ξ2 (32)

Lb = HbC−1 (33)

Then:
κb = −Lbδ (34)

By taking Equation (34) into account in Equation (30), the strain energy of bending is obtained as:

Πe
b =

1
2

le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
δT LT

b

[
E(z)(z− hn(ξ))

2
]
Lbδdzdξ (35)

The bending stiffness matrix of the beam element may be determined by:

Ke
b =

le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
LT

b

[
E(z)(z− hn(ξ))

2
]
Lbdzdξ (36)

Substituting Equation (33) into Equation (36), yields:

Ke
b = C−TBbC−1 (37)

where:

Bb =
le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
HT

b

[
E(z)(z− hn(ξ))

2
]
Hbdzdξ (38)

The strain energy of shear deflection may be expressed as:

Πe
s =

1
2

∫ le

0

∫ h(x)/2

−h(x)/2
γT
[

E(z)
2(1 + ν)

]
γdzdx (39)

The shear strain vector is obtained from Equation (3) and Equation (7):

γ =

[
∂ws

∂x

]
=

∂Ps

∂x
C−1δ =

2
le

∂Ps

∂ξ
C−1δ (40)

Given:
Hs =

2
le

∂Ps

∂ξ
(41)

Ls = HsC−1 (42)

The strain energy of shear deflection may be expressed as:

Πe
s =

1
2

le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
δTLT

s

[
E(z)

2(1 + ν)

]
Lsδdzdξ (43)

The shear stiffness matrix of the beam element is obtained as:

Ke
s =

le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
LT

s

[
E(z)

2(1 + ν)

]
Lsdzdξ (44)

By substituting Equation (33) into Equation (36), yields:

Ke
s = C−TBsC−1 (45)
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In which:

Bs =
le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
HT

s

[
E(z)

2(1 + ν)

]
Hsdzdξ (46)

According to the account, the element stiffness matrix is:

Ke = Ke
b + Ke

s = C−T(Bb + Bs)C−1 (47)

Because Ke
s depends on α = 4D/Sl2

e , when the thickness of the beam is very small, then α ≈ 0
and Ke

s ≈ 0, and the transverse shear effects vanish, and, as a consequence, the proposed beam model
is free of shear locking. For the functionally graded materials, the Poisson’s ratio is smaller than 0.4,
so this model has no volume locking.

4.2. The Element Mass Matrix

The kinetic energy of beam element is obtained as:

Ue =
1
2

∫ le

0

∫ h(x)/2

−h(x)/2
ρ(z).w2dzdx =

1
2

∫ le

0

∫ h(x)/2

−h(x)/2
δ

T
C−TPTρ(z)PC−1δdzdx (48)

According to Equation (48), the element mass matrix is obtained as:

Me =
∫ le

0

∫ h(x)/2

−h(x)/2
C−TPTρ(z)PC−1dzdx (49)

or:

Me =
le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
C−TPTρ(z)PC−1dzdξ (50)

Given:

I0 =
le
2

∫ 1

−1

∫ h(ξ)/2

−h(ξ)/2
PTρ(z)Pdzdξ (51)

The element mass matrix of the beam element is taken by:

Me = C−TI0C−1 (52)

4.3. The Element Geometric Stiffness Matrix

At the critical load, the beam takes the buckled form as shown in Figure 3.
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According to Figure 3, the axial shortening of the beam can be taken as follows:

ds =
√

dx2 + dw2

≈ dx + 1
2

(
dw
dx

)2
dx

⇒ du = 1
2

(
dw
dx

)2
dx

(53)
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The strain energy of an axial compressed load, Q, can be obtained as follows:

Ve =
Q
2

∫ l

0

(
dw
dx

)2
dx =

2
le

Q
2

∫ 1

−1

(
dw
dξ

)2
dξ (54)

As a result, the element geometric stiffness matrix may be expressed as follows:

Ke
g =

2
le

∫ 1

−1
C−T

[
∂P
∂ξ

]T
Q
[

∂P
∂ξ

]
C−1dξ (55)

Given:

Hg =
2
le

∂2Pb
∂ξ2 (56)

G0 =
2
le

∫ 1

−1
HT

g QHgdξ (57)

Now, the element geometric stiffness matrix is hence given by:

Ke
g = C−TG0C−1 (58)

4.4. The Element Load Vector

The work done by the transverse distribution load, q, is expressed as follows:

We =
∫ le

0
qδTC−TPTdx (59)

The element load vector may be obtained as:

Fe =
∫ le

0
qC−TPTdx =

2
le

∫ 1

−1
qC−TPTdξ (60)

4.5. Static Bending Solution

For static bending analysis, the nodal displacements can be obtained by solving the
following equation:

Kδ = F (61)

where K, F are, respectively, the global stiffness matrix and global force vector of the beam.

4.6. Free Vibration Solution

The equation of motion for free vibration analysis of the beam is obtained as follows:

M
¨
δ+ Kδ = 0 (62)

where M is the global mass matrix of the beam.
For free vibration analysis, assuming that:

δ = δ.eiωt (63)

By substituting Equation (63) into Equation (62), the natural frequency is obtained by solving the
following eigenvalue equation:

(K− λM)δ = 0 (64)

with
√

λ = ω denotes the natural frequency of the beam.
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4.7. Buckling Solution

For buckling analysis and determination of the magnitude of a static compressive load that will
produce beam buckling, the following eigenvalue equation will be achieved:(

K−QcrKg
)
δ = 0 (65)

where Kg is the global geometric stiffness matrix of the beam.
The lowest positive eigenvalue of this equation is the magnitude of the critical buckling load, Qcr,

of the beam and the corresponding eigenvector is the deformed shape of the buckled beam.

5. Numerical Results and Discussion

5.1. Static Bending Analysis

5.1.1. Verification

To verify the proposed beam model, in this section, the comparison of static deflection of an
isotropic beam with variable thickness and an FGM beam with constant thickness is investigated.

Firstly, a simple-simple supported (S-S) isotropic beam with length, L, and variable thickness is
considered here, the beam is under uniform distribution load, q, and the material properties of the
beam are E = 20.83 Msi, G = 3.71 Msi, ν = 0.44. The thickness of the beam varies along the x-direction
by the following formula [36]:

h(x) = h0

[
1 + λ

(
2x− L

L

)n]
(66)

where h0 is the height at the mid-span of the beam, λ is a small parameter, and n is the degree of
non-uniformity. The non-dimensional mid-span deflection of the beam is calculated by the following
formula [35]:

w =
100Eh3

0
12qL4 w

(
L
2

)
(67)

The comparison of non-dimensional mid-span deflection of an S-S supported isotropic beam
using the proposed beam model with the results of Zenkour [35] and numerical results using Abaqus
FE software packages (SIMULIA, Zaltbommel, Netherlands) are given in Table 1.

Table 1. Comparison of non-dimensional mid-span deflection of an S-S supported isotropic beam for
different values of the thickness parameter, λ, n with L/h0 = 10.

λ
n = 1 n = 2 n = 3

[35] Abaqus Present [35] Abaqus Present [35] Abaqus Present

0.05 1.3370 1.3500 1.3405 1.3111 1.3237 1.3144 1.3349 1.3356 1.3385
0.10 1.3441 1.3584 1.3493 1.2889 1.3021 1.2920 1.3359 1.3368 1.3395
0.20 1.3727 1.3967 1.3849 1.2479 1.2626 1.2508 1.3400 1.3416 1.3437
0.30 1.4204 1.4625 1.4497 1.2103 1.2279 1.2138 1.3467 1.3500 1.3510
0.40 1.4872 1.5534 1.5502 1.1747 1.1956 1.1801 1.3561 1.3428 1.3632

Secondly, an Al/Al2O3 beam with a constant thickness under a uniform distribution load,
q, is investigated. The material properties of aluminum (as metal) and alumina (as ceramic) are [14]:

Al (metal) : Em = 70 GPa, νm = 0.3, ρm = 2702 kg/m3

Al2O3 (ceramic) : Ec = 380 GPa, νc = 0.3, ρc = 3960 kg/m3

The non-dimensional deflection at the central point of the beam for different values of the
length-to-height ratio, L/h, is given by [14]:

w =
100Emh3

qL4 w
(

L
2

)
(68)
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where Em is the Young’s modulus of metal.
The comparison of non-dimensional deflection at the central point of the beam using the proposed

beam model with the results of Thai et al. [14] (using the sinusoidal beam theory (SBT) and the
hyperbolic beam theory (HBT)) and the results of Li et al. [20] (using analytical solutions) are listed in
Table 2.

Table 2. Comparison of non-dimensional deflection at the central point of the S-S supported FGM
beam with constant thickness and different values of the ratio of L/h = 5,, L/h = 20.

p
L/h = 5 L/h = 20

[20] SBT [35] HBT [35] Present [20] SBT [35] HBT [35] Present

0 3.1657 3.1649 3.1654 3.1657 2.8962 2.8962 2.8962 2.8962
0.5 4.8292 4.8278 4.8285 4.8348 4.4645 4.4644 4.4644 4.4648
1 6.2599 6.2586 6.2594 6.2599 5.8049 5.8049 5.8049 5.8049
2 8.0602 8.0683 8.0675 8.0303 7.4415 7.4421 7.4420 7.4397
5 9.7802 9.8367 9.8271 9.6483 8.8151 8.8188 8.8181 8.8069
10 10.8979 10.9420 10.9375 10.7194 9.6879 9.6908 9.6905 9.6767

According to the two above comparisons, it can be observed that the values obtained using the
proposed beam model are in good agreement with the published data.

5.1.2. Numerical Results for Static Bending Analysis

In this section, we apply this model to explore the static bending response of a variable thickness
FGM beam with length, L, the height at the left-hand end, h0, subject to uniform distribution load,
q. The boundary conditions of the beam are simple-simple supported (S-S) and clamped-clamped
supported (C-C).

For simple supported: w = 0 at x = 0, x = L.
For clamped supported: w = 0, ψ = 0 at x = 0, x = L.
The Young’s modulus, mass density, and Poisson’s ratio are:
Al (metal): Em = 70 GPa, ρm = 2702 kg/m3, νm = 0.3.
Al2O3 (ceramic): Ec = 380 GPa, ρc = 3960 kg/m3, νc = 0.3.
The height of the beam varies along the x-direction as the following formula:

h(x) =
h0

2

[
1 +

(
L− x

L

)n]
(69)

where n is the degree of non-uniformity.
The maximum non-dimensional transverse deflection of the beam is expressed by:

wmax =
100Emh3

0
qL4 wmax (70)

The maximum non-dimensional transverse deflection of the beam with different values of index,
p = 0, 0.5, 1, 2, 5, 10, index n = 0, 0.5, 1, 2 (n = 0 corresponding to the constant thickness beam),
and the length-to-height ratio, L/h0 = 10, 20, 50, 100, is listed in Table 3, Figures 4–7.

To illustrate the effects of the power-law index, p, and the degree of non-uniformity, n, on the
bending response of a variable thickness FGM beam subjected to uniform load, the non-dimensional
transverse deflections of the beam are given in Table 3 and plotted in Figures 4–7.

According to Table 3 and Figures 4–7, it shows that the maximum non-dimensional transverse
deflection of the beam increases as a function of the power-law index, p. It means that the richer
metal FGM beam is more flexible than the richer ceramic FGM beam. The maximum non-dimensional
transverse deflection of the beam increases rapidly when the power-law index, p, increases in the
range of 0÷ 1.
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Table 3. Maximum non-dimensional transverse deflection, wmax, of a variable thickness beam.

L/h0 p
S-S C-C

n = 0 n = 0.5 n = 1 n = 2 n = 0 n = 0.5 n = 1 n = 2

10

0 2.9501 5.0428 7.6450 12.4967 0.6475 1.2046 1.5965 2.1175
0.5 4.5388 7.7639 11.7761 19.2590 0.9867 1.8432 2.4462 3.2483
1 5.8959 10.0885 15.3053 25.0363 1.2763 2.3884 3.1717 4.2139
2 7.5578 12.9313 19.6172 32.0881 1.6376 3.0634 4.0674 5.4034
5 8.9752 15.3402 23.2520 38.0049 1.9745 3.6699 4.8622 6.4472

10 9.8853 16.8831 25.5737 41.7764 2.1995 4.0688 5.3818 7.1264

20

0 2.8962 4.9748 7.5688 12.4132 0.5936 1.1383 1.5228 2.0363
0.5 4.4648 7.6707 11.6719 19.1450 0.9127 1.7523 2.3451 3.1368
1 5.8049 9.9740 15.1774 24.8963 1.1853 2.2770 3.0475 4.0769
2 7.4397 12.7829 19.4513 31.9066 1.5194 2.9186 3.9062 5.2256
5 8.8069 15.1288 23.0158 37.7459 1.8063 3.4628 4.6323 6.1939

10 9.6767 16.6219 25.2822 41.4567 1.9910 3.8118 5.0969 6.8128

50

0 2.8812 4.9578 7.5456 12.4021 0.5785 1.1233 1.5022 2.0150
0.5 4.4441 7.6483 11.6397 19.1344 0.8920 1.7328 2.3168 3.1082
1 5.7794 9.9470 15.1372 24.8863 1.1598 2.2536 3.0127 4.0421
2 7.4066 12.7482 19.3989 31.8952 1.4864 2.8883 3.8610 5.1806
5 8.7597 15.0791 22.9408 37.7255 1.7591 3.4164 4.5675 6.1296

10 9.6183 16.5627 25.1875 41.4396 1.9326 3.7526 5.0161 6.7344

100

0 2.8790 4.9590 7.5518 12.4096 0.5764 1.1247 1.5013 2.0129
0.5 4.4413 7.6516 11.6519 19.1490 0.8890 1.7356 2.3162 3.1058
1 5.7758 9.9518 15.1541 24.9056 1.1561 2.2575 3.0123 4.0393
2 7.4018 12.7551 19.4218 31.9211 1.4816 2.8933 3.8607 5.1771
5 8.7529 15.0879 22.9710 37.7591 1.7524 3.4219 4.5666 6.1242

10 9.6098 16.5766 25.2311 41.4862 1.9242 3.7590 5.0162 6.7286
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Figure 4. The non-dimensional transverse deflection of S-S and C-C supported FGM beam with
different values of index p when L/h0 = 10 and n = 1.

The influence of index n on the maximum non-dimensional transverse deflection of the beam
is shown in Table 3, Figures 4–7. By increasing index n, the maximum non-dimensional transverse
deflection of the beam increases. When index n increases in the range of 0÷ 1, the transverse deflection
of the beam increases rapidly. When n = 0 and n = ∞, the heights of the beam are constant, h(x) = h0

and h(x) = h0/2, so that the maximum deflection position appears at the mid-span of the beam.
In addition, when the length-to-height ratio, L/h0, increases, the transverse deflection of the beam

increases. The deflection affected by the boundary condition on the static bending response of the
beam is shown in Figures 4 and 5. In general, the deformation shape of the variable thickness beam is
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not symmetric. The transverse deflection of the C-C supported beam is smaller than the one of the S-S
supported beam.
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Figure 8 shows the distribution of the axial normal stress, σx, and shear stress, τxy, across the
z-direction at the mid-span. It shows that when p = 0, the axial normal stress, σx, has linear distribution
while the shear stress, τxz, is constant along the height of the beam.
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5.2. Free Vibration Analysis

5.2.1. Verification

To confirm the accuracy of the proposed beam model, a comparison of frequencies of a cantilever
isotropic tapered beam with length, L and different values of the taper ratio, c = 1 − h1/h0,
is considered herein. The non-dimensional natural frequency of the beam is defined as [34]:

ωi = ωi

√
m0L4

EI0
(71)

where m0, I0 are the mass per unit length and the flexural rigidity at the left-hand end of the beam,
respectively. The comparison of non-dimensional natural frequencies using the proposed beam model
with the results of Banerjee et al. [34] and the numerical results using Abaqus FE software packages is
shown in Table 4.

Table 4. Comparison of the first three non-dimensional natural frequencies for a cantilever isotropic
bean with different values of the taper ratio.

c
¯

ω1
¯

ω2
¯

ω3

[34] Abaqus Present [34] Abaqus Present [34] Abaqus Present

0.1 3.559 3.562 3.553 21.338 21.140 21.132 58.980 57.510 57.663
0.2 3.608 3.612 3.603 20.621 20.453 20.439 56.192 54.939 55.045
0.3 3.667 3.669 3.662 19.881 19.739 19.720 53.322 52.269 52.331
0.4 3.737 3.739 3.732 19.114 18.996 18.975 50.354 49.487 49.513
0.5 3.824 3.826 3.819 18.317 18.222 18.198 47.265 46.568 46.565
0.6 3.934 3.936 3.930 17.488 17.413 17.391 44.025 43.482 43.464
0.7 4.082 4.083 4.078 16.625 16.568 16.548 40.588 40.186 40.155
0.8 4.292 4.293 4.290 15.743 15.701 15.691 36.885 36.608 36.583
0.9 4.631 4.631 4.630 14.931 14.902 14.911 32.833 32.671 32.688

A (S-S) Al/Al2O3 beam with constant thickness and different values of the ratio of L/h is
considered. The material properties of Al (metal) and Al2O3 (ceramic) are [14]:
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Al (metal) : Em = 70 GPa, νm = 0.3, ρm = 2702 kg/m3

Al2O3 (ceramic) : Ec = 380 GPa, νc = 0.3, ρc = 3960 kg/m3.
The non-dimensional natural frequencies of the beam are defined as [14]:

ωi = ωi
L2

h

√
ρm

Em
(72)

Table 5 shows the first three non-dimensional natural frequencies of the beam using the proposed
beam model and the results of Thai et al. [14] (using SBT and HBT).

Table 5. Comparison of the first three non-dimensional natural frequencies of Al/Al2O3 beam with
L/h = 5 and L/h = 20.

L/h p
¯

ω1
¯

ω2
¯

ω3

SBT [14] HBT [14] Present SBT [14] HBT [14] Present SBT [14] HBT [14] Present

5

0 5.1531 5.1527 5.2220 17.8868 17.8810 18.4730 34.2344 34.2085 35.6198
0.5 4.4110 4.4107 4.4693 15.4631 15.4587 15.9861 29.8569 29.8373 31.1588
1 3.9907 3.9904 4.0497 14.0138 14.0098 14.5588 27.1152 27.0971 28.5214
2 3.6263 3.6265 3.6936 12.6411 12.6407 13.2636 24.3237 24.3151 25.9539
5 3.3998 3.4014 3.4882 11.5324 11.5444 12.3067 21.6943 21.7187 23.6695
10 3.2811 3.2817 3.3644 11.0216 11.0246 11.7210 20.5581 20.5569 22.2828

20

0 5.4603 5.4603 5.4658 21.5736 21.5732 21.6578 47.5950 47.5930 47.9905
0.5 4.6511 4.6511 4.6556 18.3965 18.3962 18.4665 40.6542 40.6526 40.9852
1 4.2051 4.2051 4.2096 16.6347 16.6344 16.7048 36.7692 36.7679 37.1020
2 3.8361 3.8361 3.8413 15.1617 15.1619 15.2418 33.4681 33.4691 33.8471
5 3.6484 3.6485 3.6554 14.3728 14.3748 14.4806 31.5699 31.5789 32.0740
10 3.5389 3.5390 3.5457 13.9255 13.9264 14.0289 30.5337 30.5373 31.0136

The present frequencies are in good agreement with the other published results.

5.2.2. Numerical Results of Free Vibration Analysis

In this section, the variable thickness beam, which is given in the static bending problem,
is employed again herein. The non-dimensional frequencies are obtained as:

ωi = ωi
L2

h0

√
ρm

Em
(73)

The results of the free vibration analysis of the variable thickness FGM beam with different values
of the length-to-height ratio, L/h0, power-law index, p, index n, and boundary conditions are reported
in Tables 6 and 7, and Figures 9–12.
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Table 6. First three non-dimensional natural frequencies, ωi, i = 1, 2, 3, of S-S and C-C supported FGM
beam with L/h0 = 10 depending on index p and index n.

Mode p
S-S C-C

n = 0 n = 0.5 n = 1 n = 2 n = 0 n = 0.5 n = 1 n = 2

1

0 5.4144 4.5186 3.9296 3.3404 11.6989 9.3900 8.7793 8.3438
0.5 4.6165 3.8514 3.3485 2.8457 10.0244 8.0292 7.5020 7.1257
1 4.1761 3.4834 3.0282 2.5733 9.0882 7.2725 6.7930 6.4505
2 3.8104 3.1785 2.7632 2.3481 8.2881 6.6336 6.1967 5.8846
5 3.6201 3.0214 2.6277 2.2339 7.8125 6.2736 5.8667 5.5765

10 3.5072 2.9282 2.5476 2.1664 7.5246 6.0571 5.6688 5.3921

2

0 20.8896 17.5473 15.6625 13.8003 30.2375 25.1511 23.2809 21.5200
0.5 17.8784 14.9960 13.3746 11.7763 26.0655 21.6021 19.9692 18.4359
1 16.1999 13.5793 12.1067 10.6567 23.6957 19.6054 18.1126 16.7125
2 14.7756 12.3871 11.0448 9.7226 21.5964 17.8751 16.5163 15.2415
5 13.9541 11.7253 10.4682 9.2250 20.1629 16.7856 15.5430 14.3714

10 13.4588 11.3281 10.1235 8.9283 19.2868 16.1225 14.9524 13.8450

3

0 44.4998 37.8226 34.0651 30.3772 55.1307 47.1283 43.6107 40.0379
0.5 38.2849 32.4491 29.1820 25.9891 47.8038 40.6706 37.5628 34.4232
1 34.7730 29.4349 26.4536 23.5455 43.5761 36.9917 34.1349 31.2560
2 31.6987 26.8401 24.1253 21.4760 39.6909 33.7104 31.1133 28.4944
5 29.6875 25.2494 22.7497 20.2930 36.7108 31.4169 29.0861 26.7146

10 28.4609 24.2835 21.9179 19.5804 34.8885 30.0141 27.8481 25.6299

Table 7. Fundamental non-dimensional natural frequencies, ω1 of (S-S), and (C-C) FGM beams depend
on ratio, L/h0, and index n.

L/h0 p
S-S C-C

n = 0 n = 0.5 n = 1 n = 2 n = 0 n = 0.5 n = 1 n = 2

10

0 5.4144 4.5186 3.9296 3.3404 11.6989 9.3900 8.7793 8.3438
0.5 4.6165 3.8514 3.3485 2.8457 10.0244 8.0292 7.5020 7.1257
1 4.1761 3.4834 3.0282 2.5733 9.0882 7.2725 6.7930 6.4505
2 3.8104 3.1785 2.7632 2.3481 8.2881 6.6336 6.1967 5.8846
5 3.6201 3.0214 2.6277 2.2339 7.8125 6.2736 5.8667 5.5765

10 3.5072 2.9282 2.5476 2.1664 7.5246 6.0571 5.6688 5.3921

20

0 2.7329 2.2752 1.9750 1.6760 6.1175 4.8350 4.4997 4.2589
0.5 2.3278 1.9377 1.6820 1.4273 5.2178 4.1212 3.8349 3.6291
1 2.1048 1.7520 1.5207 1.2904 4.7208 3.7276 3.4683 3.2820
2 1.9207 1.5987 1.3877 1.1775 4.3072 3.4012 3.1647 2.9947
5 1.8277 1.5215 1.3208 1.1209 4.0899 3.2328 3.0088 2.8478

10 1.7729 1.4759 1.2814 1.0875 3.9606 3.1328 2.9163 2.7608

50

0 1.0961 0.9118 0.7912 0.6708 2.4797 1.9477 1.8127 1.7133
0.5 0.9334 0.7763 0.6737 0.5712 2.1120 1.6585 1.5437 1.4589
1 0.8438 0.7019 0.6091 0.5164 1.9096 1.4993 1.3957 1.3190
2 0.7700 0.6405 0.5558 0.4712 1.7425 1.3682 1.2736 1.2036
5 0.7331 0.6097 0.5292 0.4486 1.6584 1.3025 1.2124 1.1457

10 0.7114 0.5915 0.5135 0.4352 1.6087 1.2636 1.1763 1.1114

100

0 0.5483 0.4559 0.3955 0.3353 1.2422 0.9734 0.9069 0.8572
0.5 0.4668 0.3881 0.3368 0.2855 1.0578 0.8287 0.7721 0.7299
1 0.4221 0.3509 0.3044 0.2581 0.9563 0.7492 0.6981 0.6598
2 0.3851 0.3202 0.2778 0.2355 0.8727 0.6837 0.6370 0.6021
5 0.3667 0.3048 0.2645 0.2242 0.8308 0.6509 0.6064 0.5732

10 0.3558 0.2957 0.2566 0.2175 0.8062 0.6314 0.5883 0.5560
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By considering Tables 6 and 7, the non-dimensional frequencies of the C-C beam are higher than
the ones of the S-S beam. Furthermore, the non-dimensional frequencies decrease as a function of the
length-to-height ratio, L/h0.

The influences of index p and the degree of non-uniformly, n, on the free vibration of the beam are
considered here. Table 6 and Figure 9 show that the index, p, has a strong effect on the non-dimensional
frequencies of the beam. It can be seen that increasing the index, p, will reduce the stiffness of the FGM
beam, which leads to a decrease in the non-dimensional frequencies of the beam. This is due to the
fact that higher values of index p correspond to a high portion of the metal in comparison with the
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ceramic portion, and, consequently, the FGM beam becomes more flexible. According to Tables 6 and 7,
and Figure 10, when increasing the index, n, the non-dimensional frequencies of the beam decrease.
In fact, the fundamental non-dimensional frequency of the beam decreases rapidly when the index, n,
increases in the range of 0÷ 2. Figure 11 plots the first four mode shapes of the S-S support variable
thickness FGM beam with L/h0 = 10, p = 0.5, and n = 2. Figure 12 plots the first mode shapes of
the variable thickness FGM beam with L/h0 = 10, p = 0.5, and n = 2 for some boundary conditions.
It can be seen that the mode shapes of the variable thickness FGM beam show greater differences from
those of the constant thickness FGM beam. The amplitude of vibration at the slender end is higher
than that at the other end.

5.3. Buckling Analysis

5.3.1. Verification

To verify the proposed beam model for buckling analysis, S-S and C-C isotropic beams with a
constant thickness are considered. The length of the beam is L = 1, and the modulus of elasticity and
Poisson’s ratio of material are, respectively, E = 103 GPa,ν = 0.333. Qcr = Qcr

12L2

Eh3

The present buckling load results are compared with the analytical solutions (which are given
in [8]), the results of Ferreira [52] and Oreh et al. [8], and numerical results using Abaqus FE software
packages and are finally reported in Table 8.

Table 8. Comparison of the buckling load of the constant thickness beam with different values of the
ratio of L/h for S-S and C-C support conditions.

L/h

S-S C-C

Analytical
Solution [8] [52] [8] Abaqus Present Analytical

Solution [8] [52] [8] Abaqus Present

10 8013.8 8021.8 8013.86 8020.9 8013.83 29766 29877 29770 29864 29767.2
100 8.223 8.231 8.2225 8.2258 8.2225 32.864 32.999 32.864 32.917 32.864
1000 0.0082 0.0082 0.00822 0.00823 0.00822 0.0329 0.0330 0.0329 0.03295 0.0329

Furthermore, an Al/Al2O3 beam with a constant thickness subjected to a uniaxial load is
investigated here. The material properties of the two components of the FGM beam are [9]:

Al (metal) : Em = 70 GPa, νm = 0.3, ρm = 2702 kg/m3

Al2O3 (ceramic) : Ec = 380 GPa, νc = 0.3, ρc = 3960 kg/m3.
The length-to-height ratio is L/h = 5 and L/h = 10, and the boundary condition of the beam is

S-S supported. The non-dimensional buckling load is defined as [9]:

Qcr = Qcr
12L2

Emh3 (74)

Table 9 shows the comparison between the present non-dimensional buckling load and the results
of Li et al. [9] using the analytical solution.

Table 9. Comparison of the nondimensional buckling load of the constant thickness FGM beam with
the ratio of L/h = 5 and L/h = 10 for the S-S and C-C support condition.

p
L/h = 5, C-C L/h = 5, S-S L/h = 10, C-C L/h = 10, S-S

[9] Present [9] Present [9] Present [9] Present

0 154.35 154.37 48.835 48.836 195.34 195.35 52.309 52.308
0.5 103.22 103.23 31.967 31.968 127.87 127.87 33.996 33.997
1 80.498 80.505 24.687 24.687 98.749 98.752 26.171 26.171
2 62.614 62.620 19.245 19.245 76.980 76.983 20.416 20.416
5 50.384 50.389 16.024 16.024 64.096 64.099 17.192 17.194

10 44.267 44.272 14.427 14.427 57.708 57.711 15.612 15.612
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The two comparisons indicate a good agreement between the present results by using this model
and published results.

5.3.2. Numerical Results for Buckling Analysis

The variable thickness FGM beam, which is given in the static bending problem, is again
considered herein. The beam is subject to a uniaxial compressed load, Q.

The non-dimensional critical load is obtained by:

Qcr = Qcr
12L2

Emh3
0

(75)

The effect of the power-law index, p, on the critical load of the variable thickness FGM beam is
given in Table 10 and Figure 13. It implies that the power-law index, p, strongly affects the critical
buckling load of the FGM beam in some range. When the power-law index, p, is increasing in the
range of 0÷ 2, the critical load decreases rapidly, while p > 2, the index, p, has a slight effect.

Table 10. Non-dimensional critical load, Qcr, of an S-S and C-C variable thickness FGM beam
depending on the ratio of L/h0 and index n.

L/h0 p
S-S C-C

n = 0 n = 0.5 n = 1 n = 2 n = 0 n = 0.5 n = 1 n = 2

10

0 52.2381 29.9212 19.4184 11.9650 194.3954 103.3309 73.8638 52.8577
0.5 33.9560 19.4365 12.6075 7.7642 127.3125 67.4450 48.1566 34.4249
1 26.1410 14.9587 9.7007 5.9727 98.3404 52.0179 37.1226 26.5247
2 20.3927 11.6700 7.5685 4.6601 76.6582 40.5622 28.9508 20.6879
5 17.1703 9.8358 6.3844 3.9343 63.7783 33.9271 24.2601 17.3648

10 15.5882 8.9358 5.8042 3.5789 57.3891 30.6474 21.9459 15.7276

20

0 6.6546 3.7940 2.4532 1.5062 26.1201 13.5473 9.6064 6.8244
0.5 4.3168 2.4607 1.5908 0.9766 16.9785 8.7970 6.2363 4.4291
1 3.3203 1.8925 1.2234 0.7510 13.0709 6.7692 4.7982 3.4074
2 2.5907 1.4766 0.9546 0.5860 10.1967 5.2811 3.7435 2.6585
5 2.1884 1.2476 0.8067 0.4953 8.5855 4.4534 3.1582 2.2438

10 1.9917 1.1355 0.7344 0.4510 7.7944 4.0473 2.8713 2.0406

50

0 0.4282 0.2437 0.1575 0.0965 1.7075 0.8770 0.6219 0.4404
0.5 0.2776 0.1580 0.1021 0.0625 1.1074 0.5685 0.4032 0.2855
1 0.2135 0.1215 0.0785 0.0481 0.8516 0.4371 0.3101 0.2195
2 0.1666 0.0948 0.0613 0.0375 0.6645 0.3411 0.2419 0.1713
5 0.1408 0.0801 0.0518 0.0317 0.5616 0.2883 0.2045 0.1448

10 0.1283 0.0730 0.0472 0.0289 0.5112 0.2625 0.1863 0.1318

100

0 0.0536 0.0305 0.0197 0.0121 0.2141 0.1095 0.0778 0.0551
0.5 0.0347 0.0197 0.0128 0.0078 0.1388 0.0710 0.0504 0.0357
1 0.0267 0.0152 0.0098 0.0060 0.1067 0.0546 0.0387 0.0274
2 0.0208 0.0118 0.0076 0.0047 0.0833 0.0426 0.0302 0.0214
5 0.0176 0.0100 0.0065 0.0040 0.0704 0.0360 0.0256 0.0181

10 0.0160 0.0091 0.0059 0.0036 0.0641 0.0328 0.0233 0.0165

In Table 10 and Figure 14, the critical load is a function of the degree of non-uniformity, n.
In general, the critical load decreases when increasing index n. In addition, we can see again in
Table 10 that the critical load of the C-C supported variable thickness beam is much higher than the
S-S supported beam.
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6. Conclusions

The paper established the modified first order shear deformation beam theory, and applied this
theory to model the variable thickness FGM beam element. Using the proposed beam model, the static
bending, free vibration, and buckling of the variable thickness FGM beam were investigated and
simulated. This beam model can effectively simulate the mechanical behavior of FGM beams by
comparing it with results of other methods and the numerical simulations using Abaqus FE software
packages. Parameters that study the influence of geometry, materials, and boundary conditions on the
mechanical behavior of the beam were considered.

The advantage of the proposed beam model is its simplicity in formulation, and high convergence
and free shear-locking without reduced integration or selective reduced integration. This proposed
beam model can be applied widely to simulate the mechanical behavior of FGM beams.
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