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Abstract

Background

The performance of a new diagnostic test is typically evaluated against a comparator which

is assumed to correspond closely to some true state of interest. Judgments about the new

test’s performance are based on the differences between the outputs of the test and com-

parator. It is commonly assumed that a small amount of uncertainty in the comparator’s clas-

sifications will negligibly affect the measured performance of a diagnostic test.

Methods

Simulated datasets were generated to represent typical diagnostic scenarios. Comparator

noise was introduced in the form of random misclassifications, and the effect on the appar-

ent performance of the diagnostic test was determined. An actual dataset from a clinical trial

on a new diagnostic test for sepsis was also analyzed.

Results

We demonstrate that as little as 5% misclassification of patients by the comparator can be

enough to statistically invalidate performance estimates such as sensitivity, specificity and

area under the receiver operating characteristic curve, if this uncertainty is not measured

and taken into account. This distortion effect is found to increase non-linearly with compara-

tor uncertainty, under some common diagnostic scenarios. For clinical populations exhibit-

ing high degrees of classification uncertainty, failure to measure and account for this effect

will introduce significant risks of drawing false conclusions. The effect of classification uncer-

tainty is magnified further for high performing tests that would otherwise reach near-perfec-

tion in diagnostic evaluation trials. A requirement of very high diagnostic performance for

clinical adoption, such as a 99% sensitivity, can be rendered nearly unachievable even for a

perfect test, if the comparator diagnosis contains even small amounts of uncertainty. This

paper and an accompanying online simulation tool demonstrate the effect of classification

uncertainty on the apparent performance of tests across a range of typical diagnostic
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scenarios. Both simulated and real datasets are used to show the degradation of apparent

test performance as comparator uncertainty increases.

Conclusions

Overall, a 5% or greater misclassification rate by the comparator can lead to significant

underestimation of true test performance. An online simulation tool allows researchers to

explore this effect using their own trial parameters (https://imperfect-gold-standard.

shinyapps.io/classification-noise/) and the source code is freely available (https://github.

com/ksny/Imperfect-Gold-Standard).

Introduction

The performance of a new diagnostic test is typically evaluated against a comparator or ‘gold

standard’ which is assumed to correspond closely to some true state of interest (‘Ground

Truth’). Judgments about the performance of the new test are based on the differences between

the outputs of the test and its comparator. In many contexts, however, the comparator itself

may be imperfect. Examples of imperfect comparators are common in medical diagnostics.

These include comparators for which the measured value is precise but imperfectly represents

the state of the underlying condition, such as serum creatinine for diagnosing kidney injury

[1]; comparators for which the measurements are variable but interpretation of the result is

not variable such as the diagnosis of hypertension [2]; and comparators for which accurate

measurements are taken that truly represent the true state of the patient, but for which incon-

sistency exists in the interpretation of results, such as the diagnosis of pneumonia by chest X-

ray [3]. These sources of variability in the comparator introduce a problem in the interpreta-

tion of data generated by a new diagnostic test. It may not be possible to know whether dis-

crepancies between the results produced by the test and the comparator are due to inaccuracy

of the test, inaccuracy of the comparator, or both. In such cases the measured performance of

the new test relative to that of the comparator will not be an accurate indicator of the true test

performance.

It is commonly assumed that a small amount of uncertainty in classification by the compar-

ator will be of negligible consequence, when measuring the performance of a diagnostic test.

The present work critically examines this assumption in a variety of contexts, and shows it to

be generally false, especially for tests that are required to have very high performance. Non-

statistician medical experts may underappreciate the magnitude of the effect of even small

amounts of comparator uncertainty on apparent test performance. Consequently, in diagnos-

tic evaluation studies, comparator uncertainty may not always be identified or accounted for

in the analysis or interpretation of results, thus risking erroneous or biased conclusions (see,

for example, reference [4] and references 18–25 therein). The purpose of the present study is

not to develop theory to allow calculation of this effect, as theory is already well researched and

established [5,6]. Rather we seek to further develop two practical aspects: 1) to explore, by way

of specific examples, the consequence and magnitude of the effect of comparator uncertainty

on the apparent performance of binary tests, in various diagnostic settings; and 2) to present a

simulation tool that will be useful for clinical trial stakeholders who might not have the special-

ized statistical training or tools needed to estimate the effect of comparator classification

uncertainty, yet who nonetheless need to understand this effect for the correct interpretation

of trials. The accompanying simulation tool (https://imperfect-gold-standard.shinyapps.io/
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classification-noise/) will allow the non-statistician medical expert to easily conduct simula-

tions to further explore the effects of comparator uncertainty, without the need for advanced

statistical training. Some of the results of our study have been previously reported in the form

of an abstract [7].

Definitions

Call: A positive or negative classification or designation, derived or provided by any method,

algorithm, test or device. For example, a test result falling above a given threshold could be

considered a positive call, and a clinician’s opinion that a patient is disease-free could be con-

sidered a negative call.

Comparator: a previously established test method, against which the results from a new test

will be compared. ‘Comparator’ is used in preference to ‘gold standard’ or ‘reference method’ to

signify that the results from the comparator may diverge significantly from the Ground Truth.

Ground Truth: the true positive or negative state of a subject, in a binary classification

scheme.

Negative Percent Agreement (NPA): The percentage of comparator negative calls that are

called as negative by the test under evaluation. This value is calculated identically to specificity.

However, NPA is used in place of specificity to recognize the fact that due to the uncertain

comparator, this measure should not be construed to accurately reflect the measurement that

specificity presumes.

Positive Percent Agreement (PPA): The percentage of comparator positive calls that are

called as positive by the test under evaluation. This value is calculated identically to sensitivity.

However, PPA is used in place of sensitivity to recognize the fact that due to the uncertain

comparator, this measure should not be construed to accurately reflect the measurement that

sensitivity presumes.

Theory

The effect of classification uncertainty on apparent test performance is known variously as

‘information bias’, ‘misclassification bias’ or ‘non-differential bias’ in medicine and epidemiol-

ogy and goes by other names in other fields [8–10]. These terms refer to the fact that as classifi-

cation uncertainty increases, an increasingly large gap will appear between the true

performance of the test and empirical measures of test performance such as sensitivity, speci-

ficity, negative predictive value (NPV), positive predictive value (PPV), or area under the

receiver operating characteristic curve (ROC AUC). It has been recognized for many years

that the imperfection of available comparators constitutes a source of difficulty in the evalua-

tion of new diagnostic tests [11–16]. The more recent literature describes a number of exam-

ples in which the use of imperfect comparators has led to complications in evaluating the

performance of new diagnostic tests for conditions as varied as carpal tunnel syndrome [17],

kidney injury [1,18] and leptospirosis [19].

Reference bias and classification noise

In general, discrepancies between a comparator and the true state it purports to measure may

arise from two sources: reference bias and classification noise.

Reference bias is the tendency of a comparator to produce values that fall systematically to

one side of the true state being evaluated, resulting in consistent misclassification of patients on

the basis of known or unknown patient characteristics. For example, multiple clinicians may

agree on a diagnosis based upon reference to a single comparator, but if the comparator is

biased or deficient in some way, then we would expect the agreed-upon cases to have a common

The effect of uncertainty in patient classification on diagnostic performance estimations
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tendency to be incorrect. Similarly, if one of the variables used to place subjects into categories

is overly weighted, then the comparator will be biased away from the true state and towards the

over-weighted variable. As a third example, reference bias may also occur when there is incom-

plete representation (i.e. missing data) for some of the variables used for classification. This will

lead to reference bias away from the incompletely specified variables, and towards those vari-

ables that have greatest representation in the dataset. A fourth example of reference bias may

occur when multiple clinicians are consulted for a medical diagnosis. If, for a patient, each clini-

cian can see the diagnoses made by the previous clinicians, this could lead to a reference bias in

the direction of the earlier diagnoses. A fifth example of reference bias is automation bias,

where a software algorithm consistently makes the same mistakes in the same kinds of patients,

such as in the automated diagnosis of electrocardiograms [20]. Reference bias is particularly dif-

ficult to detect because multiple independent comparators (for example independent clinicians’

diagnoses) may be consistent with each other, giving the appearance of being correct, yet may

be incorrect nonetheless. Furthermore, because the Ground Truth cannot be known directly,

estimating the magnitude of reference bias is difficult. Approaches such as discrepant analysis

[21] have been proposed, for estimating the magnitude of reference bias in particular situations.

It is also worth noting that in rare cases, reference bias can lead to inflation of the apparent

performance of a test, as described in S1 Supporting Information (“Example of reference bias”).

This can occur when the same manner of classification bias is present in both the comparator

and the new diagnostic test under evaluation, leading to correlated misclassifications of the same

patients. The risk of reference bias-induced performance inflation is only relevant under the con-

ditions of low noise in both the new test and the comparator. This is because noise will decouple

the agreements produced by the correlated biases in the new test and comparator. In this paper

we acknowledge but do not further explore reference bias because is it not usually possible to

measure it. However, reference bias can be seen as an additional potential contributor to under-

estimation of diagnostic performance in datasets such as those considered in this paper.

Classification noise is the other fundamental cause of differences between a comparator and

the Ground Truth it is supposed to represent. It can be viewed as the amount of uncertainty

inherent in the classifications produced by the comparator. Classification noise can be intuitively

understood by considering that if a comparator diagnosis is uncertain, and if a number of similar

cases are presented and similarly classified, we would expect some of them to be wrong (but

would not know which ones). We define classification noise as instability (random variation) in

the comparator, which produces randomly scattered values on either side of the true state. Clas-

sification noise is not attributed to systematic causes, but rather to stochastic processes or to the

absence of information that would close the gap between measured values and Ground Truth.

Noise in a comparator can be estimated by applying the comparator multiple times to the

same patient or sample, or to replicate samples, and then observing the variation between

results. (The replicate results would be identical if the comparator did not contain noise.) For

example, in a situation where a comparator consists of the consensus of expert opinions, differ-

ent clinicians making diagnoses may interpret the same information differently, leading to dif-

ferent diagnoses for the same patient. In defining a comparator, attempts should be made to

minimize the amount of classification noise. However, because the comparator is based ulti-

mately on experimental measurements or empirical assessments, it will not be possible to

remove all classification noise.

Uncertainty and misclassification events

Uncertainty in patient classification can be measured in a number of ways, most commonly by

an inter-observer agreement statistic such as Cohen’s Kappa, or by the correlation terms in a

The effect of uncertainty in patient classification on diagnostic performance estimations
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Multitrait-Multimethod Matrix. These and related statistics estimate the extent of agreement

in classifying the same patients or samples by different tests or reviewers, relative to the extent

of agreement that would be expected at random. Cohen’s Kappa ranges from 0 to 1. A value of

1 indicates perfect agreement, and values of less than 0.65 are generally interpreted to mean

that there is a high degree of variability in classifying the same patients or samples. Kappa val-

ues are often used to describe inter-rater reliability (i.e. the same patient between clinicians)

and intra-rater reliability (i.e. the same patient with the same clinician on different days).

Kappa values can also be used to estimate the variability in test measurements, such as between

commercially available at-home pregnancy tests. Variability in patient classification can also

be captured directly as a probability, as in standard Bayesian analysis. Irrespective of which

metric is used to capture the variability in classification, there is a direct correspondence

between the measured variability in a test or comparator, the uncertainty reflected in that mea-

surement, and the misclassifications that occur as a result of this uncertainty.

Generally speaking, a known amount of uncertainty will correspond to an exact expected

misclassification rate. However, for diagnosis in any specific patient cohort, an observer will not

know for sure which patients have been misdiagnosed, or even how many have been misclassi-

fied. For example, if a test is used for binary classification and we know that a negative call for a

test is 95% accurate, then for each patient classified as negative there will be a 5% chance that

the patient is actually positive. The random nature of the uncertainty means that for 100

patients in a trial who have been called negative by the test, we expect 5% to be misclassified,

but it could be that actually in the trial 10 are misclassified, or that none are (although both of

these alternatives are relatively unlikely). The misclassification rate for a trial can be estimated

in a number of ways, such as repeat testing of samples, comparison to another test of presumed

greater accuracy, or inferring an expected error rate from other sources of information.

Example: Smeared distribution of output values

A comparator might have an inherent property or limitation that causes it to return a broad-

ened distribution of values, as compared to the Ground Truth that is being measured. An

example is shown in Fig 1. Suppose that a particular condition is characterized by a variable

having a continuous normal distribution at the level of Ground Truth, and that cutoffs have

been defined to identify rare events (positive or negative calls) at the tails of the distribution.

Suppose also that a comparator used to repeatedly measure this condition returns a Cauchy

distribution of values. Then the distribution of measured values will have extended tails, not

present at the Ground Truth level, which could lead to either false positive or false negative

calls being made by the comparator. See Fig 1 and also references [22,23].

With increasing noise in a comparator, the totality of observed differences between a diag-

nostic test under evaluation and the comparator will increase. The consequence is that any

new diagnostic test will appear to perform better relative to a comparator containing less

noise, and worse relative to a comparator containing more noise. Consequently, the new test

may appear to exhibit different levels of performance in different populations or settings

where the amount of comparator noise can vary [24].

Methods

Simulated data

Simulated datasets were generated to represent typical diagnostic scenarios, and are presented

as a ‘starting point’ assuming no classification error. Comparator noise was then introduced in

the form of random misclassifications. The effect on the apparent performance of the diagnos-

tic test was determined, as the amount of comparator noise was increased. To present a

The effect of uncertainty in patient classification on diagnostic performance estimations
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statistically valid representation of the randomness of noise injection, each amount of noise

was randomly introduced in 100 iterations and the aggregate results are shown. The same sim-

ulation methodology used to generate the figures discussed below has also been implemented

in an online simulation tool allows researchers to explore the comparator noise effect using

their own trial parameters: https://imperfect-gold-standard.shinyapps.io/classification-noise/.

The source code for the simulation tool has been made publicly available: https://github.com/

ksny/Imperfect-Gold-Standard.

Actual data

We also consider data from a study conducted in the USA and Netherlands on a new sepsis

diagnostic test [25]. Three independent diagnoses per patient were rendered by expert panel-

ists on the basis of information contained in case report forms, and the combination of diag-

noses was used to determine the overall confidence of classification for each patient as detailed

in S2 Supporting Information (“Method to estimate the confidence of patient classifications by

an expert panel comparator”). Misclassifications were introduced randomly, weighted by the

uncertainty distribution observed in patient classification as described in S3 Supporting Infor-

mation (“Weighting for introduced misclassification events”). To present a statistically valid

representation of the randomness of selection, each injection of classification noise was ran-

domly drawn from the uncertainty distribution observed in the trial and introduced in 100

iterations, and the aggregate results are shown. Four different selections of patients from the

total trial enrollment (N = 447) were made, and were analyzed separately: (1) the subset of

patients (N = 290; 64.9% of total) who received unanimous concordant diagnoses by the exter-

nal expert panelists, and who were also assigned the same diagnosis by the study investigators

at the clinical sites where the patients originated. We deemed this the “super-unanimous”

group, and assumed that when the external expert panelists and the study investigators at the

clinical sites agreed, the diagnoses were more likely to be correct. These patients represent the

stratum of the trial cohort with the lowest probability of error in the comparator; (2) the subset

of patients (N = 410; 91.7% of total) who received a consensus (majority) diagnosis by the

external panel. This patient subset excluded 37 patients who were classified as ‘indeterminate’

because a consensus diagnosis could not be reached by the expert panelists; (3) the set of all

patients (N = 447) with a forced diagnosis of either positive or negative, regardless of the

Fig 1. Example illustrating the problem of noise in a comparator.

https://doi.org/10.1371/journal.pone.0217146.g001
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degree of uncertainty associated with each patient; (4) the subset of patients with clinical notes

indicating respiratory related illness (N = 93; 20.8% of total) for whom a relatively high level of

classification uncertainty was expected and observed. Each of these four selections of patients

had an expected misclassification rate determined by the mean of the residual uncertainty

averaged over the three external panelists’s assessments, as detailed in S4 Supporting Informa-

tion (“Calculating misclassification rates, based on patient confidence values”).

Results

Simulated data

Fig 2 shows graphically the effect of misclassification by the comparator on the interpretation

of diagnostic test performance. This figure was generated from a simulation with 100 Ground

Truth negative samples and 100 Ground Truth positive samples. Panel A shows the true test

performance (0% comparator misclassification), while Panel B shows the effect of randomly

injecting 5% misclassification into the comparator calls. The quantitative results from this par-

ticular simulation are compiled in Table 1. To assess the significance of the apparent differ-

ences in misclassification rates suggested by this table, we conducted a further investigation in

which the number of simulated samples (trial size) was varied (S5 Supporting Information,

“Decrease in apparent performance of index test, with 5% noise injected into comparator”). As

expected, we found all the confidence intervals to shrink with increasing trial size. These

results demonstrate the generality that for AUC, sensitivity/PPA, specificity/NPA, PPV and

NPV, any degree of misclassification will lead to underestimates of true performance which

can be detected if the trial is large enough and if the Ground Truth is known.

This table corresponds to Fig 2. A total of 100 Ground Truth negative patients and 100

Ground Truth positive patients were considered. The 95% confidence intervals about the

medians were computed by resampling and are given within the parentheses.

Fig 3 shows the effect of false positive and false negative comparator misclassifications on

the apparent performance of a perfect test. In this simulation, there is no overlap between

Ground Truth negative and Ground Truth positive patients. The test is assumed 100% accu-

rate, so the reduced test performance values shown under various comparator misclassification

rates are purely a result of uncertainty in the comparator. Varying the comparator misclassifi-

cation rate between 0% and 20% results in a monotonic drop in AUC and other performance

measures. Fig 3 also illustrates the point that the observed decrease in apparent test perfor-

mance due to comparator noise can be expressed relative to the maximum possible test perfor-

mance in the absence of comparator noise.

It appears from these simulations that once the comparator misclassification rates are in

excess of about 5%, all test performance measures are significantly under-estimated and there-

fore should not be reported without acknowledging this effect. This figure also shows that

when classification uncertainty is present in the comparator, any calculated performance mea-

sure will fall randomly within a range represented in Fig 3 by confidence intervals. As the com-

parator uncertainty increases, in addition to the general downward trend on the median

apparent test performance value, the apparent test performance values will vary randomly

within increasingly large ranges, as represented by increasingly wide confidence intervals.

Fig S6.1, presented in S6 Supporting Information (“Unequal FP and FN rates”), displays a

modification of this effect, in which the false positive rate is twice as high as the false negative

rate (Panel B of this figure). This situation could occur, for example, in the diagnosis of a seri-

ous infectious disease for which a treatment exists, where a clinician typically will ‘err on the

side of caution’ in classifying patients, under the assumption that it is better to over-treat with

side effects than under-treat with serious consequences (false positives being considered less

The effect of uncertainty in patient classification on diagnostic performance estimations
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risky than false negatives). Fig S6.2, presented in S6 Supporting Information (“Unequal FP and

FN rates”), displays the complementary scenario in which the false negative rate is twice as

high as the false positive rate. Certain types of tests, for example home pregnancy tests, are

known to suffer from high false negative rates [26,27].

Fig 4 displays a less idealized diagnostic scenario, in which there is some small degree of

overlap between Ground Truth negative and Ground Truth positive patients. We consider

such a typical high-performing test, and estimate the degradation of apparent test performance

under conditions of increasing comparator uncertainty. Panel A shows the distribution of test

results against the Ground Truth. Panel B shows the expected decrease in all test performance

parameters, as a monotonic function of increasing comparator uncertainty. Note the generally

worse apparent test performance in Fig 4 at all levels of comparator misclassification, as

Fig 2. Example of the effect of misclassification by a comparator, on the apparent performance of a diagnostic

test. A total of 100 Ground Truth negative patients and 100 Ground Truth positive patients were considered. In Panel

A, there is no error in patient classification (i.e. the comparator is perfectly concordant with the Ground Truth). In

Panel B, a random 5% of the comparator’s classifications are assumed to diverge incorrectly from the Ground Truth.

The difference in the distribution of test scores (y-axis) between the panels of this figure results in significant

underestimates of diagnostic performance as shown in Table 1.

https://doi.org/10.1371/journal.pone.0217146.g002

Table 1. Effect of uncertainty in the comparator on estimates of test performance.

Parameter 0% Misclassification

Rate in the Comparator

5% Misclassification

Rate in the Comparator

AUC 0.977 (0.960–0.993) 0.940 (0.910–0.971)

Sensitivity/PPA 0.970 (0.915–0.994) 0.929 (0.858–0.971)

Specificity/NPA 0.850 (0.765–0.914) 0.794 (0.703–0.868)

PPV 0.866 (0.789–0.923) 0.812 (0.728–0.880)

NPV 0.966 (0.904–0.993) 0.920 (0.843–0.967)

https://doi.org/10.1371/journal.pone.0217146.t001
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Fig 3. Degradation of apparent performance of a perfect diagnostic test, as a function of error in the comparator.

In this scenario, Ground Truth positive patients and Ground Truth negative patients are equally likely to be

misclassified by the comparator. (A) Comparator with no classification error, perfectly representing the Ground Truth

for 100 negative patients and 100 positive patients. (B) Apparent performance of diagnostic test, as a function of the

misclassification rate of the comparator. The error bars describe 95% empirical confidence intervals about medians,

computed over 100 simulation cycles. True test performance is indicated when the FP and FN rates are each 0%. The

terms Sensitivity and Specificity are appropriate when there is no misclassification in the comparator (FP rate = FN

rate = 0%). The terms Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) should be used in

place of Sensitivity and Specificity, respectively, when the comparator is known to contain uncertainty.

https://doi.org/10.1371/journal.pone.0217146.g003

Fig 4. Degradation of apparent performance of a perfect diagnostic test, as a function of error in the comparator.

(A) Representation of Ground Truth for 100 negative patients (grey points) and 100 positive patients (blue points). A

slight overlap between Ground Truth negative and Ground Truth positive distributions is assumed, leading to AUC

0.98 with the Ground Truth as reference. (B) Apparent performance of a perfect diagnostic test, as a function of the

misclassification rate of the comparator. The error bars describe 95% empirical confidence intervals about medians,

computed over 100 simulation cycles. True test performance is indicated when the FP and FN rates are each 0%. The

terms Sensitivity and Specificity are appropriate when there is no misclassification in the comparator (FP rate = FN

rate = 0%). The terms Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) should be used in

place of Sensitivity and Specificity, respectively, when the comparator is known to contain uncertainty.

https://doi.org/10.1371/journal.pone.0217146.g004
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compared to Fig 3 in which Ground Truth negative and Ground Truth positive patients dis-

play no overlap in diagnostic test scores.

Fig 5 simulates a screening test in a low prevalence setting, in which Ground Truth nega-

tives are significantly more prevalent than Ground Truth positives. An example of such a sce-

nario is found in screening for cervical cancer by Pap smear cytology, in which significant false

positive rates (cellular abnormalities of unknown significance) may be anticipated, and in

which positive test results do not necessarily confer high confidence regarding the presence of

high level disease [28,29].

Fig 6 simulates the effect of comparator uncertainty in a screening test scenario of even

lower disease prevalence, for example an epidemiological setting [30,31].

Actual data

We next turn to the analysis of a real dataset, collected during a clinical validation study of a

novel diagnostic test for sepsis [25]. The test was designed to discriminate infection-induced

sepsis from non-infectious systemic inflammatory response syndrome (SIRS) in adult critical

care patients, and was validated using a cohort of 447 patients from seven sites in the USA and

one site in the Netherlands. In the validation study, the comparator consisted of retrospective

physician diagnosis (RPD) by a panel of three independent expert clinicians, leading to either

the unanimous, consensus, or forced classification of patients as having either sepsis or SIRS.

Fig 7, Panel A shows the distribution of test scores for the Super-Unanimous subset of 290

patients (119 sepsis, 171 SIRS), defined as those patients who were classified as either sepsis or

SIRS by all three of the external expert panelists and also by the study investigators at the clini-

cal sites where the patients were recruited. As stated previously, these patients represent the

stratum of the trial cohort with the lowest expected probability of error in the comparator.

Fig 5. A simulated inaccurate screening test in a moderately low prevalence setting. In this scenario, ground truth

positive patients are equally likely to be misclassified as ground truth negative patients. (A) Representation of Ground

Truth for 250 negative patients, and 50 positive patients, with significant overlap between the positive and negative

ground truth distributions. (B) Apparent performance of diagnostic test, as a function of the misclassification rate of

the comparator. The error bars describe 95% empirical confidence intervals about medians, computed over 100

simulation cycles. True test performance is indicated when the FP and FN rates are each 0%. The terms Sensitivity and

Specificity are appropriate when there is no misclassification in the comparator (FP rate = FN rate = 0%). The terms

Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) should be used in place of Sensitivity and

Specificity, respectively, when the comparator is known to contain uncertainty.

https://doi.org/10.1371/journal.pone.0217146.g005
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Panel B shows the calculated estimates of performance (AUC, sensitivity/PPA, specificity/

NPA, PPV, NPV) as an increasing amount of uncertainty is introduced into the comparator.

The false positive (FP) and false negative (FN) rates for the Super-Unanimous subset are

assumed to be zero, as shown by the leftmost vertical dotted line of panel B. For the Consensus

subset, the observed misclassification rates were 4.9% FP and 4.7% FN, which correspond to

an injection of about 4.84% random misclassifications into the Super-Unanimous subset. For

the Forced subset, the observed misclassification rates were 6.1% FP and 9.0% FN, which cor-

respond to an injection of about 7.46% random misclassifications into the Super-Unanimous

subset. In panel B, the triangles indicate the calculated values of the performance parameters

(AUC, sensitivity/PPA, specificity/NPA, PPV, NPV), after injection of the stated amounts of

uncertainty (random misclassification noise) into the comparator.

We simulated the effects of comparator uncertainty by starting with the Super-Unanimous

classifications (assumed to be error free), injecting noise (uncertainty) into the underlying

comparator (randomly sampled from the empirical noise distribution), and calculating the

resultant increase in apparent FP and FN rates. As the comparator misclassification rate

increased, the apparent performance of the new diagnostic test declined, consistent with the

earlier simulation studies shown in Figs 2–6. Specifically, as the comparator noise level was

increased, there was a corresponding decrease in AUC. When expressed in terms of relative

error (relative error = (1-AUC)/(1-AUC0) where AUC0 = AUC at zero misclassification rate),

we found that each 1% increase in comparator noise produced an approximately 9% increase

Fig 6. A simulated screening test in a low prevalence setting, for example for a relatively uncommon infectious disease. In this scenario ground truth

positive patients are equally likely to be misclassified as negative patients (A) Representation of Ground Truth for 1950 negative patients, and 50 positive

patients. with some overlap between the positive and negative ground truth distributions. (B) Apparent performance of diagnostic test, as a function of the

misclassification rate of the comparator. The error bars describe 95% empirical confidence intervals about medians, computed over 100 simulation cycles. True

test performance is indicated when the FP and FN rates are each 0%. The terms Sensitivity and Specificity are appropriate when there is no misclassification in

the comparator (FP rate = FN rate = 0%). The terms Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) should be used in place of

Sensitivity and Specificity, respectively, when the comparator is known to contain uncertainty.

https://doi.org/10.1371/journal.pone.0217146.g006
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in relative error. With the injection of 4.8% misclassifications into the Super-Unanimous com-

parator, the simulation contained as much noise as was observed in the Consensus subset of

Fig 7. (A) Real data from a clinical trial for a new sepsis diagnostic test, conducted over 8 sites in the USA and

Netherlands [25]. (B) The apparent performance of the test (y axis) decreases as uncertainty is introduced into the

comparator (x axis). 95% confidence intervals are shown. The difference between the apparent test performance at a

given comparator misclassification rate and at a comparator misclassification rate of zero indicates the degree of

underestimation of true test performance due to uncertainty in the comparator. The vertical lines mark the observed

misclassification rates for various patient subsets within the same trial, as described in the text. Misclassification rates

are based on quantifying the discordance between independent expert opinions. Solid triangles show the observed

measurements for the trial for each of these groups without correction for comparator uncertainty. Sensitivity/PPA

and Specificity/NPA are each marked with an asterisk (�) to emphasize that these measures assume no

misclassification in the comparator. Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) are

the correct terms to use, when the comparator is known to contain uncertainty as in this case.

https://doi.org/10.1371/journal.pone.0217146.g007

Table 2. Testing the models: Simulated vs. observed effect of comparator noise on test performance.

Parameter Super-Unanimous (N = 290)

FP Rate = 0.0%

FN Rate = 0.0%

Consensus (N = 410)

FP rate = 4.9%

FN rate = 4.7%

Forced (N = 447)

FP rate = 6.1%

FN rate = 9.0%

No

misclassifications

injected into

Super-Unanimous

Observed 4.84%

misclassifications

injected into

Super-Unanimous

Observed 7.46%

misclassifications

injected into

Super-Unanimous

Observed

AUC 0.887

(0.848–0.926)

0.887

(0.848–0.926)

0.839

(0.805–0.863)

0.852

(0.814–0.890)

0.815

(0.777–0.846)

0.818

(0.778–0.858)

Sensitivity

/ PPA

0.967

(0.918–0.991)

0.967

(0.918–0.991)

0.950

(0.932–0.966)

0.944

(0.900–0.973)

0.946

(0.926–0.965)

0.921

(0.875–0.954)

Specificity

/ NPA

0.339

(0.269–0.415)

0.339

(0.269–0.415)

0.322

(0.307–0.337)

0.352

(0.291–0.418)

0.313

(0.297–0.329)

0.347

(0.287–0.410)

PPV 0.509

(0.442–0.575)

0.509

(0.442–0.575)

0.491

(0.461–0.513)

0.533

(0.477–0.589)

0.465

(0.435–0.500)

0.538

(0.483–0.591)

NPV 0.936

(0.843–0.982)

0.936

(0.843–0.982)

0.903

(0.871–0.935)

0.890

(0.807–0.946)

0.903

(0.871–0.935)

0.842

(0.756–0.907)

Clinical trial data from Miller et al. [25] were used. The 95% confidence intervals are given within the parentheses. The following tradeoff for a binary test is reflected in

the data: a high value of sensitivity/PPA will imply a low value of specificity/NPA.

https://doi.org/10.1371/journal.pone.0217146.t002
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the actual clinical trial data. Similarly, with the injection of 7.5% misclassifications, the simula-

tion contained as much noise as was observed for the Forced group, as shown in Table 2. The

comparison between simulated (predicted) and observed diagnostic test performance is shown

in Table 2.

Of the 447 patients in the trial, 93 were diagnosed by consensus RPD as having pneumonia

or lower respiratory tract infections (LRTI). With respect to the secondary diagnosis of sepsis

vs. SIRS, very high levels of disagreement (uncertainty) by the expert panelists were found for

this subset of patients. In only 45/93 (48%) of these cases did all three external panelists agree

on the diagnosis of sepsis or SIRS. A further indication of the difficulty of diagnosing

Table 3. Classification of patients in a trial on a new sepsis diagnostic test.

Comparator Condition SIRS Indeterminate Sepsis

A. Unanimous RPD

(N = 315)

All other conditions 169 (53.6%) 0 (0.0%) 100 (31.7%)

Pneumonia / LRTI 4 (1.3%) 1 (0.3%) 41 (13.0%)

B. Super-Unanimous RPD (N = 290) All other conditions 168 (57.9%) 0 (0.0%) 90 (31.0%)

Pneumonia / LRTI 3 (1.0%) 0 (0.0%) 29 (10.0%)

C. Consensus RPD

(N = 447)

All other conditions 221 (49.4%) 17 (3.8%) 116 (26.0%)

Pneumonia / LRTI 9 (2.0%) 20 (4.5%) 64 (14.3%)

The trial is described in Miller et al. [25]. (A) Unanimous RPD, in which all three external panelists agreed on diagnosis of sepsis, SIRS, or indeterminate. (B) Super-

Unanimous RPD, in which all three external panelists, and also the study investigators at the clinical site of origin, agreed on the diagnosis of sepsis, SIRS, or

indeterminate. (C) Consensus RPD, in which two or all three external panelists agreed on diagnosis of sepsis, SIRS, or indeterminate.

https://doi.org/10.1371/journal.pone.0217146.t003

Fig 8. (A) Subset of pneumonia/LRTI-specific data (N = 93) from a clinical trial for a new sepsis diagnostic test,

conducted over 8 sites in the USA and Netherlands [25]. (B) The apparent performance of the test (y axis) decreases as

uncertainty is introduced into the comparator (x axis). 95% confidence intervals are shown. The difference between

the apparent test performance at a given comparator misclassification rate and at a comparator misclassification rate of

zero indicates the degree of underestimation of true test performance due to uncertainty in the comparator. Solid

triangles show the observed measurements for the trial for each of these groups without correction for comparator

uncertainty. Misclassification rates are based on quantifying the discordance between independent expert opinions.

Sensitivity/PPA and Specificity/NPA are each marked with an asterisk (�) to emphasize that these measures assume no

misclassification in the comparator. Positive Percent Agreement (PPA) and Negative Percent Agreement (NPA) are

the correct terms to use, when the comparator is known to contain uncertainty as in this case.

https://doi.org/10.1371/journal.pone.0217146.g008
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pneumonia/LRTI patients as having sepsis or SIRS came from an examination of the 37/447

patients classified as indeterminate by the consensus RPD of the three external panelists. Of

these 37 patients, 20 (54%) were diagnosed with pneumonia/LRTI (Table 3). The misclassifica-

tion rates for this sub-population were calculated to be 17.5% FP, 13.7% FN, 14.4% overall.

For the patients with pneumonia or LRTI, the level of uncertainty in the comparator was

roughly double that of the non-pneumonia patients. The two groups also differed in the preva-

lence of sepsis (see Table 3, p<0.001), the pattern of physician discordance in classification,

and the distribution of SeptiCyte LAB test scores. Fig 8, Panel A shows a subset of super-unani-

mously classified sepsis and SIRS patients from the complete trial population, selected to

match the sepsis prevalence and test score distribution of pneumonia/LRTI patients. Fig 8,

Panel B shows the effects of increasing the comparator misclassification rate on the perfor-

mance parameters for this patient subset. The triangles in this panel signify the parameter val-

ues observed for the pneumonia/LRTI patients. The triangles have been placed at a position

along the x-axis (17.5% FPR, 13.7% FNR) that is appropriate for the pneumonia/LRTI patient

group, as inferred from the measured discordance in the comparator diagnoses for this group

(see S2–S4 Supporting Information).

Regarding the 45 pneumonia/LRTI patients who were diagnosed by all three expert panel-

ists to be either positive or negative for sepsis, we observed no significant difference in test per-

formance between this patient subset and the subset of all patients with Super-Unanimous

diagnoses across the trial as a whole (Table 3). Simulations in which a weighted average 14.4%

misclassification rate for pneumonia/LRTI patients was introduced into the Super-Unanimous

RPD comparator led to predicted underestimates of performance that were well aligned with

the observed measurements of test performance (Fig 8, Panel B, triangles and Table 4).

Table 4. Demonstration of the effect of comparator uncertainty on estimates of test performance, for the pneumonia/LRTI patient subset.

Parameter Minimal uncertainty in

comparator classification

17.5% False Positive rate

13.7% False Negative rate

(due to comparator uncertainty)

A. All conditions

(N = 290)

B. Pneumonia /LRTI

(N = 45)

C. Introduced to

Col A. (N = 290)

D. Observed in

pneumonia/LRTI

(N = 45)

AUC 0.887

(0.848–0.926)

0.87

(0.71–1.00)

0.679

(0.576–0.723)

0.67

(0.64–0.72)

Sensitivity/PPA 0.967

(0.918–0.991)

0.97

(0.84–1.00)

0.909

(0.783–0.975)

0.89

(0.85–0.92)

Specificity/NPA 0.339

(0.269–0.415)

0

(0.00–0.52)

0.274

(0.169–0.402)

0.28

(0.25–0.30)

PPV 0.509

(0.442–0.575)

0.86

(0.71–0.96)

0.471

(0.361–0.582)

0.46

(0.42–0.50)

NPV 0.935

(0.843–0.982)

0

(0.00–0.98)

0.810

(0.581–0.946)

0.79

(0.71–0.85)

The clinical trial of a new sepsis test is described in the publication of Miller et al. [25]. Column A: Test performance for the Super-Unanimous subset of patients

(N = 290) who received unanimous diagnoses of sepsis or SIRS by three external expert panelists, and who were also assigned the same diagnosis by the study

investigators at the clinical sites where the patients originated. Column B: Test performance for the subset of pneumonia/LRTI patients from column A. Column C:

Based on the uncertainty distribution observed in the trial, a comparator misclassification rate of 17.54% FP, 13.73% FN, 14.4% overall was estimated for the

pneumonia/LRTI patient subset, and introduced into the simulation. The simulation was repeated 100 times with median and 95% CIs indicated. Column D: Observed

performance metrics for the pneumonia / LRTI subset of the Super-Unanimous population (Column A). The following tradeoff for a binary test is reflected in the data:

a high value of sensitivity/PPA will imply a low value of specificity/NPA.

https://doi.org/10.1371/journal.pone.0217146.t004
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The unattainability of a perfect test

Additional simulations showed that it is extremely unlikely for any test, even a perfect test, to

achieve very high performance in a diagnostic evaluation trial, when even a small amount of

uncertainty is present in the comparator against which the test is being evaluated. For example,

as shown in S7 Supporting Information (“Very high performance tests”), if 99% PPA (sensitiv-

ity) or NPA (specificity) is required in a diagnostic evaluation trial, then a modest 5% patient

misclassification rate in the comparator will lead to rejection of the perfect diagnostic test with

a probability greater than 99.999%. Thus a specific numerical requirement for test perfor-

mance, especially a very high performance requirement such as 99% PPA (sensitivity), can

only be meaningfully discussed if all classification uncertainty in a trial is either ruled out or

characterized, and the measured test performance interpreted with respect to the theoretical

limits imposed by comparator uncertainty.

Discussion

The performance of any diagnostic test must be evaluated in reference to a comparator. The

presence of noise (classification uncertainty) in the comparator is therefore an important con-

founding factor to consider in the interpretation of the performance of diagnostic tests. As

increasing amounts of noise are introduced into the comparator, the apparent performance of

the diagnostic test (relative to the comparator) will decline in a concomitant fashion. This is

consistent with the general expectation that the addition of randomness into a method for ana-

lyzing a test’s performance should drag any performance indicator down towards a limiting

minimum value (for example 0.50 for AUC). While this confounding factor was first identified

over 30 years ago [12], it has received renewed attention in the 2015 STARD standard for diag-

nostic reporting [32,33] under checklist item #15 (“How indeterminate index test or compara-

tor results were handled”).

In the analysis of real world data from a clinical trial on a new sepsis test [25], significant

differences in apparent test performance were measured in different patient subsets. One

interpretation is that the actual performance of the test varied, depending on the patient subset

being considered. Although genuine differences in test performance may indeed exist between

patient subsets, an alternative explanation is suggested by two key results: 1) the correspon-

dence between the observed performance and the predicted performance as a function of com-

parator noise level; 2) the lack of a significant difference in test performance between patient

subsets, when comparator noise was removed by excluding patients with uncertainty in the

comparator diagnosis. These results support the hypothesis that the diagnostic test performed

equally well across all patient subsets, but varying levels of comparator noise led to the appear-

ance of diagnostic test performance differences.

Our simulations show, perhaps counter-intuitively, that increasing uncertainty in the com-

parator can sometimes have a non-linear effect on performance (as measured by different per-

formance indicators such as AUC, PPA, NPA). The non-linearity is most pronounced when

disease prevalence is either high or low (see for example Fig 6). This non-linearity increases

the difficulty of intuiting the effect of uncertainty on evaluating diagnostic performance,

because linear extrapolation under these conditions may lead to erroneous conclusions. The

use of a simulation tool, such as the one associated with this paper, may be the only realistic

way for non-statistical experts to verify that the level of uncertainty measured in their trial

does not invalidate their conclusions.

An upper bound on the apparent performance of a test will be imposed by the presence of

noise in the comparator. For example, consider a misclassification rate of 10% in a compara-

tor. This would impose a maximum theoretical AUC of 0.90 (95% CI 0.86–0.94) for any test,
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including a perfect test, that is measured against this comparator, as shown in Fig 3. If using

this comparator a new diagnostic test measures an apparent AUC of 0.89 (95% CI 0.87–0.91),

then the test would be statistically indistinguishable from perfect, and should be reported as

such. To report an AUC of 0.89 for this new test without this important qualifier would be mis-

leading. The simulation tool associated with this paper can be used to generate theoretical

maximum limits on performance estimates under conditions of comparator uncertainty,

against which trial results can be assessed in the context of their proximity to theoretical per-

fection under these conditions.

Our simulations also reveal that for tests requiring high accuracy, the presence of uncer-

tainty in the comparator will be highly detrimental. For example, degradation of apparent test

performance (AUC) from a true performance level of 0.97 AUC to a measured performance

level of 0.93 AUC, while only -0.04 AUC units in absolute terms, in fact represents more than

a doubling of the apparent error rate of the test (from 3% to 7%), due solely to the comparator

noise effect. This could lead to a decision not to adopt a test in the clinic because the test per-

formance is (erroneously) assumed to be inadequate.

For tests requiring even higher accuracy, for example 99% sensitivity or negative predictive

value, extreme caution must be exercised in trial interpretation if even small amounts of uncer-

tainty may be present in the comparator. In these cases, an apparently reasonable requirement

for robust test performance will result in the rejection of even a perfect test, in almost all cases,

due to failure to account for the effects demonstrated in this paper. Stakeholders interested in

ensuring very high performance (i.e. 99% sensitivity or NPV) must bear in mind that such

high performance characteristics can only be practically demonstrated with respect to a nearly

flawless comparator method. In the absence of a nearly flawless comparator method, it will not

be possible to validate such high test performance characteristics, and attempts to do so will

likely result in underestimation of candidate test performance. The impact of an imperfect

comparator on very high performance tests is analyzed quantitatively in S7 Supporting Infor-

mation (“Very high performance tests”).

Generally, it can be seen from both the simulations and our actual data that a 5% or greater

misclassification rate in the comparator may result in significant underestimates of test perfor-

mance, which could in turn have significant consequences, e.g. in a clinical trial. If there is rea-

son to suspect a misclassification rate above this limit, it is advisable (in accord with STARD

criterion #15) to report the comparator uncertainty together with the estimated performance

of the new test. The estimated test performance should be reported relative to the expected per-

formance of a perfect test under the prevailing conditions of uncertainty, which can be esti-

mated with the simulation tool that accompanies this paper. At minimum, the amount of

comparator uncertainty should be measured or described so that its effect can be bounded or

incorporated into the interpretation of the data. Without taking classification uncertainty into

account, researchers risk arriving at false or biased conclusions.

Conclusions

This study has shown, with both simulated and real data, that noise (classification uncertainty)

in a comparator will exert a significant downward effect on the apparent performance of any

new test under evaluation. The common condition of uncertainty in clinical trial classifica-

tions, combined with the knowledge that very few such trials measure and account for this

uncertainty, could potentially undermine the conclusions drawn from such trials, if the effect

is not corrected for. If there is reason to suspect a significant amount of classification uncer-

tainty in the comparator, it is advisable to report the comparator uncertainty together with the

estimated performance of the new test. We provide an online simulation tool to allow
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researchers to explore the effect of comparator noise, using their own trial parameters: https://

imperfect-gold-standard.shinyapps.io/classification-noise/. The source code for the simulation

tool has been made publicly available: https://github.com/ksny/Imperfect-Gold-Standard.
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S6 Supporting Information. Unequal FP and FN rates. The examples show degradation of
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