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ABSTRACT
Recent improvements in next-generation sequencing (NGS) technologies can facilitate
the obtainment of mitochondrial genomes. However, it is not clear whether NGS could
be effectively used to reconstruct the mitogenome with high gene rearrangement.
These high rearrangements would cause amplification failure, and/or assembly and
alignment errors. Here, we choose two frogs with rearranged gene order, Amolops
chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect
the mitogenome assembly and alignment by using NGS. The mitogenomes with
gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and
assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in
the mitogenome of A. chunganensis andQ. boulengeri are typical neobatrachian pattern
except for rearrangements at the position of ‘‘WANCY’’ tRNA genes cluster. Further,
the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM.
Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and
other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial
sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide
nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri.

Subjects Evolutionary Studies, Genetics, Genomics, Molecular Biology, Zoology
Keywords Gene rearrangement, WANCY, Illumina sequencing, Neobatrachian, Mitogenome

INTRODUCTION
In metazoan mitochondrial genomes, the organization is usually conserved (Boore, 1999).
The typical mitogenome of metazoans contains two ribosomal RNAs, 22 transfer RNAs
(tRNAs), 13 protein-coding genes (PCGs) and non-genic regions. Because of maternal
inheritance features and other characteristics of mitogenome (i.e., relatively conserved gene
content and organization, rapid mutation rate, and limited recombination), mitochondrial
DNA (mtDNA) is a valuable and popular molecular marker (Xia et al., 2014; Hahn, Bach-
mann & Chevreux, 2013; Zhang et al., 2013). It has been extensively applied in population
genetics, evolutionary biology, phylogeography, as well as phylogenetic relationships
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at multiple taxonomic levels (Hahn, Bachmann & Chevreux, 2013; Zhang et al., 2013;
Lindqvist et al., 2010). However, cases of mitochondrial reorganization (e.g., gene rear-
rangements, gene duplication and loss) are found in many lineages, even in closely-related
species (Xia et al., 2014; Kurabayashi et al., 2010; Dowton et al., 2009). The rearrangements
would cause amplification, assembly and alignment errors or failure.

The traditional protocols to produce themitochondrial genomes have relied on perform-
ing either standard/long PCRor cloning, followed by a series of Sanger sequencing (Moreira,
Furtado & Parente, 2015; Gan, Schultz & Austin, 2014; Poulsen et al., 2013). The classic
method is a time consuming and resource demanding task (Hahn, Bachmann & Chevreux,
2013). Recently, the developments of next generation sequencing (NGS) have brought
about PCR-free high-throughput sequencing to recover the whole mtDNA genomes
(Machado, Lyra & Grant, 2015;Gan, Schultz & Austin, 2014;Hahn, Bachmann & Chevreux,
2013; Jex et al., 2010). The NGSmethod overcomes some of the current challenges to isolate
mtDNA and the biases introduced by PCR (Smith, 2016; Dames, Eilbeck & Mao, 2015;
Machado, Lyra & Grant, 2015; Tang et al., 2014; Hahn, Bachmann & Chevreux, 2013).

Numerous applications for rapidly assembling mitogenomes directly from NGS have
been proposed (Cong & Grishin, 2016; Lounsberry et al., 2015; Cameron, 2014; Gan, Schultz
& Austin, 2014). Based on high-throughput sequencing technologies, Tang et al. (2014)
developed a novel multiplex sequencing and assembly pipeline for rapid and accurate
reconstruction of full mitogenome from pooled Drosophila without DNA enrichment or
amplification. The fast recovery, assembly, and annotation of mitogenome from genomic
sequencing have been applied in butterflies and moths (Cong & Grishin, 2016), crayfish
(Gan, Schultz & Austin, 2014), monogenean ectoparasitic flat-worms (Hahn, Bachmann &
Chevreux, 2013), giant intestinal fluke (Fasciolopsis buski; Biswal et al., 2013) and Ascidian
species (Rubinstein et al., 2013). In addition, RNA-seq and ultraconserved elements (UCE)
sequencing are also excellent source to assemble mitochondrial genomes (Machado, Lyra
& Grant, 2015; Moreira, Furtado & Parente, 2015; Raposo do Amaral et al., 2015).

The recent availability of complete mitogenomes and the partial sequences of ‘‘hotspots’’
ofmtDNArearrangements revealed a surprising array of gene organization in anurans, espe-
cially in neobatrachians (Xia et al., 2014;Kurabayashi et al., 2010;Ren et al., 2009). Gene or-
der rearrangement involving the coding geneND5 is observed inDicroglossidae (Euphlyctis,
Hoplobatrachus, Fejervarya; Alam et al., 2010; Ren et al., 2009; Liu, Wang & Su, 2005),
Mantellidae (Mantella; Kurabayashi et al., 2008; Kurabayashi et al., 2006) and Rhacophori-
dae (Rhacophorus, Buergeria; Huang et al., 2016; Sano et al., 2005; Sano et al., 2004). Two
copies of trnM genes are found in Dicroglossidae (e.g., Feirana and Quasipaa; Chen et al.,
2015; Shan et al., 2014; Ren et al., 2009; Liu, Wang & Su, 2005) and Mantellidae (e.g.,Man-
tella;Kurabayashi et al., 2008;Kurabayashi et al., 2006). The tRNAgene cluster, ‘‘WANCY,’’
is a hotspot of gene rearrangement in Neobatrachia, such as Ranidae (Xia et al., 2014;
Kurabayashi et al., 2010), Dicroglossidae (Shan et al., 2014; Zhou et al., 2009) and Mantel-
lidae (Kurabayashi et al., 2008; Kurabayashi et al., 2006). However, these rearranged se-
quences have been approached using the conventional procedure of combining long-range
PCR with subsequent primer walking. Although high-quality mitochondrial genomes
have been obtained from NGS for anurans (Machado, Lyra & Grant, 2015), more cases are
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needed to confirm the effectiveness of this protocol, especially for species with gene order
rearrangement.

Some frogs with gene order rearrangements provide the opportunity to test the validity of
mitogenome assembly by NGS. Gene order reorganization was reported in the ‘‘WANCY’’
gene cluster of some Amolops mitogenomes (Xia et al., 2014; Xue et al., 2015; Zhang, Xia
& Zeng, 2016; Shan et al., 2016). The ‘‘WANCY’’ gene cluster was also rearranged in the
spiny-bellied frog, Quasipaa boulengeri (Shan et al., 2014). Furthermore, the intraspecific
diversity of gene rearrangements, which contains four kinds of rearrangements, within
Q. boulengeri has been identified in 290 samples from 28 populations (Xia et al., 2016).
The discovery of intermediate states and alternative losses types in the spiny-bellied frog
provided direct evidence of tandem duplication and random loss model for mitochondrial
gene rearrangements. However, such partial duplications and deletions of mtDNA
fragments would cause inconvenience to assemble mitogenomes by NGS.

In this study, we choose two frogs with gene rearrangements, Amolops chunganensis and
Quasipaa boulengeri, to testwhetherNGS could effectively obtain themitogenomewith high
gene rearrangement. The mitogenomes are assembled and annotated from next generation
sequencing reads through Illumina MiSeq genomic sequencing. The nearly-complete
mitochondrial DNA sequence of A. chunganensis and Q. boulengeri were recovered, and
compared with otherAmolops andQuasipaa species, respectively. In order to evaluatemito-
chondrial sequence authenticity of A. chunganensis andQ. boulengeri, we performed a phy-
logenetic analysis. The phylogenetic tree was constructed by using Bayesian Inference (BI)
and Maximum Likelihood (ML) methods for the two newly obtained and other published
neobatrachian mitogenomes from GenBank.

MATERIALS AND METHODS
Library preparation and Illumina sequencing
The sample of Amolops chunganensiswas collected in Gansu Province, China (Voucher No.
XM5526, ♀); and Quasipaa boulengeri was collected in Sichuan Province, China (Voucher
No. XM3632, ♀). Chengdu Institute of Biology issued permit number CIB#2014-36 and
CIB#2014-110 for field work. All work with animals was conducted according to relevant
national and international guide-lines on the Protection of Wildlife. All animal care and
experimental procedures were approved by the Animal Care and Use Committee (Permit
Number: CIB-20121220A), Chengdu Institute of Biology, Chinese Academy of Sciences.

Genomic DNA was extracted from muscle tissue through SDS-proteinase K/phenol-
chloroform protocols. DNA samples were shipped toNovogene Bioinformatics Technology
(Beijing, China) for library construction and sequencing on Illumina MiSeq platform with
300 bp paired-end reads (PE300). Briefly, the paired-end librarywas performedwith TruSeq
kit (insert size ∼500 bp), following the protocols of Illumina DNA sample preparation.
These libraries were pooled together to sequence on Illumina MiSeq platform at the
Novogene Bioinformatics Technology (Beijing, China). Sequence files for genomic DNA
from A. chunganensis and Q. boulengeri were generated in FASTQ format (sequence read
and quality information in Phred format). The raw sequencing data were deposited in
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the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA,
http://www.ncbi.nlm.nih.gov/Traces/sra) under accession numbers SRR3929655 and
SRR3929656 for Q. boulengeri and A. chunganensis, respectively.

Mitogenome assembly
Contaminant sequences were first removed. Then, low-quality regions (Phred quality
score < 20) and sequence adapters in the libraries were trimmed by using Trimmomatic
(Bolger, Lohse & Usadel, 2014). De novo assembly of clean reads for each datasets were
performed using SOAPdenovo2 (Luo et al., 2012) and Trinity v2.1.0 (Haas et al., 2013).
Reads preprocess and assembly parameters followed the individual program guidelines. For
SOAPdenovo2, we used 7 k-mer sizes between 50 and 80 with a step size of 5 and manually
modified the assembly parameter values. Trinity assembler was used with the inchworm
k-mer method, following authors’ recommendations. For each assembly, we monitored
the change of total number of contigs and N50 size over the assessed parameter range.

After assembly, we used the published mitogenomes of Amolops as queries against
the contigs dataset of A. chunganensis. Amolops loloensis (GeneBank No. KT750963) and
A. mantzorum (KJ546429)were used as queries for the referencemitogenome. The reference
mitogenomes were BLASTed against assembly using BLASTn (BLAST+ v2.2.30) to search
for contigs with mitochondrial protein-coding and RNA genes. ForQ. boulengeri, the same
strategy has been performed.Quasipaa boulengeri (KC686711) andQ. spinosa (NC_013270)
were chose as reference mitogenomes.

Mitogenome annotation and analysis
The mitogenome sequence was annotated using both tRNAscan-SE v.1.21 (http://lowelab.
ucsc.edu/tRNAscan-SE; Schattner, Brooks & Lowe, 2005; Lowe & Eddy, 1997) and the MI-
TOS web server (http://mitos.bioinf.uni-leipzig.de/index.py; Bernt et al., 2013). These pro-
grams also used to predict the potential cloverleaf secondary structures of tRNAs genes. The
sequences of candidate tRNAs were recognized and aligned with homologous tRNAs genes.
Thirteen PCGs of the twomitogenomeswere identified by comparing inferred open reading
frames with published Amolops and Quasipaa species. Both translation of open reading
frames and annotation of the N- and C- terminal ends of each PCG were done in MEGA
v6.06 (Tamura et al., 2013). In addition, the boundaries of the rrnL and rrnS genes were
predicted by the flanking tRNA genes.

Phylogenetic analysis
To validate the phylogenetic relationship of A. chunganensis and Q. boulengeri among
neobatrachians, we aligned 46 mitogenomes of neobatrachians to confirm the phylogenetic
relationships, and selected Pelobates cultripes (NC_008144), Xenopus laevis (NC_001573)
and X. tropicalis (NC_006839) as outgroup taxa. Details of the GenBank accession numbers
of anuran mitochondrial genomes analyzed were listed in Table S1. All sequences were
edited manually in BioEdit Sequence Alignment Editor v.7.0.5 (Hall, 1999) and MEGA
v.6.06 (Tamura et al., 2013) with default parameters. The alignments of 13 PCGs were
determined in software MEGA v.6.06, with the default settings (align codons). The PCGs
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were translated to amino acids sequences and were manually concatenated all sequences
into a single nucleotide dataset (total 11,502 bp).

We constructed the phylogenies with the concatenated dataset using BI andMLmethods,
which were conducted by MrBayes v.3.1 (Ronquist & Huelsenbeck, 2003; Huelsenbeck &
Ronquist, 2001) and RAxML v.8.2.x (Stamatakis, 2014), respectively. Nucleotide substitu-
tion model selection was estimated under Bayesian Information Criterion (BIC) scores in
jModeltest v.0.85 (Posada, 2008), and model GTR + I + G was selected as the best-fitting
model for BI andML analyses. BI partitioning analysis followed the programs with calculat-
ing amajority rule consensus treewith 10,000,000 generations ofMarkov chainMonteCarlo
(MCMC), with frequency of tree sampling every 1,000 generations and the first 25,000 trees
discarding as burn-in, and starting from a random tree. After performing two independent
runs, the output trees were combined to estimate the Bayesian posterior probabilities (BPP)
in 50% majority rule for each node. For ML analysis, program RAxML were performed
with model GTRGAMMA under the similar partitioning parameters as BI analysis, and
with 1,000 bootstrap replicates to calculate the bootstrap (BS) of the topology. In addition,
the significant nodes’ supports were considered with 95% BPP (Felsenstein, 2004) and 75%
BS (Hillis & Bull, 1993) in BI and ML analysis, respectively.

RESULTS
Sequencing data from Illumina MiSeq
A total of 15.29million rawPE readswere produced on IlluminaMiSeq (PE300) systems (4.9
Gb and 4.2 Gb raw data for Q. boulengeri and A. chunganensis, respectively). After removal
of adaptors and low-quality reads, the clean reads were used for the subsequent assembling.
All assembly statistics of each assembler were shown in Table 1. Although total numbers of
assembled contigs in Trinity were less than SOAPdenovo2, the Trinity assembler collected
larger N50 and longer contigs (Table 1). More than two hundred contigs were aligned
to reference mitogenome for each K-mer assembly of SOAP denovo2; however, most of
them less than 500 bp. Further, few gaps existed when such contigs were used to assemble
for the final mitogenome construction. By contrast, the best aligned contigs to reference
mitogenome in Trinity are longer than 16 kb without gaps. It implies that Trinity is better
than SOAPdenovo2 to recover mitogenome for low coverage metagenomic skimming data.

Mitogenomic sequences and annotation
We recovered the nearly complete mitogenome of two species, A. chunganensis and
Q. boulengeri. For the mitochondrial genome of A. chunganensis, this is the first work
reporting the nearly complete mitochondrial genome. The nearly complete mitogenome
sequences of A. chunganensis and Q. boulengeri were 16,795 bp and 16,672 bp in total
length, respectively (GenBank accession no. KX645666 and KX645665). The mitogenome
of A. chunganensis contained 22 transfer RNAs, 2 ribosomal RNAs, 13 PCGs and partial
D-loop region (Table S2). Comparatively, the mitogenome of Q. boulengeri contained 23
transfer RNAs with a tandem duplication of trnM (Table S3). The annotation and gene
map of two mitogenomes were illustrated in Fig. 1. In these mitogenomes, eight tRNAs
and nad6 gene were encoded in the L-strand, and the rest of genes were encoded in the
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Table 1 Statistics and assembled result of SOAP denovo2 and Trinity.

Species Assembly method Total number of contigs Total number of length N50 Max contig length

K50a 6,341,679 1,860,878,175 300 2,615
K55a 6,086,855 1,875,157,178 314 2,880
K60a 5,715,340 1,870,183,020 332 3,183
K65a 5,460,129 1,843,817,246 338 2,817
K70a 5,122,048 1,779,429,007 332 2,980
K75a 4,926,588 1,723,696,265 318 2,779
K80a 4,686,214 1,630,358,728 300 2,830

Quasipaa
boulengeri

Trinity 1,555,983 755,862,296 526 16,672
K50a 5,072,290 1,417,075,271 300 2,537
K55a 4,955,300 1,436,818,547 300 2,741
K60a 4,746,605 1,436,171,325 300 2,416
K65a 4,549,311 1,407,207,578 300 2,513
K70a 4,301,826 1,350,614,260 300 2,527
K75a 4,167,451 1,308,301,284 300 2,578
K80a 4,007,361 1,244,363,080 300 4,366

Amolops
chunganensis

Trinity 1,017,500 448,075,968 469 16,795

Notes.
aThe k-mer sizes used in SOAP denovo2.
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Figure 1 Annotation andmap of Amolops chunganensis andQuasipaa boulengeri. Annotation of Amolops chunganensis (A) and Quasipaa
boulengeri (B) mitogenome. PCGs are colored in red, tRNA-coding genes are in blue, rrnL and rrnS are in green. A pseudogene of trnK is located
between cox2 and atp8 genes. Each gene is shown as an arrow indicating the transcription direction. The arrows on top of the black line correspond
to genes coded on the H-strand, and those below show genes on the L-strand.

H-strand (Fig. 1; Tables S2 and S3), as described in other anurans (Shan et al., 2016; Shan
et al., 2014; Zhang et al., 2013). The tRNA-coding genes length ranged from 60 to 73 bp.
Secondary structures developed by MITOS suggested that all tRNAs fold in a cloverleaf
structure (Figs. S1 and S2).

In A. chunganensis mitogenome, ten of 13 PCGs started with the common initiation
codon ATG, while nad2 began with ATT, cox1 and atp6 initiated with ATA (Table S2).
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For the terminal codon, atp8, cox1 and nad6 genes stop with TAG, AGG and AGA,
respectively; nad4l, nad4 and cytb ended with TAA; while nad2 and atp6 ended with TA.
Five PCGs (cox2, cox3 and nad1, nad3, nad5) ended with an incomplete stop codon
(T–). In addition, we had checked two repeated units 5′-CCGTATGGTTTAATT -
ATATACCATCTAATAGGTGATATATATACA-3′ (8 times) and 5′-CCTATATATGCC
-CGATATATACTATACTAAGTATTAATCA-3′ (6 times) located at the upstream of trnL
and the downstream of cytb, respectively. Because of the tandem repeat units, only 530 bp
had been recovered in the D-loop region for A. chunganensis.

In Q. boulengeri mitogenome, eleven of 13 PCGs started with ATG, and the nad2 and
cox1 initiated with ATT and ATA, respectively (Table S3). There were four kinds of stop
codon in the 13 PCGs: AGG (cox1 and nad6), TAA (atp8, cytb and nad4l), TAG (nad5) and
incomplete codonT–in all other seven genes. The incomplete stop codon (T–) is presumably
completed as TAA by post transcriptional polyadenylation (Huang et al., 2014; Ojala,
Montoya & Attardi, 1981). Overall nucleotide compositions of those mtDNA sequences
were A (28.5%), G (14.8%), T (30.1%), and C (26.5%) in A. chunganensis, and A (27.8%),
G (14.8%), T (28.3%), and C (29.1%) in Q. boulengeri, respectively. Moreover, we had
checked one repeated unit 5′-TTTTAAGTTA-3′ (25 times) located at the upstream of trnL.
Similarly, these multiple tandem repeated units caused the incomplete assembly of the
D-loop region in Q. boulengeri.

Gene rearrangement
The gene order in A. chunganensis and Q. boulengeri follows the typical organization of
neobatrachians, except some rearrangements of tRNA genes (Zhang et al., 2005; Zhang et
al., 2013; Kurabayashi & Sumida, 2013). Compared with reported ranid frogs, the location
of replication origin (OL) in A. chunganensismitogenome was rearranged. This gene order
was consistent with other reported Amolops species (Zhang, Xia & Zeng, 2016; Xue et al.,
2015; Xia et al., 2014). The OL is located in the tRNA genes cluster ‘‘WANCY’’. The typical
gene order of the ‘‘WANCY’’ cluster is trnW , trnA, trnN, OL, trnC and trnY.

In A. chunganensis, however, we found OL was located between the trnW and trnA. It is
similar to A. mantzorum and A. loloensis gene arrangement pattern (Shan et al., 2016; Xue
et al., 2015). Interestingly, a trnK pseudogene was located between cox2 and atp8 genes (Fig.
1A; Table S2). Compared with the trnK gene, the pseudogene has a nucleotide deletion in
the anticodon loop, and has some mutations in the acceptor stem of its secondary structure
(Table S2 and Fig. S1). Additionally, theW-OL-ANCY structure from assembled NGS reads
was consistent with previous reported gene rearrangement pattern of another individual
of A. chunganensis (KF771328; Xia et al., 2014).

In the mitogenome of Q. boulengeri, two trnM genes were derived from a tandem
duplication, which was consistent with other Quasipaa species (Chen et al., 2015; Shan
et al., 2014; Zhou et al., 2009). Moreover, pseudogene or residues of OL and trnN were
observed in the tRNA genes cluster ‘‘WANCY’’ (between trnW and trnY ), resulting to
rearranged pattern: ‘‘WAN-OL-N’-OL’-CY’’ in this individual Furthermore, the gene order
of the two available Q. boulengeri individuals (GenBank no. KF199152, KC686711; Table
S1) were quite different in the ‘‘WANCY’’ region. This indicated that the intraspecific
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diversity of gene rearrangements existed in Q. boulengeri mitogenomes. In addition,
576 non-coding nucleotides were observed between trnN and trnC (Fig. 1B), which is
similar to other individuals of Q. boulengeri by Sanger sequencing (Xia et al., 2016). These
observations supported that mitogenome with gene order rearrangement can be obtained
effectively and correctly from assembled NGS reads.

Phylogenetic analysis
The concatenated PCGs data of mitogenome sequences contained 11,502 nucleotide
positions, including 3,630 conserved sites, 7,806 variable sites and 7,068 potentially
parsimony-informative sites. Bayesian inference and Maximum likelihood methods with
GTR + I + G model consistently supported the same topology.

The results of phylogenetic analysis revealed that monophyly of the Neobatrachia was
well supported by our work and previous molecular studies (Xia et al., 2014; Roelants et
al., 2007; Frost et al., 2006). The family Dicroglossidae was the sister clade to the clade
((Rhacophoridae+Mantellidae)+ Ranidae) (Fig. 2). In phylogenetic tree, all Amolops and
Quasipaa species formed a monophyly, respectively. The Amolops clade was split into two
sub-clades. One sub-clade containedA. ricketti andA. wuyiensis, and the other one included
A. chunganensis, A. loloensis, A. mantzorum and A. tuberodepressus (Fig. 2). The molecular
phylogenetic result was consistent with the previous studies (Zhang, Xia & Zeng, 2016; Lv,
Bi & Fu, 2014; Cai et al., 2007). Three Q. boulengeri individuals formed a monophyletic
group, sister toQ. verrucospinosa. CladeQuasipaa comprisedQ. yei as the sister taxon to the
sub-clade (100%, 1.00) containing (Q. shini + ((Q. jiulongensis + (Q. spinosa + Q. exil-
ispinosa)) + (Q. boulengeri + Q. verrucospinosa))) (Fig. 2). The phylogenetic relationships
supported the authenticity of the two obtained mitogenomes among neobatrachians.

DISCUSSION
Efficient assembly of mitochondrial genomes
The length of the best fitted contigs forA. chunganensis andQ. boulengeriwas 16,795 bp and
16,672 bp, respectively. We failed to recover the complete mitogenome of A. chunganensis
and Q. boulengeri, due to the highly repetitive sequences in the D-loop region. Except the
gap in the D-loop region, the whole mitogenomes were assembled successfully even if
there are gene rearrangement in both species. Repeated regions are a well-known problem
for sequence assembly algorithms, and it was hard to assemble the D-loop region with
extensive repeated regions by NGS (Hahn, Bachmann & Chevreux, 2013; Tang et al., 2014).
In the D-loop region, different repeated units, repetitive sequence and repetitions resulted
in different sequence length (length polymorphism). For example, in Amolops species, the
D-loop region ranged from 2,211 bp (A. mantzorum) to 3,391 bp (A. loloensis) (Zhang,
Xia & Zeng, 2016; Shan et al., 2014; Xue et al., 2015). Actually, even if long tandem repeat
regions can be successfully amplified by long PCR, they also represent a problem for Sanger
sequencing (Xia et al., 2014).

Gene order rearrangement is not a big problem for the assembly of mitogenomes
by NGS. In the assembly process, the highly covered regions may be removed if uniform
coverage of reads are assumed by a de novo genome assembler (Rubinstein et al., 2013). This
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Figure 2 The Bayesian Inference (BI) andMaximum Likelyhood (ML) tree (combined 13 PCGs, 11,502 bp). The Bayesian Inference (BI) and
Maximum Likelihood (ML) tree based on nucleotide sequences of the combined 13 protein-coding genes (11,502 in size). For the BI tree, the GTR
+ I+ G model was selected, and two independent runs were performed for 1,000,000 generations with sampling frequency 0.001. The GenBank ac-
cession numbers of all species are shown. Numbers beside the nodes are Bayesian posterior probabilities and ML Bootstrap, respectively (showed in
BPP/BS). between cox2 and atp8 genes. Each gene is shown as an arrow indicating the transcription direction. The arrows on top of the black line
correspond to genes coded on the H-strand, and those below show genes on the L-strand.

may be disadvantageous to the assembly of mitogenomes with gene order rearrangement.
Tandem duplication followed by random loss (TDRL) is the most frequently invoked
model to explain the diversity of gene rearrangements in metazoan mitogenomes (Boore,
2000). According to this model, two copies of mitochondrial gene fragment would exist
after tandem duplication. These tandem duplications would cause errors when using short
reads of NGS to assemble mitogenomes. Nevertheless, deletion of a redundant gene-copy
may happen rapidly due to replication and/or transcription efficiency, facilitating the
formation of pseudogenes or the complete deletion of redundant genes Such pseudogenes
or residues of tandem repeats could be efficiently distinguished from the original copy.
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By aligning published mitogenomes of close species and individuals in rRNAs, tRNAs
and PCGs, we assessed the quality of our assembled data. The alignment results suggested
that the assembled sequences were consistent with majority of other anurans mitogenomes
The non-conservative regions were located between nad2 and cox1, which includes gene
rearrangements in Amolops and Quasipaa reported previously (Xia et al., 2014; Shan et al.,
2014; Shan et al., 2016).

Our results illustrated that mitochondrial sequences can be successfully assembled from
the NGS raw data. Compared with traditional methods, the strategy of mitogenomes
assembly from NGS raw data has two distinct advantages. First, it neither depends on
specific primers nor be affected by gene rearrangement. When gene rearrangement region
include primers, the PCR-based method could not be successfully amplified. Second, this
approach is fast, timesaving, relatively cheap, and does not require great effort to recover
the mitochondrial genomes (Gan, Schultz & Austin, 2014; Tang et al., 2014; Rubinstein et
al., 2013; Haiminen et al., 2011). However, the disadvantage of such an approach is that it
requires constructing separate genomic libraries for each sample.

Mitochondrial gene order rearrangements
Some pseudogenes or residues of OL trnK and trnN were observed in A. chunganensis and
Q. boulengeri. These gene rearrangementsmay be explained by the theory of TDRL (Mueller
& Boore, 2005; Boore, 2000). In A. chunganensis, OL was located between trnW and trnA.
For Q boulengeri, the intraspecific gene rearrangements were checked in the WANCY
region. Our results supported the observation that the hotspot of gene rearrangement was
adjacent to the origin of light-strand replication (San Mauro et al., 2006). The widespread
occurrence of gene rearrangement among different vertebrate groups has been examined in
relation to variability in the thermodynamic stability of the light-strand replication origin
(Fonseca & Harris, 2008).

Mitochondrial metagenomic skimming by NGS could be a useful approach to recover
intraspecific rearrangements ofmitogenomes. By sequencing the hotspot of gene rearrange-
ment of mtDNA for Q boulengeri (from nad2 to cox1, which includes the WANCY region),
four kinds of gene rearrangements were identified in spiny-bellied frog populations (Xia
et al., 2016). Yet, mitochondrial genome analysis may provide more valuable evidences for
interpreting the intraspecific gene rearrangements. Intraspecific rearranged variations were
not common by comparison of all mtDNA records of amphibians and reptiles in GenBank.

Phylogenetic reconstruction of mitogenomic data
In this study, both the phylogenetic relationships andmitogenome organization suggest that
A. wuyiensis and A. ricketti were significantly distinguished from other Amolops species (Fei
et al., 2009). Within Amolops clade, the highly supported sister relationship of A. wuyiensis
and A. richetti was consistent with the results of Cai et al. (2007). Within Quasipaa clade,
the phylogenetic inferences based on mtDNA sequences revealed that all individuals of
Q. boulengeri formed a monophyly with high supports, sister toQ. verruspinosa. This result
is congruent with Che et al. (2009), but different from the result of Qing et al. (2012). The
phylogenetic reconstruction using whole mitogenome provides more credible result than
single gene.
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As previous demonstration (Yan et al., 2013; Qing et al., 2012; Cai et al., 2007; Frost
et al., 2006), the mitogenomic approach proved useful tools for inferring phylogenetic
relationships within Neobatrachia. In the present study, all clades were well resolved, with
a few exceptions where Bayesian posterior probabilities were no less than 0.90. Despite
their fast evolutionary rate, mitochondrial genomes contained a phylogenetic signal that
could be efficiently recovered with reasonable taxon sampling (Rubinstein et al., 2013).
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