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Abstract

Introduction: Obesity increases the risk for insulin resistance and metabolic syndrome in both adults and children.
FABP4 is a member of the intracellular lipid-binding protein family that is predominantly expressed in adipose
tissue, and plays an important role in maintaining glucose and lipid homeostasis. The purpose of this study was to
measure FABP4 plasma levels, assess FABP4 allelic variants, and explore potential associations with fasting glucose
and insulin levels in young school-age children with and without obesity.

Methods: A total of 309 consecutive children ages 5-7 years were recruited. Children were divided based on BMI z
score into Obese (OB; BMI z score >1.65) and non-obese (NOB). Fasting plasma glucose, lipids, insulin, hsCRP, and
FABP4 levels were measured. HOMA was used as correlate of insulin sensitivity. Four SNPs of the human FABP4
gene (rs1051231, rs2303519, rs16909233 and rs1054135), corresponding to several critical regions of the encoding
FABP4 gene sequence were genotyped.

Results: Compared to NOB, circulating FABP4 levels were increased in OB, as were LDL, hsCRP and HOMA. FABP4
levels correlated with BMI, and also contributed to the variance of HOMA and hsCRP, but not serum lipids. The
frequency of rs1054135 allelic variant was increased in OB, and was associated with increased FABP4 levels, while
the presence of rs16909233 variant allele, although similar in OB and NOB, was associated with increased HOMA
values.

Conclusions: Childhood obesity is associated with higher FABP4 levels that may promote cardiometabolic risk. The
presence of selective SNPs in the FABP4 gene may account for increased risk for insulin resistance or systemic
inflammation in the context of obesity.

Introduction
Childhood obesity is a serious public health problem
that has reached epidemic proportions all over the
world [1-3]. Metabolic and cardiovascular complications
of obesity in childhood, while less common than in
adulthood, may nevertheless include hyperlipidemia,
insulin resistance and type 2 diabetes, and systemic low
grade inflammation.
In children, the presence of obesity has been asso-

ciated with increased levels of high sensitivity CRP
(hsCRP) [4], as well as other inflammatory mediators

[5-9], all of which promote the development of endothe-
lial and metabolic dysfunction [10-14]. However, sub-
stantial variability is found among obese children as to
the presence of metabolic dysfunction or increased
inflammatory markers, suggesting that individual geno-
mic variance may account for such discrepancies.
Fatty acid binding proteins (FABP) are a group of

related molecules that serve as intracellular chaperones
for lipid moieties, coordinate cellular lipid responses,
and thereby play a critical role in metabolic and inflam-
matory pathways [15,16]. Adipocyte FABP, also known
as FABP4, A-FABP, or aP2, was initially detected in
mature adipocytes, and plays critical roles in hyperlipi-
demia, atherogenesis and type 2 diabetes, particularly
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when obesity is concurrently present [17,18]). FABP4 is
produced and released to the circulation, and FABP4
levels appear to correlate with the degree of metabolic
dysfunction [19,20]. Similar to adults, children who are
obese are more likely to display elevations in FABP4
plasma levels, which will be reduced by interventions
leading to weight loss [21,22].
We hypothesized that the presence of obesity in com-

munity based children will be associated with increased
FABP4 levels which may account for individual discre-
pancies in the presence or absence of insulin resistance
or high sensitivity C-reactive protein (hsCRP) plasma
levels, and that single nucleotide polymorphisms in the
FABP4 gene may underlie the variance in such
relationships.

Subjects and Methods
Subjects
The study was approved by the University of Louisville
Human Research Committee, and informed consent was
obtained from the legal caregiver of each participant.
Consecutive children between the ages of 5 to 7 years
attending public schools in Jefferson County were invited
to participate in the study, after they underwent a school-
based health screening, which included height and weight
measurements. Based on such screening, children were
identified when their BMI z score was ≥ 1.65 (OB) and
age-, gender-, ethnicity-, and area-of residence-matched
children with BMI z scores <1.65 (NOB) were then iden-
tified and recruited to serve as controls. Of note, all chil-
dren were otherwise healthy, and were representative of
the demographic characteristics of the general population
of the city of Louisville http://ksdc.louisville.edu/sdc/cen-
sus2000/cityprofiles/LouisvilleDP.pdf. Children were
excluded if they had known diabetes or pre-diabetes
http://www.diabetes.org/pre-diabetes/pre-diabetes-symp-
toms.jsp, any defined genetic abnormality or underlying
systemic disease including hypertension, or if they were
within a month from any acute infectious process.

Anthropometry
To verify the school-health screening initial reports,
children were weighed in a calibrated scale to the near-
est 0.1 kg and height (to 0.1 cm) was measured with a
stadiometer (Holtain, Crymych, UK). Body mass index
(BMI) was calculated and BMI z-score was computed
using CDC 2000 growth standards http://www.cdc.gov/
growthcharts and online software http://www.cdc.gov/
epiinfo. A BMI z score ≥ 1.65 was considered as fulfill-
ing the criteria for obesity.

Blood Based Assays
Blood samples were drawn by venipuncture in the
morning after an overnight fast. Blood samples were

immediately centrifuged and plasma was frozen at -80°C
until assay. Plasma insulin levels were measured using a
commercially available radioimmunoassay kit (Coat-A-
Count Insulin; Diagnostic Products Inc). This method
has a detection level of 1.2 μIU/mL and exhibits linear
behavior up to 350 μIU/mL, with intra-assay and inter-
assay coefficients of variability of 3.1% and 4.9%, respec-
tively. Plasma glucose level was measured using a
commercial kit based on the hexokinase-glucose-6-phos-
phate dehydrogenase method (Flex Reagent Cartridges;
Dade Behring, Newark, DE). Insulin resistance was
assessed using the homeostasis model assessment
(HOMA) equation (fasting insulin × fasting glucose/
22.5) [23].
Plasma hsCRP levels were measured within 2-3 hours

after collection using the Flex reagent Cartridge (Date
Behring, Newark, DE). This method has a detection
level of 0.05 mg/dl, and exhibits linear behavior up to
255 mg/dl, with intra-assay and inter-assay coefficients
of variability of 9% and 18% respectively for hsCRP.
Serum lipids including total cholesterol, high-density
lipoprotein (HDL) cholesterol, calculated low-density
lipoprotein cholesterol (LDL), and triglycerides (TG)
were also assessed using Flex Reagent Cartridges (Dade
Behring).
Plasma FABP4 levels were also measured using com-

mercial ELISA kits (ALPCO Diagnostics, Salem, NH)
following the manufacturer’s instructions. All assays
were performed in duplicate and a calibration curve was
included in each assay.

DNA Extraction
Peripheral blood samples were collected in vacutainer
tubes containing EDTA (Becton Dickinson, Franklin
Lakes, NJ, USA). All DNA samples were extracted using
QIAmp DNA blood kit (Qiagen, Valencia, CA) accord-
ing the manufacturer’s protocol. The concentration and
quality of the DNA were determined using a ND-1000
Spectrophotometer (Nanodrop Technologies, Wilming-
ton, DE, USA). The purity of the DNA were determined
by calculating the ratio of absorbance at 260/280 nm,
and all DNA samples had a ratio of 1.8-1.9. The precise
length of genomic DNA was determined by gel electro-
phoresis using 1% agarose gel. All the purified samples
were stored at -80°C until further analyses.

Genotyping using Real-Time PCR
Genotyping was performed using the ABI PRISM 7500
Sequence Detection System for allelic discrimination fol-
lowing the manufacturer’s instructions (Applied Biosys-
tems). Four FABP4 single nucleotide polymorphisms,
namely rs1051231, rs2303519, rs16909233 and
rs1054135 were examined in this study (Applied Biosys-
tems). All polymorphisms were genotyped using
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TaqMan technology (Applied Biosystems, Inc.). Two
fluorogenic minor groove binder probes were used for
each locus using the dyes 6-carboxyfluorescein (FAM;
excitation, 494 nm) and VIC (excitation, 538 nm) which
are easily differentiated in PCR system. Real-time PCR
reaction was performed using 12.5 μl of TaqMan 2×
universal master mix (Applied Biosystems, CA), 1.25 μl
of SNP, 10.25 μl of RNase- and DNase-free water
(Ambion, Austin, TX), and 1 μl of sample DNA, in a
total volume of 25 μl per single well reaction. Two wells
of a 96 well-plate (Applied Biosystems, CA) were used
for each sample for each of the 4 single nucleotide poly-
morphisms. DNase-free water used as non-template
control was included in each assay run. Assay conditions
were 2 min at 50°C, 10 min at 95°C, and 40 cycles of 95°
C for 15 s and 60°C for 1 min. Initially, the SNP assay
was set up using SDS, version 2.1, software (Applied
Biosystems, CA) as an absolute quantification assay, but
after assay completion the plate was read using the alle-
lic discrimination settings. Post-assay analysis was per-
formed using the SDS software.

Statistical Analysis
Data were expressed as mean ± SD. Significant differ-
ences within groups were analyzed using ANOVA for
continuous variables and chi-square tests for categorical
variables. Spearman’s correlation analyses were con-
ducted to examine potential associations between BMI
and plasma concentrations of the various inflammatory
mediators. Statistical analyses were performed using
SPSS software (version 16.0; SPPS Inc., Chicago, Ill.). All
p-values reported are 2-tailed with statistical significance
set at <0.05.

Results
A total of 182 OB children and 127 age-, gender- and
ethnicity-matched NOB children were recruited during
January to May 2008. The demographic characteristics
of this cohort are shown in Table 1, and are virtually
identical to the published demographics of the city of
Louisville, Kentucky.
As anticipated, OB children had higher HOMA values,

indicative of insulin resistance, and also exhibited higher
LDL, VLDL, and TG levels and lower HDL concentra-
tions compared to NOB children (Table 1). OB children
also had significantly higher levels of hsCRP and FABP4
than NOB (Table 1).
FABP4 levels were positively correlated with BMI z

score (r:0.57; p < 0.0001). hsCRP and HOMA were also
significantly associated with FABP4 (r = 0.29; p < 0.001
and r = 0.18; p < 0.01, respectively). However, FABP4
levels did not exhibit any linear correlation with lipid
levels. Multivariate analyses of variance revealed that
after adjusting for BMI z score, FABP4 contributed to

9% of the variance in hsCRP (p < 0.003) and 3% of the
variance in HOMA (p < 0.05).
The frequency of each of the FABP4 polymorphisms is

shown in Table 2 for OB and NOB children. Obese chil-
dren showed increased frequency of rs1054135 poly-
morphism compared to control children. There were no
differences between OB and NOB for the other 3
polymorphisms.
Only the rs1054135 polymorphism showed significant

contributions to higher FABP4 plasma levels (Table 3).
In contrast, obesity interacted with rs16909233 allelic
variance, such that the presence of this single nucleotide
polymorphism in the context of obesity was associated
with higher HOMA values, indicative of insulin resis-
tance (p < 0.001).

Table 1 Demographic characteristics and fasting morning
plasma concentrations of lipids, glucose, insulin, hsCRP,
and FABP4 in obese and matched non-obese children

OB
(n = 182)

NOB
(n = 127)

P-value

Age (years) 6.7 ± 0.4 6.7 ± 0.4

Gender (% male) 51.4 51.9

Ethnicity

White Caucasian % 75.7 76.6

African American % 18.9 18.2

BMI z score 2.04 ± 0.23 0.91 ± 0.12 <0.00001

Cholesterol 176.5 ± 3.1 164.4 ± 2.5 NS

Triglycerides 85.1 ± 4.1 70.4 ± 2.9 <0.01

HDL 49.6 ± 1.5 58.7 ± 1.0 <0.01

VLDL 18.9 ± 1.4 15.7 ± 0.9 <0.02

LDL 98.4 ± 2.4 87.4 ± 2.1 <0.002

Glucose 81.3 ± 1.3 78.2 ± 1.7 NS

Insulin 12.9 ± 1.3 6.5 ± 1.0 <0.001

HOMA 2.6 ± 0.3 1.4 ± 0.3 <0.001

hsCRP ((mg/dl)) 2.67 ± 0.48 1.04 ± 0.13 <0.001

FABP4 (ng/mL) 21.4 ± 1.2 12.1 ± 1.0 <0.0001

Table 2 Allelic distribution of FABP4 SNPs in obese and
non-obese children.

SNP Allele OB (n = 182) NOB (n = 127) p value

rs1054135 GG 61 (33.5) 135 (74.2) <0.001

GA 73 (40.1) 26 (14.3)

AA 48 (26.4) 19 (10.4)

rs1051231 AA 182 (100) 127 (100) N/A

AC 0 0

CC 0 0

rs2303519 CC 116 (63.7) 100 (78.7) 0.13

CT 65 (36.25) 26 (20.4)

TT 1 (0.05) 1 (0.9)

rs16909233 GG 129 (70.8) 99 (77.9) 0.26

AG 52 (28.6) 26 (20.5)

AA 1 (0.6) 2 (1.6)
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Discussion
In this study, we show that FABP4 plasma levels are sig-
nificantly higher in obese children and correlate with
measures of insulin resistance and systemic inflamma-
tion, such as HOMA and hsCRP, respectively. Further-
more, the frequency of the rs1054135 single nucleotide
polymorphism in the FABP4 gene was higher in OB
compared to NOB, and seemingly contributes to higher
FABP4 levels, while the presence of rs16909233 is asso-
ciated with insulin resistance in the context of obesity.
Before we discuss the potential implications of these

findings, some methodological issues deserve comment.
This was a community study that was designed such as
to be as representative as possible of the ethnic distribu-
tion of the population of Louisville, and a priori
excluded any child with known diabetes, hypertension
or another chronic disease condition associated with
obesity. Such methodological approach may have artifi-
cially reduced the impact of obesity on FABP4 levels as
well as the magnitude of the association of any given
FABP4 allelic variant with the degree of metabolic dys-
function or FABP4 plasma levels. Therefore, it will be
important to explore such possibilities in a clinical refer-
ral obese pediatric population. Secondly, we restricted
the age range of our cohort to a narrow time window
that is associated with the initial 3 years of attendance
within the public school system, a period that coincides
with significant changes in food consumption patterns
[24,25]. Such decision aimed to reduce as much as pos-
sible the presence of confounders across a wide age
spectrum. Finally, we identified and recruited closely
matching control children in the same school for each
obese child that was recruited, such as to nullify as best
as possible some of the known potential confounders
that could be introduced in the process of cohort
selection.
FABP4 has been proposed as a bridge between inflam-

matory processes and other biological pathways related

to the metabolic syndrome. Our current findings are in
close agreement with the only 2 other published studies
in children, in which obesity was a risk factor for ele-
vated plasma FABP4 levels [21,22]. However, Reinehr et
al reported significant correlations between FABP4 and
percentage body fat and leptin but the absence of any
significant association between FABP and any of the
markers of the metabolic syndrome [21]. In a more
recent study from Korea, FABP4 concentrations were
significantly correlated with BMI and waist circumfer-
ence, but failed to exhibit a significant association with
insulin sensitivity after adjusting for BMI [22]. The lar-
ger cohort size in the present study, allowed not only
for confirmation of the strong association between
FABP concentration and BMI, but also indicated the
presence of weaker, albeit significant associations with
insulin sensitivity and systemic inflammation.
To further examine the variance in FABP4 levels

across obese and non-obese children, we initially exam-
ined the frequency of several FABP4 gene polymorph-
isms in our cohort. This approach revealed that the
rs1054135 polymorphism was significantly more preva-
lent among obese children (Table 2), while no such dif-
ferences were apparent among the 3 other
polymorphisms tested. We are only aware of another
published study on FABP4 genomic variants in humans.
Indeed, in a population-based genetic study that
included 7,899 participants, individuals that carried a T-
87C polymorphism in the FABP4 gene, which reduces
the transcriptional efficiency of the FABP4 gene, had
lower serum triglyceride levels and significantly reduced
risk for coronary heart disease and type 2 diabetes com-
pared with subjects homozygous for the wild-type allele
[26]. Other SNP were not specifically examined, such
that comparisons across this study and the present
study are not possible. We should emphasize however,
that FABP4 is also expressed in activated macrophages
[27-29], and high FABP4 concentrations are detected in

Table 3 HOMA and FABP4 plasma levels in variant and wild allele of SNPs in obese and non-obese children.

SNPs OB (n = 182) p value NOB (n = 127) p value

rs1054135 G/A A+ (n = 121) A- (n = 61) A+ (n = 35) A- (n = 92)

FABP4 levels 22.5 ± 5.5 16.1 ± 2.4 <0.001 12.5 ± 3.5 7.7 ± 2.3 <0.001

HOMA 2.5 ± 0.7 2.6 ± 0.5 >0.05 1.5 ± 0.4 1.3 ± 0.4 >0.05

rs1051231 A/C C+ (n = 0) C- (n = 186) C+ (n = 0) C- (n = 123)

FABP4 levels N/A 19.2 ± 4.3 N/A N/A 9.1 ± 3.4 N/A

rs2303519 C/T T+ (n = 66) T- (n = 116) T+ (n = 27) T- (n = 100)

FABP4 levels 19.7 ± 5.4 19.7 ± 5.3 >0.05 11.3 ± 3.2 10.2 ± 3.1 >0.05

HOMA 2.5 ± 1.0 2.6 ± 0.5 >0.05 1.4 ± 0.4 1.4 ± 0.4 >0.05

rs16909233 G/A A+ (n = 53) A- (n = 129) A+ (n = 28) A- (n = 99)

FABP4 levels 19.2 ± 5.6 19.2 ± 5.2 >0.05 11.0 ± 2.7 10.8 ± 3.3 >0.05

HOMA 3.1 ± 1.1 2.2 ± 0.9 <0.001 1.5 ± 0.4 1.4 ± 0.4 >0.05
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human atherosclerotic lesions [30]. Thus, alleles that
reduce FABP4 expression or activity should be metaboli-
cally protective, while those associated with higher
FABP4 may increase susceptibility. In this regard,
genetic variability at the FABP4 as evidenced by
rs1054135, increased FABP4 plasma levels in both obese
and non-obese children, and its relative preponderance
in obese children suggests an interaction between obe-
sity and FABP4 alleles to increase FABP4 circulating
levels. Furthermore, the rs16909233 allelic variants were
not differentially present in OB and NOB children, and
did not alter plasma FABP4 levels. However, the pre-
sence of this allelic variant seemed to modify insulin
resistance in the context of obesity. Taken together,
these initial findings in a pediatric community based
cohort, suggest that FABP4 genomic variance may be an
important determinant for cardiometabolic risk, particu-
larly among obese children.
In summary, we have shown that young obese school-

aged children exhibit higher circulating levels of the
pro-atherogenic and pro-inflammatory FABP4, which in
turn, may contribute to the risk for reduced insulin sen-
sitivity and increased systemic inflammation, as illu-
strated by elevated hsCRP levels. Furthermore, gene
variants in FABP4 appear to differentially contribute to
the pro-inflammatory or diabetogenic potential of obe-
sity during childhood.
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