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ABSTRACT

The application of single-cell RNA sequencing (scR-
NAseq) for the evaluation of chemicals, drugs, and
food contaminants presents the opportunity to con-
sider cellular heterogeneity in pharmacological and
toxicological responses. Current differential gene ex-
pression analysis (DGEA) methods focus primarily
on two group comparisons, not multi-group dose–
response study designs used in safety assessments.
To benchmark DGEA methods for dose–response
scRNAseq experiments, we proposed a multiplicity
corrected Bayesian testing approach and compare
it against 8 other methods including two frequentist
fit-for-purpose tests using simulated and experimen-
tal data. Our Bayesian test method outperformed all
other tests for a broad range of accuracy metrics in-
cluding control of false positive error rates. Most no-
table, the fit-for-purpose and standard multiple group
DGEA methods were superior to the two group scR-
NAseq methods for dose–response study designs.
Collectively, our benchmarking of DGEA methods
demonstrates the importance in considering study
design when determining the most appropriate test
methods.

INTRODUCTION

Single-cell transcriptomics enables researchers to investi-
gate homeostasis, development and disease at unprece-
dented cellular resolution (1–5). As with any new innova-
tive technology, diverse tools soon follow to address spe-

cific applications and unique challenges. Currently, there
are dozens of differential gene expression analysis (DGEA)
approaches for single-cell RNAseq (scRNAseq) data; de-
veloped based on differences in assumptions, statistical
methodologies, and study designs (6–11). A recent compari-
son of 36 approaches demonstrated acceptable performance
for common bulk RNAseq tools such as edgeR and limma-
trend, and MAST for snRNAseq, as well as common sta-
tistical tests such as the Wilcoxon rank sum (WRS) and the
t-test (9). However, most methods have been developed pri-
marily for two group comparisons whereas study designs
typical of pharmacology and toxicology experiments such
as as dose–responses consist of multiple groups. The use
of two sample tests for multiple group study designs ele-
vate the type I error rate warranting further investigation
of these methods for multiple group dose–response study
designs (12).

Dose–response studies are used to derive the efficacy
and/or safety margins such as effective dose and the point
of departure (POD). Significant efforts by the toxicology
and regulatory communities have suggested that acute (<14
days) and sub-acute (14–28 days) transcriptomic studies
as viable alternative to the current standard 2-year rodent
bioassay that significantly reduces the time and resources
needed to assess risk (13–15). Gene expression profiling
at single-cell resolution could further support such evalu-
ations by identifying cell-specific dose-dependent responses
indicative of an adverse event. The U.S. National Toxicol-
ogy Program (NTP) recently reported a robust DGEA ap-
proach is essential to deriving biologically relevant PODs
(15). However, concerns regarding the inclusion of false
positives that produce less conservative POD estimates po-
tentially leads to incorrect classification of mode-of-action
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(MoA), thus highlighting the importance of controlling
type I error rates (16,17).

Unlike microarray and bulk RNAseq datasets, single-cell
RNAseq (scRNAseq) data exhibits excess zero values due
to the low per cell RNA input, biases in capture and ampli-
fication, transcriptional bursts, and other technical factors
(18). This no expression (zero values), due to a conflation of
both biological and technical factors, results in an excessive
number of zeroes in an otherwise continuous measure (19).
Therefore, traditional tests of differential gene expression,
based on the assumption of a normal distribution, fail to
correctly model the bimodality of single cell gene expression
(20). Consequently, scRNAseq test methods usually con-
sider the gene expression distribution as a mixture of a un-
expressed (zero) and a positively (non-zero) expressed pop-
ulation (19–21). For example, the Seurat Bimod approach
tests for differential gene expression using a likelihood ra-
tio test designed for the said mixture population. MAST ex-
tends the Seurat Bimod test to a two-part generalized linear
model structure capable of incorporating covariates (19,20).
Given the improved performance of MAST (9,19–20), we
hypothesized that multiple group tests developed assuming
the same distributional framework would be most favorable
for dose–response study designs. Furthermore, a Bayesian
approach which considers prior knowledge is anticipated to
minimize type I error rates (22,23).

The aim of the presented study is to evaluate the per-
formance of existing and novel DGEA test methods on
dose–response scRNAseq datasets. To reduce the rate of
false positives we propose a novel, multiplicity corrected,
Bayesian multiple group test (scBT) designed exclusively for
DGEA of dose–response scRNAseq data. Two other fit-
for-purpose frequentist multiple group tests are also exam-
ined: (i) a multiple group extension of the Seurat Bimod
test and (ii) a simple extension of test (i) to a generalized
linear model framework. Existing and proposed methods
are benchmarked on simulated and real experimental dose–
response datasets. Using simulated datasets we were able to
investigate the influence of various parameters such as num-
ber of cells, and illustrate how using different test methods
can aid in gaining biological insight on the role of individual
cell types on the pathophysiological consequences of expo-
sure.

MATERIALS AND METHODS

Animal handling and treatment

Male C57BL/6 mice aged postnatal day (PND) 25 were ob-
tained from Charles Rivers Laboratories (Kingston, NY)
were housed and treated as previously described (24). Mice
were housed in Innovive cages (San Diego, CA) with
ALPHA-dri bedding (Shepherd Specialty Papers, IL) at
23◦C, 30–40% relative humidity, and a 12:12 h light:dark cy-
cle. Aquavive water (Innovive) and Harlan Teklad 22/5 Ro-
dent Diet 8940 (Madison, WI) was provided ad libitum. On
PND 29, randomly assigned mice were gavaged at Zeitgeber
time (ZT) 0 with 0.1 mL sesame oil vehicle (Sigma-Aldrich,
St. Louis, MO), 0.01, 0.03, 0.1, 0.3, 1, 3, 10 or 30 �g/kg
TCDD every 4 days for 28 days (7 total administered doses).
At day 28 mice were euthanized by CO2 asphyxiation and
livers were immediately flash frozen in liquid nitrogen and

stored at −80◦C. All animal procedures were approved by
the Michigan State University (MSU) Institutional Ani-
mal Care and Use Committee (IACUC) and reporting of in
vivo experiments follow the Animal Research: Reporting of
In Vivo Experiments (ARRIVE) (25) and Minimum Infor-
mation about Animal Toxicology Experiments (MIATE)
guidelines (https://fairsharing.org/FAIRsharing.wYScsE).

Real scRNAseq and snRNAseq datasets

Hepatic single-nuclei RNA-sequencing (snRNAseq) was
performed as previously described using the 10× Genomics
Chromium Single Cell 3

′
v3.1 kit (10X Genomics, Pleasan-

ton, CA) (26). Briefly, nuclei were isolated using EZ Ly-
sis Buffer (Sigma-Aldrich), homogenized by disposable
Dounce homogenizer, washed, filtered using a 70-�m cell
strainer. The nuclei pellet was resuspended in buffer con-
taining DAPI (10 �g/ml), filtered using a 40-�m strainer,
and immediately sorted using a BD FACSAria IIu (BD
Biosciences, San Jose, CA) at the MSU Pharmacology and
Toxicology Flow Cytometry Core (facs.iq.msu.edu/). Se-
quencing (150-bp paired end) was performed at a depth of
50 000 reads/cell using a NovaSeq6000 at Novogene (Bei-
jing, China). CellRanger v3.0.2 (10× Genomics) was used
to align reads to mouse gene models (mm10, release 93) in-
cluding introns and exons to consider both pre-mRNA and
mature mRNA gene models. Seurat was used to integrate
and log-normalize expression data (27). The data is avail-
able on the Gene Expression Omnibus (GEO) at accession
ID GSE184506 and R package versions are listed in Sup-
plementary Table S1. Additional real datasets were pub-
licly available. Hepatic whole-cell generated using the 10X
Genomics platform was obtained from GEO (GSE129516)
(5). Hepatic single-nuclei processed as the dose–response
data for control and high dose TCDD treatment (0 and 30
�g/kg) was obtained from GEO (GSE148339). Peripheral
blood mononuclear cell (PBMC) data also generated using
the 10× Genomics platform and Seurat was obtained from
the SeuratData R package (27).

Gene set enrichment analysis of experimental data was
performed using the fgsea v1.14 R package on gene lists
sorted by significance values (e.g. P-value). Gene sets from
BIOCARTA, KEGG, PANTHER and WIKIPATHWAYS
were obtained from the Gene Set Knowledgebase (GSKB;
http://ge-lab.org/gskb/) and filtered for gene sets containing
15–250 genes. Gene sets were agglomerated based on over-
lap of gene membership and only those showing ≥50% over-
lap were considered similar for subsequent network analy-
ses. Visualization and calculation of measures of centrality
were determined using igraph v1.2.7. Gene sets were consid-
ered enriched when adjusted P-value ≤0.05.

Dose–response data simulation

To simulate dose–response scRNAseq datasets we devel-
oped a wrapper for the Splatter R package (28). Splatter
simulates counts using parameters estimated from real data
to set the mean expressions, variance and outlier probabil-
ity. Other parameters such as the number of cells, genes,
probability of being differentially expressed, mean fold-
change of DE genes (location) and standard deviation of

https://fairsharing.org/FAIRsharing.wYScsE
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Table 1. Dose-response models for simulation of scRNAseq data

Model Formula

Hill �(dose) = γ + (v*dosen)/(kn + dosen)
Exponential 2 or 3 �(dose) = a*exp (sign(b*dosed))
Exponential 3 or 4 �(dose) = a*(c − (c − 1)*exp (dosed))
Power �(dose) = γ + �dose�

fold-change of DE genes (scale) were manually assigned to
best reflect real data. The wrapper (SplattDR) leverages the
group simulation feature of Splatter by applying a multi-
plicative factor estimated using dose–response models in
Table 1 based on the US EPA Benchmark Dose Software
(29). SplattDR R package is available at (https://github.
com/zacharewskilab/splattdr) and R session information is
listed in Supplementary Table S1.

Single cell RNA-seq hurdle model

We model the log-normalized gene expression matrix using
a hurdle distribution wherein the rate of gene expression is
assumed to follow a Bernoulli distribution and conditional
on a cell expressing the gene, the log-normalized expres-
sion level is assumed to follow a Gaussian distribution (19).
We denote Yi, j to be the log-normalized expression value of
gene j in cell i, for i = 1, . . .n and j = 1, . . .p. To characterize
the bimodal properties of single cell data, for a given cell,
a gene is defined to be either positively expressed or unde-
tected. Define Rij = I[Yij > 0] to be the indicator variable
denoting the presence or absence of expression for gene j
in cell i. Following (19), the log-normalized gene expression
values are modeled as follows:

Yi, j |Ri, j ∼ Normal(μ j , σ
2
j ),

Yi, j = 0 with probability 1 when Ri, j = 0,
Ri, j ∼ Bernoulli(ω j ),

(1)

where �j and σ 2
j denote the mean and variance of the

gene expression level, conditional on the gene being ex-
pressed and �j denotes the rate of gene expression of gene
j across all cells. Since the binary variable Rij denotes the
absence/presence of gene expression Yij, the Bernoulli dis-
tribution provides a natural representation as it can be
thought of as a model for the set of possible outcomes of
any single experiment that asks a yes-no question.

Hypothesis formulation. We now assume that our data has
been collected under K conditions (doses), and denote the
data by Dk, o ≡ {(Yk, i, j, Rk, i, j), i = 1, . . . , nk} . The underly-
ing populations for the sample data Dk, o for k = 1, 2, . . . , K,
dose groups are assumed to be identified by the parameters
(μk, j , σ

2
j , ωk, j ). The aim of this study is to test for differ-

ence in gene expression patterns between the different dose
groups. Traditionally one would perform an ANOVA test
to detect changes in mean across groups for samples with
continuous measurements. However, to account for the bi-
modality in single cell gene expression distribution, the test
should detect for changes in �j and �j simultaneously, as
both could drive differential gene expression. Therefore we

define,

H0 : μ1, j = μ2, j = . . . μK, j = μ j and

ω1, j = ω2, j = . . . ωK, j = ω j . (2)

versus the alternative

Ha : μk, j is different for at least one k and

ωk, j is different for at least one k, k = 1, . . . K

Single cell Bayesian hurdle model analysis (scBT). Given
the single cell RNA-seq hurdle model structure, we assume
that a priori, given σ 2

j , μk, j ∼ Normal(mk,0, τk,μσ 2
j ), σ 2

j ∼
IG(aσ , bσ ), �k, j ∼ Beta(ak, �, bk, �), where IG is the inverse
gamma distribution with shape a� and scale b� and mk, 0,
� k, �, a� , b� , ak, �, bk, � are the hyperparameters. Given the
large number of gene-wise model fits arising from a single
cell experiment, there is a pressing need to allow for a paral-
lel structure whereby the same model is fitted to each gene.
The prior distributions on the parameters describe how the
unknown coefficients �k, j �k, j and σ 2

j vary across the genes
and the dose groups while allowing for information borrow-
ing between the genes. Now, based on the model assump-
tions, we propose a Bayesian test for simultaneously testing
the differences in mean gene expression and dropout pro-
portions as formulated in Equation (2). Under the null hy-
pothesis the marginal likelihood is written as

LH0, j = ∫ ∫ ∫ ∏K
k=1

{ ∏nk
i=1

[
1√

2πσ j
exp

{
− (Yk,i, j −μ j )2

2σ 2
j

}

×ω j

]Rk,i, j

(1 − ω j )1−Rk,i, j

}
× π (μ j |σ 2

j )π (σ 2
j )π (ω j )

×dμ j dσ 2
j dω j . (3)

Under the alternative hypothesis we compute the
marginal likelihood without any restriction on the K means
�k, j and the dropout parameter �k, j; k = 1, 2, . . .K. Par-
ticularly, we assume that μk, j ∼ Normal(mk,0, τk,μσ 2

j ), and
σ 2

j ∼ IG(aσ , bσ ), �k, j ∼ Beta(ak, �, bk, �); k = 1, 2, . . .K.
Now, the marginal likelihood under the alternative hypoth-
esis is given by

LHa , j =
∫

. . .

∫ { K∏
k=1

nk∏
i=1

[
1√

2πσ j
exp

{
− (Yk,i, j − μk, j )2

2σ 2
j

}

×ωk, j

]Rk,i, j

(1 − ωk, j )1−Rk,i, j

}
×

K∏
k=1

{
π (μk, j )π (ωk, j )

}

×π (σ 2
j )

K∏
k=1

{
dμk, j dωk, j

}
dσ 2

j . (4)

The Bayes factor is then defined as

BF01, j = LH0, j

LHa , j
× π (Ha)

π (H0)
, (5)

where �(Ha) and �(H0) are the prior probabilities for the
alternative and null model, respectively. The hyperparame-
ters are obtained by maximising the marginal likelihood un-

https://github.com/zacharewskilab/splattdr
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der the null and the alternative hypothesis. Detailed deriva-
tions of the likelihood function and the Bayes Factor are
provided in Supplementary Material. Using the test of hy-
pothesis described in Equation (2), scBT conducts a test of
DE for each gene independently. To control for multiplicity
we adopt the FDR correction approach discussed in (30).
The rejection threshold is estimated in terms of the pos-
terior probabilities of the null hypothesis, p(H0, j|Dj). For
a target FDR 	, the procedure rejects all hypotheses with
p(H0, j|Dj) < 
 , where p(H0, j |Dj ) = 1/(1 + 1/BF01, j ) and 

is the largest value such that C(ζ )/J(ζ ) ≤ α where, J(
 ) =
{j: p(H0, j|Dj) ≤ 
} and C(
 ) = ∑

j ∈ J(
 )p(Ho, j|Dj).

Multiple group likelihood ratio test (LRT). To carry out
a direct performance comparison with scBT, we extend the
Seurat Bimod (19) for multiple groups. Assuming that all
the K groups have the same variance σ 2

j and omitting the
index j for clarity, the likelihood ratio test can be defined as;

	(Y, R) = supθ∈H0 L(θ |Y, R)
supθ∈Ha L(θ |Y, R)

,

where the likelihood can be written as:

L(θ |Y, R) =
∏

k

ω
ek
k (1 − ωk)nk−ek

∏
i∈Ck

f (Yi,k|μk, σ
2).

with Y and R representing the gene observation vector and
the gene indicator vector across K dose groups, � = {�k,
�2, �k, k = 1, . . . , K} is the vector of unknown parameters,
Ck is the set of cells expressing the gene in group k (i.e. Ck
= {i: Ri, k = 1}), ek = ∑

iRi, k is the number of cells express-
ing the gene in group k and f is the density function of the
normal distribution with parameters �k and �2. Following
(19), it can be shown that the combined LRT is the product
of a binomial and a normal LRT statistic, both of which
can easily be derived using classical statistical theory. Ap-
plying classical asymptotic results about LRTs , −2log 	(Y,
R) converges to a � 2 distribution with (2K − 2) degrees of
freedom under H0. Detailed derivations of the test statistic
can be found in the Supplementary Material.

Linear model-based likelihood ratio test (LRT linear). The
generalized linear model approach MAST was identified as
one of the top performing tests for pairwise differential ex-
pression testing (9,20). Deriving from their approach, the
LRT multiple test is extended to a generalized linear model
framework, where the mean and the dropout proportions
are modelled as a linear function of the dose groups (as-
sumed to be a continuous covariate). Using the same distri-
butional assumptions defined in Equation (1) we fit a logis-
tic regression model for the discrete variable R and a Gaus-
sian linear model for the continuous variable Y conditional
on (R = 1) independently, as follows: E(Yij|Rij = 1) = m0, j +
m1, j*di and logit{P(Rij = 1)} = 0, j + 1, j*di, where d rep-
resents the continuous dose groups. Under this modelling
approach, the null hypothesis described in Equation (2) can
be rewritten as H0: E(Yij|Rij = 1) = m0j and logit{P(Ri, j =
1)} = 0j. The regression models are fit using the lm and
brglm functions in the stats and brglm R packages. The like-
lihood ratio test statistic is computed using the same statisti-
cal theory discussed for the LRT multiple test and it asymp-
totically follows a � 2 distribution under H0.

Benchmarking method selection

Our fit-for-purpose tests were benchmarked to existing dif-
ferential expression testing methods or their multiple group
equivalent based on previously reported performance, abil-
ity to consider multiple groups, or whether they served as
foundation for the scBT and multiple group LRT (LRT
multiple) tests developed here. Seurat Bimod served as
foundation for the scBT and LRT multiple tests as previ-
ously outlined, and MAST was identified as one of the top
performing test for two group comparisons (9). Similarly,
limma-trend performed well for two sample comparisons
and can consider multiple groups. The WRS test was iden-
tified as providing excellent balance between its ability to
identify DE genes and speed, and is the default test for the
Seurat R package for scRNAseq analysis. It was also re-
ported that the t-test performed well and therefore we in-
cluded the ANOVA and Kruskal-Wallis (KW) tests, a para-
metric and non-parametric alternative of the t-test for mul-
tiple group comparisons. All tests were run without correc-
tion for batch effects or other nuisance covariates. Multi-
plicity for each test was controlled using FDR correction.
All tests, including scBT, LRT multiple and LRT Linear
are available in our scBT R package (https://github.com/
satabdisaha1288/scBT). R session information is listed Sup-
plementary Table S1. A flow diagram outlines our bench-
marking approach (Figure 1).

Seurat bimod. Seurat bimod test (19) is a pairwise differ-
ential gene expression testing approach developed assuming
the single cell RNA-seq hurdle model framework. The test
is formulated as H0: the mean and the dropout parameters
of the gene vector under two dose groups are equal versus
Ha: the mean and the dropout parameters differ over the
two groups. The LRT based test statistic −2log 	(y, r) con-
verges to a � 2 distribution with 2 degrees of freedom under
H0. The computations are carried out using the R Package
Seurat.

MAST. MAST (20) proposes a two-part generalized lin-
ear model for differential expression analysis of scRNAseq
data. The first part models the rate of gene expression using
logistic regression logi t(ωi j ) = Xiβ

ω
j and the second part

uses a linear model to express the positive gene-expression
Yij, conditional on Rij as μi j = Xiβ

μ

j ; where βω
j andβ

μ

j are
the coefficients of the covariates used in the logistic and lin-
ear regression model respectively. A test with an asympotic
� 2 null distribution is employed for identifying DEGs and
multiplicity is controlled using FDR correction (31). De-
spite the fact that LRT-linear and MAST have the same hur-
dle regression framework, the estimation process for the two
methods has some significant differences. First, to achieve
shrinkage of the continuous variance, MAST assumes a
gamma prior distribution on the precision (inverse of vari-
ance) parameter and estimates its posterior maximum like-
lihood estimator (MLE) and uses that in place of the regular
MLE of the precision parameter. Second, it fits a Bayesian
logistic regression model for the discrete component by as-
suming Cauchy distribution priors centered at zero for the
regression parameters. This is done to deal with cases of
‘linear separation’ where the parameter estimates diverge to

https://github.com/satabdisaha1288/scBT
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Figure 1. Flow diagram of the simulation, benchmarking, and experimental data evaluation strategy presented in the manuscript. Briefly, SplattDR was
developed to simulate dose–response scRNAseq data and validated based on experimental dose–response data. Simulated datasets were generated varying
diverse parameters 10 times and then used to assess the performance of each test method. Each test method was also assessed using experimental data
from the hepatic snRNAseq dose response dataset obtained from male mice gavage every 4 days for 28 days with 0.01, 0.03, 0.1, 0.3, 1, 3, 10 or 30 �g/kg
TCDD. Related figures for each analysis from the main body are noted.

±∞ and the Fisher information matrix becomes singular.
And finally, it considers the cellular detection rate defined
as CDRi = 1

p

∑P
j=1 Ri j to be a covariate in both the logis-

tic and linear regression models. LRT linear on the other
hand simply fits the non-Bayesian linear and the logistic re-
gression models without considering variance shrinkage or
adjustment for additional covariates.

limma-trend. Limma-trend (32) proposes a linear model
based differential expression approach for modelling RNA-
seq experiments of arbitrary complexity. Their framework
models the mean gene expression as a function of several
continuous and categorical covariates. A separate linear
model is fitted for each gene, but the gene-wise models are
linked by global parameters using the parametric empiri-
cal Bayes approaches (33). The global variance estimated
by the empirical Bayes procedure also incorporates a mean
variance trend, allowing better modelling of low abundance
genes. Finally, test of differential gene expression is carried
out by testing the significance of one or more coefficients of
the fitted linear model.

Wilcoxon rank sum (WRS) test. WRS (34) test is a non-
parametric test commonly used for pairwise DGE testing.
The test is formulated as H0: the distributions of the gene
vector under two dose groups are equal versus Ha: the dis-

tributions are not equal.The test involves the calculation
of the U statistic, which for large samples is approximately
normally distributed. Since this is a pairwise test, a union
is taken over all the genes found to be DE in each of the
pairwise tests. The computations are carried out using the
wilcox.test function in R package stats and multiplicity is
controlled using FDR correction.

ANOVA. Analysis of variance (ANOVA) (35) is very com-
monly used for testing the differences among means in mul-
tiple groups. For a fixed gene j, it is assumed that the ob-
served gene vector yk, i, j for cell i is grouped by dose. Assum-
ing that Yk,i, j ∼ Normal(μk, j , σ

2
j ), ANOVA aims to test the

null hypothesis H0: �1, j = �2, j = . . .�K, j = �j versus Ha:
�k, j, i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , K is different for
at least one k. The test statistic is computed using the aov
function in R package stats and it follows a F-distribution
with (K − 1) and (n − K) degrees of freedom. Multiplicity
is controlled by applying FDR correction on the obtained
P-values.

Kruskal–Wallis (KW) test. KW (36) test extends the
WRS test for multiple groups. It is also a non-parametric
extension of the ANOVA test. The test is formulated as; H0:
the distributions of the gene vector under K dose groups are
equal versus Ha: the distributions are not equal. The com-
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putation of the KW test statistic is carried out using the
kruskal.test function in R-package stats and it asymptot-
ically follows a � 2 distribution with K − 1 degrees of free-
dom. Multiplicity is controlled by applying FDR correction
on the obtained P-values.

Benchmarking and sensitivity analyses

Benchmarking of DE test methods was performed on sim-
ulated datasets based on initial parameters derived from
real dose–response snRNAseq data. The probability of dif-
ferential expression was set to 10% with a 50% probabil-
ity of being down-regulated, equally distributed among the
dose–response models in Table 1. Batch parameters were
used to include sample variation associated with data ob-
tained from 3 individuals in each dose group. A total of 5000
genes were simulated for 4500 cells (500 per dose group)
using the same doses as the real dataset. Sensitivity anal-
yses varied each of the following parameters according to
values in Supplementary Tables S2 and S3: cell abundance
equally distributed among dose groups, varying cell num-
bers in each dose group, percent DE genes, proportion of
downregulated DE genes, fold-change location or scale, and
dropout rate. Each simulation was replicated 10 times using
a different initial seed. Seeds and parameters listed in Sup-
plementary Table S2 can be used to reproduce datasets un-
der each condition. Method concordance was determined
as area under the concordance curve (AUCC) for the top
100- or 500-ranked genes in simulated and real datasets, re-
spectively, as previously described (37).

RESULTS

Dose-response single-cell data simulations

For benchmarking of DGEA methods, a ground truth
is required. Existing simulation tools such as PowSimR,
SymSim, SPsimSeq and Splatter are commonly used for
power analyses, evaluating DE analysis methods, and test-
ing cell clustering strategies (28,38–40). Tools such as Sym-
Sim and Splatter are also capable of simulating cell tra-
jectories and model differentiation processes. Trajectories
which exhibit non-linear changes over time or across dif-
ferent developmental stages are not unlike dose–response
effects which change over a continuum of doses. However,
dose-responsive changes commonly follow defined trajecto-
ries such as Hill, exponential, power, and linear models (29).
To simulate dose–response scRNAseq data we developed
a wrapper for the Splatter scRNAseq data simulation tool
named SplattDR. SplattDR modified the Splatter grouped
data simulation strategy by adjusting counts from means
defined by one of the dose–response functions outlined in
the Materials and Methods.

To demonstrate the modeling capability of SplattDR, 10
000 gene expression responses were simulated with a 10%
probability of being differentially expressed, equally dis-
tributed across the dose–response models. Parameters used
in Splatter were initially estimated from our experimental
single nuclei RNAseq (snRNAseq) dose–response dataset.
The simulated data compared to the experimental data
showed the relationship between the mean expression, per-
centage of zeroes, and mean variance were consistent (Fig-

ures 2A, B). Estimation of the normalized root mean square
deviation (NRMSD) from a curve fit to the experimen-
tal data indicated excellent concordance. This strong con-
cordance was also maintained within distinct dose groups
(Supplementary Figures S1 and S2). The distribution of
log(fold-changes) between vehicle (dose 0) and the highest
simulated dose (dose 9; 30 �g/kg) showed a more even dis-
tribution within a similar range compared to experimen-
tal data which was skewed towards induction (Figure 2C).
However, the gene induction skew was captured by mod-
ulating the parameters affecting the probability of differen-
tial expression and the proportion of differentially repressed
genes (Supplementary Figure S3). Principal components
analysis (PCA) of the simulated data clearly showed the
dose-dependent characteristics of scRNAseq data with dis-
tinct clusters increasing in separation with increasing dose
(Figure 2D) which was also resolved by PCA within the ex-
perimental data (Supplementary Figure S4).

To our knowledge, no other published in-vivo dose–
response scRNAseq datasets are available limiting the num-
ber of datasets to estimate initial parameters for simulation
to date. To investigate whether existing datasets generated
using a different study design (e.g. whole cells or different
tissue source) could be used to derive initial parameters, we
also simulated 10 000 genes starting with parameters esti-
mated from (i) a two-dose liver snRNAseq (GSE148339),
(ii) whole cell liver scRNAseq (GSE129516) and (iii) pe-
ripheral blood mononuclear cells (PBMC; GSE108313)
datasets. When compared to a model fit for experimental
data to determine the relation between mean expression and
percent zeroes or mean variance, the NRMSD for data sim-
ulated from these datasets were between 1 and 10% with
data simulated from whole cell data differing the most from
the model fit (Figure 2E). We then explored whether param-
eters estimated from distinct cell types could replicate the
characteristics of that same cell type (Figure 2F). Not sur-
prisingly, using initial parameters derived from individual
cell types in the experimental dose–response data had lower
NRMSD than those derived from the whole cell dataset.
Notably, when data derived from a lower abundant cell sub-
type was used to estimate starting parameters, the dose–
response characteristics for that cell subtype was also poorly
modeled (Figures 2E, F, S1–2).

Performance accuracy of DE test methods

We evaluated the performance of several differential gene
expression analysis methods on simulated datasets consist-
ing of nine dose groups of 500 cells each (4500 total) and
5000 genes with a 10% probability of being differentially
expressed (500 differentially expressed genes). Selection cri-
teria for test inclusion are outlined in the Materials and
Methods section and included 9 test methods; ANOVA
(35), single-cell Bayes hurdle model test (scBT), Kruskall–
Wallis (KW) (36), limma-trend (32,33), likelihood-ratio test
(LRT) linear and multiple, MAST (20), Seurat bimod (19)
and WRS (34). With ground truth from simulated data, the
sensitivity, specificity, and precision for each test method
was computed. Area under the receiver-operating charac-
teristic curve (AUROC) was used to measure test perfor-
mance for correctly classified differentially expressed genes.
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Figure 2. Comparison of simulated and real dose–response data. (A) Relationship between gene-wise mean expression and percent zeroes for simulated
and real dose–response data. Simulation data consisted of 10 000 genes and nine dose groups based on parameters derived from experimental dose–
response snRNAseq data. Black line represents a fitted model to the experimental data from which the normalized root mean square deviation (NRMSD)
of simulated data was determined. (B) Relationship between gene-wise mean expression and variance for simulated and experimental data. NMRSD was
calculated for simulated data from the fitted model represented as a black line. (C) Distribution of log(fold-changes) in experimental and simulated data
showing the median and minimum and maximum values. (D) Principal components analysis of simulated data colored according to simulated dose groups.
(E) NMRSD estimated relative to fitted model in A,B for simulated data generated from initial parameters derived from published hepatic scRNAseq
(two dose; GSE148339), hepatic whole cell (whole cell; GSE129516), and peripheral blood mononuclear cell (PBMC; GSE108313) datasets. (F) NMRSD
estimated relative to model fitted to cell-type specific experimental dose–response data when simulated from initial parameters estimated from that same
cell type. Box and whisker plots show median NMRSD, 25th and 75th percentiles, and minimum and maximum values.

In unfiltered data, AUROC scores showed similar perfor-
mance for most tests except scBT which had the largest
AUROC among all test methods (Figure 3A). To account
for the inherent class imbalance between differentially ex-
pressed and non-differentially expressed classes the area un-
der the precision-recall curves (AUPRC) was also calcu-
lated. Similar to AUROCs, AUPRCs identified scBT as the
best performing test (Figure 3C). In most standard differ-
ential expression testing pipelines genes expressed at low
levels are removed to minimize false detection rates. Fol-
lowing filtering of genes expressed in ≥5% of cells in any
dose group, scBT was consistently ranked as the best test
based on AUROC and AUPRC scores. The performance of
LRT linear test also improved, with comparable AUROC
and AUPRC scores relative to scBT, suggesting LRT linear
is poorly suited for genes expressed at low levels (Figures
3B–D).

AUROC and AUPRC reflect the performance of each test
method with varying significance (i.e. P-value) thresholds.
In the standard pipeline a fixed threshold is used, typically
a P-value ≥0.05 after adjustment for multiple hypothesis
testing (i.e. Bonferroni correction). For each method except
scBT, the performance at an adjusted P-value ≥0.05 signif-
icance criteria was evaluated. In scBT analysis, a gene was

considered differentially expressed when the estimated pos-
terior probabilities of the null hypothesis, p(H0, j|Dj), was
less than 
 , where the 
 value was chosen to achieve a tar-
get FDR of 0.05. scBT significantly outperformed all other
tests in precision rates irrespective of low expression filtering
(Figures 3E, S5). However, scBT was less effective in identi-
fying true positives (Figures 3F, S5). Applying the filtering
criteria improved the recall rates, but the precision rates re-
main largely unchanged (Figure 3E, F). Test method classi-
fication performance scores were estimated as the Matthews
correlation coefficient (MCC) which is well suited for un-
balanced data (41). We see that the scBT and LRT linear
tests performed best for this metric on both unfiltered and
filtered data (Figure 3G).

Type I error control and power

To investigate test performance in controlling type I er-
rors (false positives), DGEA methods on simulated datasets
were examined with 0% DE genes (i.e. negative control). Us-
ing the threshold for the computed posterior null probabil-
ities, scBT identified only one false positive gene in 2 of 10
simulations (Figure 4A). ANOVA, scBT, KW, limma-trend
and LRT linear had false positive rates (FPRs) below 3%
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Figure 3. Classification performed of DE analysis tests. (A) ROCs estimated from simulated dose–response scRNAseq data for nine DE test methods
including all genes expressed in at least one cell (unfiltered). (B) ROCs for nine DE test methods after filtering simulated dose–response scRNAseq data
for genes expressed in only ≥5% of cells (low levels) in at least one dose group. (C) Precision-recall curves (PRCs) for nine DE test methods on unfiltered
simulated dose–response scRNAseq data. (D) PRCs for nine DE test methods on filtered simulated dose–response scRNAseq data. Lines represent the
mean values and shaded region reflects the standard deviation for 10 independent simulations. (E) Precision of DE test methods. (F) FPR of DE test
methods. (G) MCC for test methods. (E–G) Box and whisker plots median values, 25th and 75th percentiles, and minimum and maximum values for 10
independent simulations. Points reflects values for each independent simulation. Panels display comparisons of unfiltered and filtered datasets.

indicating better performance compared to two group tests.
After filtering for genes with low expression levels, scBT still
correctly identified all the non-differentially expressed genes
and was the best performing test. These are the same tests
that had a better FPR control in initial simulations (Figure
3). To explore whether mean expression or percentage of ze-
roes influenced type I error rates, a logistic regression model
was fit to negative control data. We predicted the probability
for each gene to be identified as differentially expressed in
the negative control data. While the curve for scBT is miss-
ing since few false positives were identified, the predicted
FPR for all the other tests except LRT linear were also high
for highly expressed genes with few zeroes (Figures 4B, C).
Next, a positive control dataset with 100% differentially ex-
pressed genes was simulated to evaluate test performance
for detecting true positives. All tests except scBT exhibited a
false negative rate (FNR) ≥40% (Figure 4D). The best per-
forming tests for FNR also had high FPR. Logistic model
regression fitting for false negative classification of genes
shows that the false negative rates were highest when the
mean expression was either too high or too low for all tests
(Figures 4E, F).

Parameter Sensitivity Analysis

Experimental scRNAseq datasets will vary between cell
types, cell composition, and responses depending on the tar-
get tissue, treatment, number of cells sequenced, and more.
For example, some distinct cell types are very abundant (e.g.
hepatocytes), with others present at lower levels (e.g. portal

fibroblasts) in hepatic scRNAseq datasets. Moreover, treat-
ments such as exposure to a xenobiotic, can elicit dose-
dependent changes in relative proportions of cell types such
as the infiltration of immune cells (26). We investigated the
impact by changing cell abundance from 25 to 2000 cells
per dose group and observed an increase in the false pos-
itive rate (FPR) when increasing the number of cells (Sup-
plementary Figure S6). The scBT and LRT linear tests were
less sensitive to an increase in the FPR as cell abundance
increased while the total positive rates (TPR + FPR) in-
creased with cell abundance for all methods. Although all
tests exhibited comparable performance at low cell num-
bers (≥500), as cell numbers increased scBT outperformed
all other tests in both precision and MCC score (Figures
5A, S6). Comparison of AUROCs and AUPRCs across cell
numbers showed that ANOVA, KW, limma-trend, and LRT
linear tests performed best for a small number of cells, but
the increase in AUROC was steeper for scBT (Supplemen-
tary Figures S7 and S8).

It was also evident from the experimental snRNAseq
dataset that the number of cells per dose group was not
fixed. We evaluated the performance of the test methods
when the number of cells dose-dependently increased or de-
creased, and when the number of cells per dose group were
taken from experimental data. Notably, while scBT had the
best MCC for increasing number of cells per dose, LRT lin-
ear performed better than scBT when the number of cells
decreased before and after filtering for genes expressed at
low levels (Figure 5B). The shift in MCC between increasing
and decreasing cell numbers for scBT appears to be driven
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Figure 4. Evaluation of Type I and II error control. (A) False positive rate (FPR) of 9 differential expression test methods estimated from negative control
(0% DE genes) simulated dose–response scRNAseq data including all genes expressed in at least 1 cell (unfiltered) and genes expressed in only ≥ 5% of
cells in at least one dose group (filtered). (B, C) Logistic regression models were fitted to negative control data to predict the probability of false positive
identification using percent zeroes and mean expression as covariates. Lines represent the predicted probability of false positive classification with the
shaded region representing the 95% confidence interval. (D) False negative rate (FNR) of nine differential expression test methods estimated from positive
control (100% DE genes) simulated dose–response scRNAseq data including unfiltered and filtered datasets. (E, F) Logistic regression models were fit to
positive control data. Lines represent predicted probability of false negative classification with shaded region representing the 95% confidence interval.

by a concomitant decrease in TPR and increase in FNR
(Supplementary Figures S9 and S10).

Unique chemical, drug, environmental contaminant, and
natural product classes elicit distinct differential gene ex-
pression profiles defined by the MoA as well as by their
metabolism, potency (sensitivity) and efficacy (maximal
response). Differences between compound classes are re-
flected in the gene expression profile in (a) the propor-
tion of differentially expressed genes, (b) the number of
induced/repressed genes, (c) the mean fold-change for dif-
ferentially expressed genes and (d) the distribution of fold-
change for differentially expressed genes. These four pa-
rameters were modulated in simulated data to determine
the effect of the percentage of differentially expressed genes
(Supplementary Figures S11–S16), the fold-change distri-
bution (aka scale; Supplementary Figures S17–S19), and
the mean fold-change (aka location; Supplementary Fig-
ures S20–S22) on test performance. Among these scenarios,
changing the proportion of repressed genes had little to no
impact on test method performance (Figures 5C–F, S14).

Increasing the proportion of differentially expressed
genes led to an improvement in MCC except for scBT and
LRT linear, though these tests maintained the top MCC
scores as well as AUROC and AUPRC (Figures 5C, S11–
S13). As the magnitude of the effect increased, LRT lin-
ear performed best at the low end while scBT exhibited

the greatest improvement in MCC (Figure 5D). Conversely,
while the MCC decreased for most tests when modulating
the fold-change scale of differentially expressed genes, scBT
improved and was more stable (Figures 5E, S17–S19). As
the proportion of unexpressed genes increased, the FPR in-
creased with precision decreasing for all tests (Supplemen-
tary Figure S23). However, scBT was least affected, and
maintained the highest MCC among all tests (Figure 5F).
AUROC and AUPRC values also indicated that scBT con-
sistently outperformed other test methods (Supplementary
Figures S24–S25).

Test method agreement

To assess agreement between tests, the area under the con-
cordance curve (AUCC) for each pair of tests for the top
100 genes ranked by adjusted P-value was calculated as
previously described (9,37). All methods showed excellent
concordance (AUCC ≥ 0.77) with LRT linear showing the
poorest consistency compared to all other tests while the
limma-trend and ANOVA tests showed perfect agreement
with an AUCC of 1 (Supplementary Figure S5). Pairwise
differential gene expression comparisons between Seurat
Bimod, MAST and WRS had AUCC >0.95 AUCCs while
the multiple group tests ANOVA, LRT multiple, KW, and
scBT clustered together with AUCC ranging between 0.9
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Figure 5. Matthews correlation coefficient (MCC) from sensitivity analyses of differential expression test methods. (A) MCC for nine DGEA test methods
determined from simulated dose response data with varying number of cells per dose group. Simulations consisted of 5,000 genes with a probability of
differential expression of 10% and 9 dose groups. (B) MCC for simulated data varying the cells numbers by dose group. The number of cells in each of the
nine doses groups is shown on the right. (C) MCC for varying proportion of differentially expressed genes. (D) MCC when varying the mean fold-change
(location) of repressed differentially expressed genes. (E) MCC for varying distribution of fold-change (scale) of differentially expressed genes. (F) MCC for
varying dropout rates calculated as in Supplementary Table S3. Points represent median and error bars represent minimum to maximum values. Boxplots
represent median, 25th to 75th percentile, and minimum to maximum values. Each analysis consisted of 10 replicate datasets including all genes expressed
in at least one cell (unfiltered) and genes expressed in ≥5% of cells in at least one dose group (filtered).
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and 1. In the absence of nuisance covariates, MAST and
Seurat Bimod provided similar results, as expected given
their similar mixture normal model structure. Likewise for
ANOVA and limma-trend, both of which rely on normality
assumptions for testing differential gene expression.

Real dose–response dataset DE analysis

Without ground truth for experimental data, the perfor-
mance of the differential expression test methods was ex-
amined by first evaluating the agreement for each identi-
fied cell type (Figures 6, S26). Genes in the experimental
dataset were considered differentially expressed when ex-
pressed in ≥5% of cells in at least one dose group and had
a |fold-change| ≥ 1.5. In hepatocytes, the most abundant
cell type, fewer than 5 genes were not detected in all test
methods, with the majority missed by the WRS test (Fig-
ure 6A). Upon closer examination, those genes were not
expressed in control hepatocytes. Not surprisingly, for all
cell types, the largest intersection was between all tests in-
dicating strong agreement within all test methods. Only a
few tests identified a subset of unique genes as differentially
expressed, which accounted for a very small fraction. For
example, LRT linear identified 12 unique differentially ex-
pressed genes in portal fibroblasts, one of the least abundant
cell types (Figure 6B). LRT linear was the best perform-
ing test for low cell numbers indicating that the 12 unique
differentially expressed genes may in fact be true positives.
Consistent with simulations of varying cell numbers (Fig-
ure 5A), 24 genes were not identified as differentially ex-
pressed by the scBT method for stellate cells which exhibit
a dose-dependent decrease in numbers (Figures 6C, D). Al-
though scBT outperformed other tests in most scenarios, it
under performed in this scenario. Nevertheless, when rank-
ing genes by significance level (i.e. P-values), AUCC were
high for all pairwise comparisons.

To explore the biological insight gained by using the
test methods, gene set enrichment analysis was performed
by ranking genes following significance values (adjusted
P-value or Bayes factor) on gene sets from BIOCARTA,
KEGG, PANTHER and WIKIPATHWAYS. Gene sets
were grouped based on their similarity in gene member-
ship into a network for which centrality measures can be
estimated. An examination of portal fibroblasts, which ex-
hibited the most disagreement among test methods (Figure
6B), showed that multiple group test methods, particularly
scBT had improved centrality metrics (centrality – number
of edges; closeness – steps required to access other nodes;
and betweenness – number of paths that go through a node)
(Figure 6E). Visualization of significantly enriched terms
identified enriched functions associated with growth factor
and immune cell signaling in addition to expected terms
such as xenobiotic metabolism and nuclear receptors in-
volved in lipid metabolism (Figure 6F). Alternatively, WRS
which did not find as many connected groups of functions,
was largely limited to those identified by scBT except for
the hormone signaling and tryptophan metabolism clusters
(Supplementary Figure S27). While there is no ground truth
from real data, greater agreement between similar gene sets
from disparate sources (Supplementary Figure S28–S30)
suggests that multiple group tests such as scBT provide

more reliable findings. However, all the test methods pro-
duce comparable gene set enrichment results as expected
since the most robust changes were identified by all the test
methods.

DISCUSSION

The goal of this study was to compare the performance
of newly developed DGEA test methods for dose–response
experiments to existing analysis methods. Using simulated
data to generate ground truth, we evaluated the perfor-
mance of nine differential expression testing methods which
were broadly classified as either fit-for-purpose, multiple
group, or two group tests. Criteria for test method selec-
tion was based on previous benchmarking efforts for two
group study designs identifying MAST, limma-trend, WRS,
and t-test as the best performers (9,42). ANOVA and KW
tests were also included for evaluating multiple group com-
parisons, and Seurat Bimod, for having the same modelling
framework as scBT, LRT multiple and LRT linear tests. The
test methods were ranked from best to worse (1–9) based
on type I error rate, type II error rate, MCC, AUROC and
AUPRC (Figure 7, Supplementary Table S4).

While several scRNAseq tools have been developed
(28,38–40), none are developed to simulate dose–response
models commonly identified in toxicological and pharma-
cological datasets (29,43). Our SplattDR wrapper for the
Splatter package (28) was able to show that simulated data
can effectively emulate key experimental scRNAseq data
characteristics when simulation parameters were estimated
from various Unique Molecular Identifier (UMI)-based
datasets. In agreement with a previous report, technical and
biological factors, such as cell type, does appear to influ-
ence gene dropout rates (18). We primarily focused on 10×
Genomics UMI data given the unavailability of real experi-
mental dose–response data generated using other platforms.

Overall, test method performance was consistent with
their intended application. For example, fit-for-purpose
tests scBT and LRT linear consistently ranked higher fol-
lowed by multiple groups tests such as KW and LRT mul-
tiple. scBT exhibited the best overall performance with ex-
cellent FPR control and top ranked MCC while LRT lin-
ear struck a balance between type I and type II error rates.
The scBT results are not surprising as Bayes factor-based
tests have proven to be conservative and consequently more
appropriate when false positives are of concern (22,23). In
the context of investigating chemical or drug MoAs, false
positives have the potential to lead to wasted effort and re-
sources in attempts to validation and support findings (44).
Moreover, when assessing a large number of genes, a 5%
FP rate (P-value ≥ 0.05) can result in hundreds of FPs that
skew MoA classifications (17).

A single test method was not expected to outperform
all other tests under all conditions as previously demon-
strated when comparing pairwise testing (6,9,42). There-
fore, we assessed the strengths and limitations of each test
method by varying parameters likely to change within and
across various experimental datasets. The number and rel-
ative abundance of cell types is known to be affected by
disease or treatment, and the distribution of differential ex-
pression influenced by the chemical, drug, or food contam-
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Figure 6. Agreement of differential expression test methods on experimental dose–response data. (A) Upset plot showing the intersection size of genes
identified as differentially expressed by nine different test methods in hepatocytes from the portal region of the liver lobule. (B) Intersect of differentially
expressed genes in portal fibroblasts. (C) Intersect size in hepatic stellate cells. Vertical bars represent the intersect size for test methods denoted by a black
dot. Horizontal bars show the total number of differentially expressed genes identified within each test (set sizes). Only intersects for which genes were
identified are shown. Genes were considered differentially expressed when (i) expressed in >5% of cells within any given dose group and (ii) exhibit a |fold-
change| ≥ 1.5. A heatmap in the upper left corner of each panel shows the pairwise AUCC comparisons for the 500 lowest P-values. (D) Relative proportion
of cell types identified in each dose group of the real dataset for the cell types in (A–C). Experimental snRNAseq data was obtained from male mice gavaged
with sesame oil vehicle (vehicle control) or 0.01–30 �g/kg TCDD every 4 days for 28 days. (E) Graph metrics for gene set enrichment analysis of portal
fibroblasts grouped by similarity in gene membership. Violin plots show distribution of node-wise values for each test method. (F) Network visualization
of significantly enriched (adjusted P-value ≤ 0.05) gene sets using the Bayes factor ranked genes of portal fibroblasts. Groups of ≥2 nodes were manually
annotated following commonality in the gene set names. Each node represents a gene set with the size of the node representing the number of genes in a
gene set, and edges connect nodes with ≥50% overlap.
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Figure 7. Median ranking of differential expression test methods across all simulations. The median rank of each test method was calculated for AUPRC,
AUROC, MCC, FNR and FPR. Tests were grouped according to intended application including fit-for-purpose tests developed for the analysis of dose–
response datasets, multiple group tests, and two group tests. The overall rank represents the median value for the five key metrics presented here.

inant being evaluated (5,26). scBT consistently ranked at
the top under most scenarios, particularly when the mean
and standard deviation of the fold-change for differentially
expressed genes varied. However, scBT under performed
in MCC when the number of cells decrease in a dose-
dependent manner which would be expected in treatments
which alter cell population sizes (e.g. inflammation). Un-
der these circumstances LRT linear outperformed all other
tests with scBT performing similar to the other test methods
as evident when 24 differentially expressed genes were not
identified by scBT within experimental data for stellate cells
which experienced a dose-dependent decrease in relative
abundance following TCDD treatment. Although exclud-
ing genes expressed at low levels generally improved the per-
formance of all test methods, the comparative performance
of test methods did not significantly change in most cases.
We did not have access to experimental scRNAseq dose–
response data, however, we expect that the scBT would per-
form equally well as with experimental snRNAseq data as
the elevated number of zeroes are common to both types of
data. Major differences between these types of data are (i)
biases in gene detection and (ii) overall counts (26). Given
the higher overall counts in scRNAseq data, test method
such as scBT may even perform better.

DGEA provides biological information regarding the ef-
fects of exposure to chemicals, drugs, and food contami-
nants. As expected, gene set enrichment analyses did not
dramatically differ in the enriched pathways which are
driven by the most robust responses such as xenobiotic
metabolism. However, when integrating gene sets from dis-
parate sources we found gene sets that partially overlap
in gene membership were consistently identified by multi-
ple group test methods. For example, several gene sets re-
lated to growth factors and cell proliferation were identi-
fied by scBT but not WRS. Portal fibroblasts are impli-
cated in proliferation of cholangiocytes and the secretion
of growth factors during development. Enrichment of these
terms suggests a functional role consistent with the induc-
tion of bile duct proliferation by TCDD (45,46). In contrast,
WRS identified enrichment associated with tryptophan as
well as oxytocin/thyrotropin-releasing-hormone pathways
which has not been linked to the effects of TCDD on portal
fibroblasts. Although ground truth for the complete experi-
mental dataset is not available, the use of test methods such

as scBT reduce experimental noise to identify leads war-
ranting further analysis.

CONCLUSION

Collectively, our findings suggest that scBT and LRT linear
fit-for-purpose tests are better suited for the differential ex-
pression analysis of dose–response studies and when false
positives are of greater concern than false negatives. More-
over, consistent with previous benchmarking efforts, we
show that common non-parametric tests such as KW out-
perform test methods developed for scRNAseq data when
the study involves comparisons between multiple groups.
Ultimately, each test method performs optimally under di-
verse scenarios. While the importance of controlling type I
error rates is acknowledged, a balance must be struck with
type II error rates. The tradeoff should be determined based
on the individual research question being investigated. It
may even be reasonable to apply different test methods to
distinct cell types based on dropout rates, cell abundance,
and changes in relative cell proportions given the strengths
and weaknesses of each test method.
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nuclei and single-cell transcriptomic datasets were obtained
from GEO under the accession IDs GSE108313 (PBMC),
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ters from Table S2.
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