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A well‑trained artificial 
neural network for predicting 
the rheological behavior 
of MWCNT–Al2O3 (30–70%)/oil 
SAE40 hybrid nanofluid
Mohammad Hemmat Esfe1, S. Ali Eftekhari2*, Maboud Hekmatifar2 & Davood Toghraie2*

In this study, the influence of different volume fractions ( φ ) of nanoparticles and temperatures on the 
dynamic viscosity ( µnf  ) of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid was examined by ANN. 
For this reason, the µnf  was derived for 203 various experiments through a series of experimental 
tests, including a combination of 7 different φ , 6 various temperatures, and 5 shear rates. These data 
were then used to train an artificial neural network (ANN) to generalize results in the predefined 
ranges for two input parameters. For this reason, a feed‑forward perceptron ANN with two inputs 
(T and φ ) and one output ( µnf  ) was used. The best topology of the ANN was determined by trial 
and error, and a two‑layer with 10 neurons in the hidden layer with the tansig function had the best 
performance. A well‑trained ANN is created using the trainbr algorithm and showed an MSE value of 
4.3e−3 along 0.999 as a correlation coefficient for predicting µnf  . The results show that an increase 
φ has a significant effect on µnf  value. As φ increases, the viscosity of this nanofluid increases at 
all temperatures. On the other hand, with increasing temperature, the viscosity of this nanofluid 
decreases. Based on all of the diagrams presented for the trained ANNs, we can conclude that a well‑
trained ANN can be used as an approximating function for predicting the µnf .

Today, the issue of heat transfer in power plants and industries has become a major  challenge1–7. Researchers are 
always looking to increase the efficiency of heating equipment with different  methods8–10. Nanofluids are one 
of the newest and best ways to improve the thermal performance of fluid systems.  Choi11 first coined the term 
nanofluid to describe very small particles (nanoparticles less than 100 nm in diameter) suspended in a fluid. In 
nanofluids, one or more solid particles are added to the fluid, which increases the rate of heat transfer and change 
in  viscosity12, 13. Some nanoparticles are in the form of oxides and play an important role in the dispersion and 
suspension of fluid, and some are in the form of non-oxide metal  particles14–16. One of the main properties of 
fluids is viscosity. Viscosity can be mentioned as the inhibitory force and the magnitude of the frictional proper-
ties of the  fluid17. In addition, viscosity is a function of temperature and  pressure18. Fluid viscosity is commonly 
used for engineering designs and the definition of dimensionless numbers such as Reynolds and  Prandtl19. In 
addition, fluid viscosity is used to calculate the required power of pumps, mixing processes, piping systems, 
liquid pulverization, fluid storage, fluid injection, and fluid  transport20. Hybrid nanofluids combine two hetero-
geneous nanoparticles (hybrid nanocomposites) suspended in the base  fluid21–24. The purpose of using hybrid 
nanocomposites in an intermediate fluid is to improve the heat transfer characteristics of the base fluid through 
the combined thermophysical characteristics of effective  nanomaterials25–28. In recent years, various fluids such 
as water, ethylene glycol, and various oils were used as operating fluids in industry and engineering design. Given 
the growing need for cooling systems with high heat losses due to viscosity changes, scientists and researchers 
have been encouraged to achieve fluids with higher heat transfer properties (increased heat transfer rate) and 
effective viscosity over temperature. The amount of viscosity in nanofluid design is very critical for fluid  flow29. 
Due to pressure drops in the pump, fluid concentration is known to be important in industrial applications. 
In the last decade, researchers have presented various researches on thermophysical parameters (temperature, 
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particle size φ, shape, size, impact of time or agglomeration, μnf, and base fluids) and transverse theoretical and 
laboratory  relations30, 31. The knowledge of predicting the test process is a powerful tool for engineers who want 
to design and produce their products with excellent quality and the lowest cost. Therefore, ANNs are considered 
computational methods in artificial intelligence systems and new computational methods to predict the output 
responses of complex  systems32–35. The main idea of   such ANNs is, to some extent (inspired by how the biologi-
cal neural system works to process data and information to learn and create knowledge. The key element of this 
idea is to create new structures for the information processing system. Many super-interconnected processing 
elements called neurons have formed to solve problems and transmit information through synapses (electromag-
netic communication). ANNs are among the most advanced and modern methods in  simulation36–38. Today, they 
have been widely used in all engineering sciences as a powerful tool in simulating phenomena whose conceptual 
analysis is difficult. In this method, the observational data is taught to the model, and after training the model, 
it performs forecasting and simulation work with appropriate accuracy. In recent years, researchers have used 
ANNs to predict the thermal conductivity of nanofluids and determine the appropriate μnf

39–44. For example, 
Miao et al.45 used ANNs to predict the μnf of a mixture of ethanol and methanol over a temperature range. The 
results show that the ANN model predicts the μnf of the compound with great accuracy. Yousefi et al.46 investi-
gated the viscosities of metal oxides such as  SiO2,  Al2O3, CuO and  TiO2 suspended in ethanol and water by the 
ANN method. The predicted results were in good agreement with the experimental results obtained. Therefore, 
this method is suitable for estimating the μnf of nanofluids containing metal oxide. Atashrouz et al.47 predicted 
the μnf of  SiO2,  Al2O3, CuO, and  TiO2 nanofluids suspended on water, ethylene glycol, and propylene glycol by 
ANNs. The results show that this method is suitable for predicting the µnf  . Zhao et al.48 investigated the μnf of 
 Al2O3 and CuO metal oxides water- suspended by ANNs. The predicted results were in good agreement with 
the experimental values obtained. Esfe et al.49 predicted the µnf  of Fe/EG nanofluids by the ANN method. The 
predicted results are in good agreement with the experimental values obtained. Therefore, this method is very 
efficient in predicting the µnf  . Studies show that the prediction of µnf  using ANNs is not very old and is being 
addressed by researchers. Therefore, this manuscript analyzed the influence of different φ alongside variable 
temperatures on μnf of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid. For this reason, the µnf  has 
been derived for 203 various experiments through a series of experimental tests, including a combination of 7 
different φ , 6 various temperatures, and 5 shear rates. These data were then used to train an ANN to generalize 
results in the predefined ranges for two input parameters. For this reason, a feed-forward Perceptron ANN with 
two inputs (T and φ ) and one output ( µnf  ) was used. The best topology of the ANN was determined by trial and 
error, and a two-layer with 10 neurons in the hidden layer with the tansig function had the best performance.

As observed in the literature, the use of post-processing methods such as artificial neural networks, response 
surface and optimization methods in various sciences, including nanofluid science has been very welcomed. The 
reason for this welcome is the reduction of time and financial costs in laboratory studies. However, the use of 
artificial neural networks and other post-processing methods to predict the behavior of nanofluids requires access 
to valid laboratory results. Hemmat Esfe Research Group is one of the active groups in the field of laboratory 
studies of nanofluids, which has provided more than 200 valuable experimental databases for other researchers 
to perform post-processing studies on various thermophysical properties of normal and hybrid  nanofluids50–56. 
Feasibility studies of this research group in the field of application of nanofluids in increasing oil  extraction57,58  
and also the use of nanofluids in lubricants in order to minimize the damage caused by cold start of the car 
 engine59–61 are other activities of this group.

ANN configuration
An ANN is a powerful tool for processing raw data inspired by human brain structure and consists of many neu-
rons that collaborate to model a  system62. The configuration of ANNs is made up of several weighted elements. 
The nodes are the artificial neurons, and the directional arrows and the weights show the relationship between 
the outputs and the inputs of the neurons. ANNs are categorized into two groups based on their morphology: The 
first category is called feed-forward ANN, and the latter is called the recurrent ANNs. According to the experi-
mental data in this study that are static and that feed-forward ANNs have high potential in function estimation, 
a feed-forward perceptron ANN has been used. The relationship between input and output data is nonlinear; 
therefore, a multilayer Perceptron ANN should simulate this nonlinear relationship. Accordingly, in this study, 
the network is constructed of two layers with nonlinear functions. This configuration has proven accuracy in 
function approximation in different studies. The backpropagation algorithms are efficient and effective; hence, 
several methods in this ANN training scheme are used, and their performance is compared. Different ANNs with 
various neuron numbers and transfer functions in the hidden layer have been examined. The best topology was 
determined by trial and error and minimizing the ANN error. The best results were obtained using 10 neurons 
in the second layer with hyperbolic tangent function and linear function in the output layer. A graph of a typical 
multilayer ANN is presented in Fig. 1 alongside different inputs and outputs.

For training an ANN, the first step is to create a database of experimental or simulation patterns to feed 
the network for learning. To this end, 203 different samples in terms of temperature and φ were prepared for 
MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid. Usually, the raw data is divided into 70% for training, 
15% for validation, and 15% for testing. The validation data prevents the ANN from overtraining using Early 
stop and generalizes the ANN results. In this study, 203 samples were gained from 7 different φ , 6 various tem-
peratures, and 5 shear rates. The experimental data used for training the ANN is shown in Table 1.

The deviation of µnf  and its range is presented in Fig. 2 based on different temperatures, in Fig. 3 versus φ , 
and Fig. 4 based on various shear rates.

The first step in using ANN is to train the ANN with 70% of the training data and assess the ANN training 
status; then, the 15% of data that is not used for training is fed, and their performance is computed using the 
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comparison between true and true values and real ANN output. The ANN with the highest performance (the 
lowest error level) is chosen as the best ANN for the simulation of the system. Due to the random nature of 
training weights of the ANN, each ANN is trained 50 times from random with each training method, and the 
model with the highest performance is chosen as a model for the system. As indicated previously, determining 
the number of neurons in the hidden layer has an important influence on the modeling performance; hence 
various topologies (number of neurons in hidden layer and transfer function) were considered for each ANN, 
and the best combination is determined trial and error. The best performance is obtained using 10 neurons with 
tangent-hyperbolic sigmoid function in the second and linear transfer output layer. Detailed information on 
ANN configuration is shown in Table 2.

Training methods
One novelty of this study is to obtain the more effective method for ANN training which is more robust and 
has the highest performance in μnf estimation. For this reason, several training methods for feed-forward per-
ceptron ANNs have been used in MATLAB software (Stable release: R2021a/March 17, 2021)63–68. The error 
value for each method alongside other information (including function name in MATLAB and the method e 
explanation) are gathered in Table 3. Moreover, a detailed comparison of different training methods’ error rates 
is presented in Fig. 5.

The presented mean square error (MSE) between the actual output and target values for the various forward-
based training methods. Other methods have also been reviewed, which have been omitted due to inconsistencies 
with the physics of the problem and non-convergence of the answers. Among the applied training methods, the 
trainbr method showed to be the best training method for this problem due to the highest performance; therefore, 
this method will be explained and analyzed in the form of Regression and Performance graphs.

Trained ANN performance
One of the most important indexes showing the training state of an ANN is the Performance graph, which 
presents the variation of MSE versus training stages. The performance chart of µnf  is viewed in Fig. 6 for 
MWCNT–Al2O3 (30–70%)/oil SAE40 nanofluid. The MSE in the vertical axis is presented in this chart versus 
training iteration on the horizontal axis (Epoch). Three different data, including Training, Validation, and Test, 
are observed in this figure representing MSE for the trained points, validation, and test points, respectively. At 
the first training stage, that ANN has random weights, the MSE value is at the highest level, while after several 
iterations of training, it is reduced. In this figure, the MSE value for training data is much lower than the rest 
(validation and test) at the stop iteration. This is the effect of the Early stop strategy for preventing overlearning 
and displays that the untrained new points have higher MSE rates than trained points fed to the system. The 
best stop time for the highest performance is indicated with a green circle in the figure, with the lowest MSE in 
the total iterations. As there are 50 different ANNs for each training scheme, the ANN with the least MSE is the 
best solution to estimate the μnf for any combination of inputs.

Another indicator to determine the ANN training state is the Regression diagram and the correlation factor 
between the actual output data and the target values. This diagram is presented in Fig. 7 for µnf  and shows the 
correspondence of real ANN outputs and desired values. The horizontal axis corresponds to target values in this 
graph, while the vertical axis shows the ANN output. In this figure, three different parameters are important. 
These indexes include correlation coefficient value (R), slope value (M), and bias (B). An ideal ANN must have 
the same output as target values, and in this condition, the correlation value and slope are equal to 1, and the 

Figure 1.  A multilayer perceptron ANN graph alongside inputs and outputs data.
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Table 1.  µnf  versus temperature with different φ.

T (°C)

φ (%)

1 0.75 0.5 0.25 0.125 0.0625 0

(a) Shear rate value 100 RPM

25 444 407 369.4 347.8 311.2 293.4 343.1

30 315 292 268 255 229 216 249

35 231 216 197 189 164.1 154.7 180.9

40 167.8 157.5 146.2 136.9 122.8 115.3 130.6

45 128.4 120 110.6 105 95.6 86.9 99.4

50 100.3 94.7 85 80.6 71.9 68.1 76.3

(b) Shear rate value 200 RPM

25 434.1 401.2 375 342.5 306.9 288.8 338.1

30 308.4 285.9 263.4 249.4 225 210.9 244.7

35 225 209.1 193.1 183.7 163.1 152.5 177.5

40 166.9 155.6 142.5 135 121.9 114.4 129.8

45 126.3 118.1 108.7 103.1 92.5 85.8 98.4

50 98.8 92.5 83.9 78.8 71.3 66.6 75.9

(c) Shear rate value 300 RPM

25 430.6 394.4 363.8 336.6 302.3 284.1 332.8

30 305 281.9 260.6 246.2 221.9 207.5 241.9

35 222.5 206.3 190 180.6 160.8 150.9 175.3

40 164.1 152.3 140.6 133.1 120 113 128.3

45 164.1 152.3 140.6 133.1 120 113 128.3

50 96.6 90.9 82.9 77.6 70.5 66 75

(d) Shear rate value 400 RPM

30 302.3 278.9 257.8 242.8 218.4 205.3 239.5

35 219.8 203.9 188.4 178.6 159.4 149.2 173.3

40 162.8 151.1 139.5 132 118.9 111.8 127.2

45 123.8 115.1 106.9 100.5 90.7 84.1 96.3

50 96.4 90 81.9 77.2 69.7 65 74.4

(e) Shear rate value 500 RPM

30 298.9 276 255 240 216 202.5 237

35 217.5 202.1 187.5 176.3 157.2 147.5 171.6

40 161.2 149.7 138.8 130.3 117.8 110.3 126.2

45 122.5 114.4 105.6 99.1 90 83 95.4

50 94.7 88.8 81.2 76.1 68.8 64.3 73.7

Figure 2.  µnf  deviation based on temperature values.
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Figure 3.  µnf  variation versus φ.
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Figure 4.  The µnf  variation versus shear rate.

Table 2.  The ANN topology.

Network parameter Information

ANN morphology (Multi-layer perceptron)

Network type (Feed forward)

Training method (BackPropagation)

Error criteria (MeanSquareError(MSE))

Best training method Trainbr

Number of hidden layers l Layer

Hidden layer function tansig, logsig

Output layer function Purelin

Number of training data 142

Number of validation data 30–31

Number of test data 30–31
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Table 3.  Error value comparison of various training methods in MATLAB software.

MSE Acronym Algorithm Description

1.14E−02 BFG trainbfg BFGS quasi-Newton

4.31E−03 BR trainbr Bayesian regularization back propagation

1.40E−02 CGB traincgb Conjugate gradient with Powell/Beale restarts

1.26E−02 CGF traincgf Fletcher–Powell conjugate gradient

1.37E−02 CGP traincgp Polak–Ribière conjugate gradient

2.13E−02 GDA traingda Gradient descent with adaptive learning rate backpropagation

1.95E−02 GDX traingdx Variable learning rate back propagation

1.28E−02 RP trainrp Resilient back propagation

1.57E−02 SCG trainscg Scaled conjugate gradient

5.58E−03 LM trainlm Levenberg–Marquardt

Figure 5.  A comparison of error value for different training methods in MATLAB.

Figure 6.  Performance diagram of μnf output.
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bias value should be equal to 0. It can be seen that in all four graphs, the slope of the regression line is almost 
equal to 1; hence it can be deduced that the results are output values of the ANN that have satisfactory accuracy 
and are sufficiently close to target values. Moreover, the scattering style of points is at a minimum level, and all 
of the points are located on the bisector of the plane.

In Table 4, the error rate of trained ANNs is presented for µnf  , and it is noticeable that the error value is very 
low and has an acceptable margin.

The error diagram of different experimental data of µnf  is presented in Fig. 8. It indicates that the frequency of 
zero-range error values is very high, proving that the ANN is well trained and creates a good estimation for µnf .

Another important clue for a well-trained ANN is a histogram error value, as shown in Fig. 9. The histogram 
chart depicts the frequency or count of errors in different error margins   in a bar chart. Therefore, the frequency 
of errors in the vertical axis is presented versus different error margin values in the horizontal axis. The more 
near-zero frequencies, the more accurate ANN. In this figure, the Zero Error line is indicated by red color. It is 

Figure 7.  Regression diagram for µnf  output.

Table 4.  Trained ANNs error rates for µnf .

System output The lowest percentage of error The highest percentage of error MSE

µnf − 1.4 1 4.3e−3
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seen that most bins with a high frequency of errors are gathered around this line, which is affirmative proof of a 
suitable choice of training method and its acceptable outcome.

Another comparison between actual data and ANN outputs is presented in Fig. 10 for µnf  . As shown in 
Fig. 10, a very good agreement between these data can be seen, which shows proper ANN training.

Analyzing untrained data
Another comparison chart is presented in 3D space for µnf  versus temperature and φ to investigate the trained 
ANN’s appropriateness for predicting µnf  for untrained data (see Fig. 11).

This graph shows the ANN output for untrained points in colored mesh, while the trained points are depicted 
with red stars. Thus, we can see that the stars are located on the 3D surface, and a close correspondence exists 
between trained ANN results for untrained data and the target values. Based on all of the diagrams presented 
for the trained ANNs, we can conclude that a well-trained ANN can be used as an approximating function for 
predicting µnf  . In addition, the φ has a more significant influence on µnf  value in contrast to a temperature which 
has a negligible effect on the output values.

Conclusion
In summary, the dynamic viscosity of MWCNT–Al2O3/oil SAE40 nanofluid is investigated at different nanopar-
ticle percentages and temperatures by ANN. In this study, the best topology of the ANN was determined by trial 
and error, and a two-layer with 10 neurons in the hidden layer with the tansig function had the best performance. 
Also, to analyze the effect of various training algorithms on the performance of µnf  prediction, 10 different 
training functions were used. The results show that a well-trained ANN is created using the trainbr algorithm 

Figure 8.  Experimental data error value for µnf .

Figure 9.  The ANN error histograms for µnf .
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and showed an MSE value of 4.3e−3 along 0.999 as a correlation coefficient for predicting µnf  . To parameters 
of nanoparticle percentages and temperatures have a significant effect on the dynamic viscosity. Therefore, an 
increase φ has an impressive growth of µnf  value for all temperatures. And by increasing the temperature, the µnf  
will decrease for all various φ . At the same time, this decrement is more noticeable in higher φ . For example, an 
increase of the temperature from 25 to 50 °C changes the μnf of the pure fluid by only about 200%, while the same 
changes of temperature in φ = 1% will cause a 350% drop in μnf. The academic community and industrial society 
can use the obtained data in the present manuscript to find the optimal condition in the preparation and produc-
tion of nanofluids to reduce the energy consumption of industrial instruments. As a suggestion, we recommend 
using other configuration of neural networks including GMDH network and comparing the obtained results 
in this paper with the ones obtained through other methods. Moreover, implementation of experiments with 
other parameters or the same parameters used in this manuscript with other margins is highly recommended 
for better understanding of this hybrid nano-fluid.

Received: 20 June 2021; Accepted: 17 August 2021
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