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Abstract

Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important

role in cell signaling processes and their misfunction often causes human disease. Proper

understanding of IDP function not only requires the realistic characterization of their three-

dimensional conformational ensembles at atomic-level resolution but also of the time scales

of interconversion between their conformational substates. Large sets of experimental data

are often used in combination with molecular modeling to restrain or bias models to improve

agreement with experiment. It is shown here for the N-terminal transactivation domain of

p53 (p53TAD) and Pup, which are two IDPs that fold upon binding to their targets, how the

latest advancements in molecular dynamics (MD) simulations methodology produces native

conformational ensembles by combining replica exchange with series of microsecond MD

simulations. They closely reproduce experimental data at the global conformational ensem-

ble level, in terms of the distribution properties of the radius of gyration tensor, and at the

local level, in terms of NMR properties including 15N spin relaxation, without the need for

reweighting. Further inspection revealed that 10–20% of the individual MD trajectories dis-

play the formation of secondary structures not observed in the experimental NMR data. The

IDP ensembles were analyzed by graph theory to identify dominant inter-residue contact

clusters and characteristic amino-acid contact propensities. These findings indicate that

modern MD force fields with residue-specific backbone potentials can produce highly realis-

tic IDP ensembles sampling a hierarchy of nano- and picosecond time scales providing new

insights into their biological function.

Author summary

Intrinsically disordered proteins (IDPs), which are widely present in many organisms

including humans, play an important role in cell signaling and their misfunction can

cause severe diseases. However, the dynamic nature of IDPs makes their structural and

dynamic characterization challenging. Here we demonstrate for two IDPs, including the

N-terminal transactivation domain of the oncoprotein p53, how a range of experimental
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data can be explained with high accuracy using long molecular dynamics (MD) computer

simulations. The experimental data consist of nuclear magnetic resonance (NMR) spin

relaxation data along the polypeptide chains sensitive to picosecond to nanosecond time-

scale motions at atomic resolution and the radii of gyration. The MD-generated IDP

ensembles revealed amino-acid specific preferences for inter-residue contact clusters that

help rationalize ensemble properties of IDPs. The agreement between experiment and

simulation was achieved without the need for any reweighting of the computed IDP

ensemble. The results attest to the good accuracy of the computational protocol and MD

force field used with residue-specific backbone energy potentials. They suggest an increas-

ingly predictive understanding of IDPs via large-scale computer simulations that will help

toward better understanding the varied functions of IDPs in biology.

Introduction

Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are an integral part of

the proteomes of many different organisms with more than 30% of all eukaryotic proteins

possessing 40 or more consecutive disordered residues. [1,2] While IDPs and IDRs in isola-

tion do not adopt well-defined three-dimensional (3D) structures, they often play important

biological roles in molecular recognition processes by interacting in specific ways with bind-

ing partners that are typically well-ordered. [3–5] For instance, the human oncoprotein pro-

tein p53 possesses the N-terminal transactivation domain (p53TAD) that binds to the N-

terminal domain of human MDM2 protein adopting a stable α-helix. [6] Prokaryotic ubiqui-

tin-like protein (Pup) is another IDP that is directly linked to protein degradation folding

into an α-helix when binding to Mpa protein. [7] In addition to binding to their target pro-

tein(s), IDPs can also be involved in liquid-liquid phase separation (LLPS). [8–11] LLPS is

the segregation of molecules in solution into a condensed phase and a dilute phase with high

and low biomolecular concentrations. These membraneless droplet-like compartments

formed by IDPs and other biomolecules are important for cellular function. Knowledge of

the structural and dynamic propensities of IDPs both in isolation and in complex biological

environments is essential for understanding these processes and their role in human health

and diseases.

In order to relate IDP sequences to biological function, detailed knowledge of IDP confor-

mational ensembles is needed. The description of conformational ensembles can range from

local secondary structure populations to explicit ensembles in 3D space with atomic resolution.

[12] Some of the earliest approaches generate random coil conformational ensembles that are

subsequently refined against a host of experimental data reflecting both local and global struc-

tural features. [13–15] These approaches continue to be successfully applied through integra-

tive modeling provided that a large amount of high quality experimental data is available for

each system under investigation. [16,17] Even when data from various complementary experi-

mental techniques are being used, the amount of experimental information obtainable is still

sparse when compared to the information needed to uniquely characterize large, highly het-

erogeneous structural ensembles that are the hallmark of IDPs. As a consequence, the amount

of information that can be gained and that is not directly reflected in the experimental data

used to refine the ensemble is restricted to robust descriptors ranging from coarse-grained to

global that can be compared with predictions by polymer theory under various assumptions.

[16] In addition, site-specific interaction information, such as transient inter-residue contacts,

can be obtained at medium to low resolution from paramagnetic relaxation enhancement
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(PRE) experiments by attaching electron spin labels to selected sites. [15,17] Because empirical

ensembles generated based on such data lack a time axis, they do not include dynamics time

scales of IDPs associated with interconversion rates between substates and, hence, they do not

inform about an essential aspect of the energy landscape.

From a theoretical and computational perspective, all-atom molecular dynamics (MD) sim-

ulations are an attractive alternative to empirical approaches for the generation of IDP confor-

mational ensembles, including dynamic time-scale information, for the comprehensive

interpretation of experimental results. [18] However, for many years limitations in computer

power precluded the generation of statistically well-converged results and MD force fields pri-

marily developed for ordered proteins turned out to be unsatisfactory for applications to IDPs.

With the continuing increase in computer power, the quality of sampling has reached a level

that allows rigorous validation by quantitative comparison with a rich body of experimental

data. In cases where discrepancies are observed between simulation and experiment, as is com-

monly the case, approaches have been developed that use restraining or reweighting that bias

the original simulation to obtain results that agree better with experimental data. [19–26]

When not only the conformational ensemble but also the underlying dynamics time scales are

of interest, suitable rescaling of the MD time step or correlation times of the dominant

motional modes can be applied to improve agreement with experiment. [27–30] Because these

methods can often improve the unaltered simulations only within certain boundaries, they are

best suited when the original predictions are fairly close to experimental data. [31] Although

these methods rarely fail to produce better agreement, at least on average for those experimen-

tal parameters directly used as restraints or for reweighting, they naturally depend on large

amounts of experimental data of good quality as input for each protein system studied. This

amounts to a laborious experimental effort that needs to be repeated for each new protein sys-

tem as the experimental data are protein-specific rendering them non-transferrable between

systems.

An alternative and more principled approach is to improve the MD force fields themselves

enabling them to increasingly accurately predict experimental data in a way that is fully trans-

ferrable between protein systems, both ordered and disordered. This premise has led to a

recent proliferation of protein force field developments [32–37] and new explicit water models

[38–40] specifically geared toward the improved representation of disordered proteins. In a

significant development, residue-specific force fields have been introduced. [41] These force

fields use in addition coil library information from the Protein Data Bank (PDB) by incorpo-

rating the individual backbone φ,ψ propensities of each residue type. [41–47] Such residue-

specific force fields, in combination with suitable water models, can provide an improved

representation of disordered states while retaining the properties of ordered proteins. With

respect to water models, TIP4P-D and closely related derivatives have been notably successful

in preventing overly compact conformations by favoring more extended IDP structures show-

ing improved agreement with experiment. [38]

Besides global properties, such as the radii of gyration and asphericities, IDP ensembles and

trajectories should also accurately reproduce local dihedral angle distributions and secondary

structure propensities. Moreover, they should also replicate dynamic and kinetic IDP proper-

ties, such as librational motions and time scales of interconversion between conformational

substates. Such information is important for understanding recognition events between IDPs

and their binding targets, including IDP interactions with other disordered biomolecules, for

example, during the formation of LLPS condensates. Experimental IDP dynamics information

can be gained from fluorescence depolarization spectroscopy, [48] Förster resonance energy

transfer (FRET), [16] and nuclear magnetic resonance (NMR) relaxation. [15] NMR 15N longi-

tudinal R1 and transverse R2 spin relaxation rates are exquisitely sensitive to the dynamics of
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disordered proteins and the underlying time scales. [49–51] R2 relaxation rates, for example,

have been linked to residual intramolecular interactions in chemically unfolded proteins. [51–

53] 15N R1 and R2 rates can be experimentally determined for each protein residue and there-

fore they are valuable for validating MD simulations with respect to amplitudes and time scales

of IDP dynamics. [29,54–56]

We recently developed the AMBER ff99SBnmr2 force field by modifying the backbone

dihedral angle potentials of each amino-acid residue type to reproduce the φ,ψ dihedral angle

distributions found in a random coil library. [57] The ff99SBnmr2 force field has been vali-

dated against experimental nuclear magnetic resonance (NMR) scalar 3J-couplings of α-synu-

clein and β-amyloid IDPs demonstrating that this force field accurately reproduces their

sequence-dependent local backbone structural propensities. [58] The primary goal of this

work is to learn whether state-of-the-art replica exchange and extended MD simulations of

IDPs can also realistically reproduce NMR R1, R2 relaxation rates with their strong and unique

dependence on motional time scales without the need of any additional corrections such as

constraints or reweighting. Moreover, in-depth analysis of the MD trajectories generated

yields a wealth of information about the radius of gyration tensor distribution and dominant

dynamics modes allowing graph-theory based identification of specific inter-residue interac-

tion propensities and residue clusters for the better understanding of IDP behavior.

Results

Ensemble properties of radius of gyration tensor

The radius of gyration Rg(t) is shown as a function of time for representative 1-μs MD trajecto-

ries of p53TAD and Pup in Fig 1A and 1B (see also S1 Fig). The trajectories exhibit predomi-

nantly stationary stochastic behavior reflecting random expansion and contraction of the

overall IDP size with the mean value (blue horizontal lines) in good agreement with the experi-

mentally determined <Rg> (black line) or the predicted <Rg> from polymer theory (Eq 6).

The MD-distributions of Rg of all 10 MD trajectories are shown as histograms in Fig 1C and

1D. The Flory exponent ν of the polymer scaling law was determined from the REMD ensem-

bles at 298 K. Using ρ0 = 1.927 Å, we obtain a value of ν = 0.601 for Pup, which closely matches

the theoretical value νtheory = 0.588 of a fully disordered, self-avoiding random coil. [59,60] For

p53TAD, the REMD <Rg> value of 28.1 Å is in almost perfect agreement with experiment

[61] (28.0 Å) corresponding to ν = 0.624, which clearly exceeds νtheory.

The characteristic time scales of Rg(t) fluctuations can be obtained from the time-correla-

tion functions CRg(t) (Eq 5), which are well-converged over the course of the 1-μs trajectories

(Fig 1E and 1F). CRg(t) of both proteins decay in good approximation biexponentially with

reconfigurational correlation times τaffi 10 ns and τbffi 55 ns. The normalized variance of the

Rg(t) fluctuations, given by

s2

Rg ¼ 1 � hRgi
2
=hR2

gi ð1Þ

is almost the same for p53TAD (0.03) and Pup (0.04). The ensemble distribution of the gyra-

tion tensor S (Eq 2) contains information about the deviation of individual MD snapshots

from spherical shape, which can be directly compared with a random Gaussian chain serving

as a perfect random coil (Fig 2). [62] Both proteins show unimodal asphericity distributions

(Eq 3) with maxima around Affi 0.18, which qualitatively differ from the Gaussian chain

model (Fig 2C) peaking at A = 0. Compared to p53TAD, Pup has a higher tendency to adopt a

more spherical conformation. Another useful measure of the overall shape of individual snap-

shots is the prolateness P (Eq 4). The distribution of P is bimodal for both proteins with the
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global maximum corresponding to prolate-shaped (cigar-like) structures (P = 1) and a second

(local) maximum corresponding to disk-like structures (P = -1). The distribution of the pro-

lateness of Pup is more balanced between positive and negative values with <P> = 0.2 than for

p53TAD, which has a higher tendency to adopt prolate-shaped conformers (<P> = 0.35),

whereas the Gaussian chain distribution (<P> = 0.3) lies between the two IDP distributions.

Fig 1. Radius of gyration, Rg, properties of two IDPs p53TAD and Pup from microsecond MD simulations. Time-dependence of Rg(t) from representative

1-μs MD trajectories (cyan) of (A) p53TAD and (B) Pup where the horizontal blue lines correspond to the mean Rg values calculated from the trajectories and

the black lines correspond to the experimentally determined Rg for p53TAD and the predicted Rg according to polymer theory (Eq 6) for Pup. Rg profiles for all

10 1-μs trajectories of each protein are shown in S1 Fig. Histograms of the Rg(t) distributions over all 10 MD simulations are shown in Panels C, D (blue and

black lines have the same meaning as in Panels A, B). The standard deviation of Rg over all 10 MD trajectories is 5.4 Å for p53TAD and 5.0 Å for Pup. Offset-

free time-correlation functions CRg(t) of Rg(t) averaged over all 10 1-μs MD trajectories are shown for (E) p53TAD and (F) Pup. The dashed lines belong to

non-linear least squares fits of CRg(t) by biexponential functions whereby the best fits are obtained for p53TAD with τa = 12 ns (63% of total amplitude), τb = 62

ns (37%) and for Pup with τa = 8 ns (29%), τb = 48 ns (71%).

https://doi.org/10.1371/journal.pcbi.1010036.g001
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The distinct asphericity distribution and increased prolateness of p53TAD is at the origin of its

increased <Rg> over the Gaussian random coil model.

Validation against R1, R2 relaxation data

Experimental and computed 15N R1, R2 relaxation rates are shown in Fig 3. R1 relaxation rates

determined from simulations (Eqs 7–12) are in close agreement with experiment [63] evi-

denced by small RMSEs (0.10 s-1 for p53TAD and 0.12 s-1 for Pup) and Pearson correlation

coefficients R of 0.78 for p53TAD and 0.86 for Pup (Fig 3A and 3B). R2 relaxation rates deter-

mined from the simulations are also in good agreement with experiment with correlation coef-

ficients R of 0.88 for p53TAD and 0.70 for Pup and RMSEs of 0.84 s-1 for p53TAD and 0.81 s-1

for Pup and (Fig 3C and 3D). It can be seen that the simulations tend to underestimate R1 and

overestimate R2 rates, although only slightly, in a manner that is notably uniform for the R1

values of both proteins and for the R2 values of p53TAD. The 10 N-terminal residues of

p53TAD are very flexible with small R2’s, which closely follow the experiment. For Pup, differ-

ences in R2 between MD and experiment display the same trend and are most pronounced for

residues 30–48. The error bars of the computed relaxation rates, which represent the root-

mean-square deviations over all 10 MD trajectories, are fairly uniform along the polypeptide

chains and systematically larger for R2 than for R1, again with the exception of the 10 N-termi-

nal residues of p53TAD. For both proteins, not all 10 1-μs MD trajectories individually repro-

duce the experimental data equally well. Either 1 (p53TAD) or 2 (Pup) trajectories have more

compact average IDP structures, which quantitatively affect the agreement with experiment

(S2 Fig).

Correlation times of backbone N-H bond vectors in both proteins fitted from the average

correlation functions range from picoseconds to about 20 ns (Fig 3E and 3F). Consistent with

Fig 2. Gyration tensor properties of IDP ensembles of p53TAD and Pup across 10 1-μs MD trajectories. The distributions of gyration tensor asphericities

A are shown for (A) p53TAD and (B) Pup in comparison with a (C) Gaussian chain. The distributions of gyration tensor prolateness P are shown for (D)

p53TAD and (E) Pup in comparison with a (F) Gaussian chain.

https://doi.org/10.1371/journal.pcbi.1010036.g002
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Fig 3. Back-calculated R1, R2 NMR 15N-spin relaxation rates in comparison with experiment along with underlying motional time-scale distributions. R1,

R2 rates calculated from average correlation functions are plotted in blue with error bars representing standard deviations across individual MD trajectories.

Correlation time distribution of individual 15N-1H bonds of IDPs extracted from correlation functions for (E) p53TAD and (F) Pup where the sizes of the blue

squares are proportional to the associated motional amplitudes Ai. The squares at the bottom indicate the aggregate of dynamics contributions with correlation

times faster than 100 ps. Dominant dynamics time scales range from about 100 ps to about 10 ns depending on the residue, with the exception of Thr12 in Pup

which exhibits dominant dynamics time scales faster than 100 ps.

https://doi.org/10.1371/journal.pcbi.1010036.g003
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the finding for other IDPs, [55,64] the dominant contribution to the time correlation functions

stems from dynamics on the intermediate time scale around 1 ns reporting about backbone φ,

ψ jumps. Fast dynamics on the time scale of 100 ps or faster report on local 15N-1H bond libra-

tions, similar to those observed in secondary structures of folded proteins, [65] and slower

dynamics on the time scale between 3 and 20 ns reports on collective IDP chain motions. The

presence of slower modes correlates with increased R2 values most pronounced for residues

30–48 in Pup. This is consistent with relaxation theory (Eq 12), which predicts that in solution

transverse spin relaxation rates R2 are in good approximation proportional to the effective

overall correlation time experienced by the 15N-1H spin pairs.

Increased transverse NMR spin relaxation is indicative of the presence of collective segmen-

tal motions in IDPs, which are modulated by the formation of transient secondary structures

and inter-residue side-chain interactions. To examine these relationships, instantaneous sec-

ondary structures and average contact maps were determined from the MD trajectories (Fig

4). A contact is defined in an MD snapshot when the nearest distance between atoms from

two different residues is smaller than 4 Å (uninformative first-neighbor (i,i+1) and second-

neighbor (i,i+2) contacts between residues were excluded (white band along diagonal in Fig

4A and 4B)). The most frequent contacts are relatively short range, but contacts over larger

distances occur for p53TAD and even more frequently for Pup. Some contacts are linked to

the transient formation of short secondary structures, α-helices and β-strands (Fig 4C and

4D), whereas other regions display frequent contacts largely independent of secondary struc-

ture propensity often involving arginine residues, such as Arg65 of p53TAD and Arg28/29 and

Arg56 of Pup. Fig 4C and 4D also shows that selected trajectories possess regions with well

above-average secondary structure propensities, such as trajectories #4 of p53TAD and trajec-

tories #5 and #7 of Pup, which are the same trajectories that contribute to the lengthening of

R2 along parts of the polypeptide sequences mentioned above. Due to their atypical (outlier)

nature, not representative of the other trajectories, they were not included in the following res-

idue-cluster analysis. For p53TAD, regions that tend to form α-helices do not form β-strands

and vice versa (except for trajectory #4). For Pup, on the other hand, a number of regions exist

in its N-terminal half that can transiently switch between these two types of local secondary

structures.

Inter-residue contact propensities

Different residues along the polypeptide chain display different tendencies to form contacts

with other residues. Fig 5A and 5B shows the average number of contacts per snapshot for

each residue, which was calculated as the total number of contacts formed by a residue divided

by the total number of MD snapshots. To better visualize the different behaviors, the residues

were divided into four distinct groups: the majority of residues that form 0.5–1.5 contacts per

snapshot (colored in black), residues that form an unusually small number of contacts (< 0.5)

(colored in blue), residues that form a moderately large number of contacts (1.5–2) (colored in

yellow), and residues that form a relatively large number of contacts (> 2) are colored in red.

For Pup, there are three distinct regions that form the largest numbers of contacts (red) com-

prising residues (1) Lys7, Arg8, (2) Arg28, Arg29, and (3) Arg56. They perfectly align with the

three centers of Fig 3 with elevated R2 values, namely (1) Arg8, (2) Arg29, and (3) Arg56. For

p53TAD, the residue that forms the largest number of contacts is Arg65, which is surrounded

by residues with a number of contacts below average between 0.5 and 1.0. This rationalizes

why R2 of Arg65 shows a local maximum that is still lower than R2 in other regions of

p53TAD, such as residues 19–26 forming a residue cluster with an intermediate number of

contacts. Notably, the 11 N-terminal residues of p53TAD display a lower-than-average
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Fig 4. Average IDP contact maps and time-dependent secondary structure formation of each residue. (A, B) Pairwise contact occupancies were determined

from MD simulations (without outlier trajectories, S2 Fig, S4 and S5 Tables) for (A) p53TAD and (B) Pup. Darker/lighter shades of blue denote contacts that

are more frequently/rarely formed according to legend (vertical bar). Self-contacts, first-neighbor contacts (between residues i,i+1), and second-neighbor

contacts (between residues i,i+2) are not shown since they are present in most snapshots. (C, D) secondary structure of each residue in MD simulations are

predicted using the DSSP algorithm with α-helices shown in red and β-strands in blue. (E, F) In the residue clusters at the bottom, pairwise contacts with

occupancies> 0.2 are depicted as an edge connecting two nodes (residues) with edge widths proportional to the pairwise contact occupancies. Labels A1–A5

denote dominant clusters in p53TAD and B1–B8 in Pup. Examples of transiently formed subclusters are indicated by dashed lines (A1.1, A1.2, and A1.3 in

p53TAD and B1.1 and B1.2 in Pup).

https://doi.org/10.1371/journal.pcbi.1010036.g004
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amount of contacts, which is consistent with low R2 values observed across all 10 individual

MD trajectories. When the same type of contact analysis is performed with side-chain atoms

only, a similar behavior is observed with only a small, systematic reduction in contacts (S3

Fig) reflecting that the majority of medium- to long-range inter-residue contacts are made by

side-chain atoms.

We also grouped the number of contacts per snapshot formed by each residue according to

residue type and normalized them by the number of residues of the same type. The resulting

value for each amino acid residue type present in p53TAD and Pup reflects their inherent

Fig 5. Number of close contacts formed by each residue during MD simulations of p53TAD and Pup (without outliers) along with average residue-type

specific contact propensities. For each residue, the number of contacts was normalized by the number of snapshots for (A) p53TAD and (B) Pup. Residues

with their number of contacts per snapshot below 0.5 are depicted in blue, 0.5–1.5 in black, 1.5–2 in yellow, and above 2 in red. Primary sequences of p53TAD

and Pup are given at the bottom and colored as in Panels A, B. Average contact propensities according to amino-acid residue type, which is the number of

contacts per snapshot averaged over all residues of the same type, are shown for (C) p53TAD and (D) Pup. Error bars correspond to the standard deviations

among different residues of the same type.

https://doi.org/10.1371/journal.pcbi.1010036.g005
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contact propensity (Fig 5C and 5D). These profiles display the following trends: positively

charged residues arginine and lysine are on average most prone to form contacts, followed by

hydrophobic residues isoleucine and leucine as well as aromatic residues tryptophan and phe-

nylalanine. Negatively charged residues aspartate and glutamate, however, are least disposed

to form contacts. This may be also a consequence that both IDPs are overall negatively charged

(-14e for p53TAD and -12e for Pup). When acidic residues outnumber basic residues, the for-

mer tend to repulse each other, thereby increasing Rg, while the latter have more options to

interact with an acidic residue than vice versa leading to an increase of the contact propensity

of basic over acidic residues.

Contact analysis by graph theory

To investigate the nature of some of the most frequent pairwise contacts in these IDPs, the

MD snapshots were analyzed by graph theory where each snapshot is represented as an undi-

rected graph with each residue corresponding to a node and an inter-residue contact corre-

sponds to an edge connecting the two residues (nodes). The resulting graphs were then

analyzed in terms of clusters, which are disconnected graph components that do not have any

edges to nodes outside of the cluster. On average 6.0 clusters per snapshot are found for

p53TAD and 5.4 clusters for Pup. The probabilities of a cluster to have a given size are repre-

sented for both IDPs by the histograms of cluster sizes (Fig 6A), which reveal that clusters con-

sisting of 2 nodes are most abundantly present (around 40%) in both p53TAD and Pup.

Moreover, the cluster size probability decreases rapidly with increasing size. For instance, the

fraction of clusters with 10 or more nodes (residues) is only 2–3%. Despite their sequence

independence and different lengths, the two IDPs have strikingly similar cluster size distribu-

tions. The number of edges grows on average linearly with the number nodes (straight solid

line), which is much slower than the quadratic behavior of complete graphs (dashed line, Fig

6B). In fact, most of the clusters formed during MD simulations are sparse graphs with a rela-

tively small average edge-to-node ratio of 1.54, which is indicative of tree-like graphs consist-

ing mostly of linear branches with few cross-links. Fig 6 also depicts residue clusters (on the

right) where pairwise contacts with occupancies > 0.2 are depicted as an edge connecting two

nodes (residues) with edge widths proportional to the pairwise contact occupancies.

The graph-theoretical representation of the transient interaction network uncovers the rela-

tionship between R2 profiles and transient contact formation and the types of interactions that

are prevalent in IDP structures. For p53TAD, the three centers in the sequence with an ele-

vated experimental R2 profile are (1) Lys24, (2) Glu51, and (3) Met66, and they are involved in

or are sequentially adjacent to clusters A1, A3, and A2, respectively. Electrostatic interactions

are important for residue cluster formation in p53TAD, in particular in cluster A2 featuring

the pairwise contacts Lys65–Asp57 and Arg65–Glu62. The largest elevation of R2, however, is

the result of the largest interaction network A1. Hydrophobic and aromatic residues Phe19,

Leu22, Trp23, Leu25 and Leu26 belong to a p53TAD segment that displays increased helical

propensity [66,67] (secondary structure propensities determined from chemical shifts are

shown in S5 Fig) and which undergoes distinct loop closure dynamics. [68] In particular, resi-

dues Phe19, Trp23, and Leu26 form the hydrophobic triad that is crucial for the binding of

p53TAD to MDM2. [67] Similar to cluster A1, the smaller cluster A3 centered around Ile50 is

also driven by hydrophobic interactions.

The regions of Pup with elevated R2 values (Fig 3D) around Arg8, Ile18, Thr22, Arg29,

Arg56 are all involved in clusters B1, B4, or B3 (Fig 4E and 4F). Separate clusters can involve

sequentially adjacent residues, such as clusters B2 and B3 or clusters B3 and B5 and thereby

mediate cooperative behavior. The most dominant inter-residue interaction in Pup is of
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electrostatic nature resulting in the transient formation of salt bridges involving residue pairs

in cluster B1.2 (Arg8–Asp14, Arg8–Asp15) and cluster B3 (Arg56–Asp53, Arg56-Glu52).

Many of these residues appear to play the role of hubs promoting enhanced interactions also

with other residues as visualized by the graphs in Fig 4E and 4F.

Discussion

Disordered proteins play a prominent role in many regulatory processes using their unique

malleability to interact with their targets. Details of conformational substates of IDPs and how

they are shaped by the complex interplay of inter-residue interaction networks are currently

poorly understood both experimentally and computationally. In this work, we showed how

the latest advances in MD force fields and computational protocols allow the nearly quantita-

tive prediction of the complex behavior of the two IDPs p53TAD and Pup, including their

dynamics time scales from site-resolved NMR spin relaxation. Both proteins have been charac-

terized by a host of experimental techniques, including X-ray crystallography, [69,70] NMR,

[7,63,67,71–73] small-angle X-ray scattering (SAXS), [61,74] FRET, [75,76] and fluorescence

correlation spectroscopy. [68]

The global dimensions of IDPs can be experimentally characterized by SAXS providing

information about their radius of gyration Rg for direct comparison with MD ensembles. For

Pup,<Rg> from the 10 1-μs MD simulations follows the power law of Eq 6 with a Flory expo-

nent ν = 0.601, which closely mirrors the behaviour of a self-avoiding random coil (ν = 0.598).

By contrast, p53TAD is more expanded with ν = 0.624, which is consistent with previous

experimental results reported for this protein. [61] Such behaviour could be the result of stron-

ger repulsive intra-residual forces caused by a slightly higher negative net charge (-14e of

p53TAD vs. -12e of Pup) and a high percentage of prolines (18% in p53TAD vs. none in Pup)

known to increase extendedness. [77] The relatively high ν values of both proteins suggest that

their interactions with water solvent are highly favorable preventing the hydrophobic collapse

of their polypeptide chains.

The 10 1-μs MD trajectories allow extensive sampling of the radius of gyration over time

and extract characteristic time scales from its autocorrelation function (Fig 1). For both pro-

teins, the time-correlation function follows in good approximation a biexponential decay with

correlation times around 10 and 55 ns. Global distance fluctuations can be studied experimen-

tally by nanosecond fluorescence correlation spectroscopy (nsFCS), which found for 8 M urea

denatured ubiquitin global reconfiguration times τr in the range of 50–90 ns. [16] A nsFCS

study of α-synuclein, which is about twice as long in sequence as the IDPs studied here, identi-

fied two reconfigurational correlation times of τr1 = 23 ns and τr2 = 136 ns. [30] These correla-

tion times are within a factor 2–3 of those found in the current study, although it should be

kept in mind that they report about a donor/acceptor pair, i.e. S42C/T92C in the case of α-

synuclein, rather than about Rg.

Heteronuclear 15N relaxation offers a complementary view of IDP dynamics. Longitudinal

R1 and transverse R2 relaxation rates are caused by local spin interactions, namely the magnetic

dipole-dipole coupling and chemical shielding anisotropy, and they reflect reorientational

dynamics amplitudes and timescales due to local conformational fluctuations as well as

Fig 6. Graph theoretical analysis of inter-residual interactions and transient interaction networks of p53TAD and Pup.

(A) Clusters consisting of 2 nodes (residues) dominate in the MD structures of p53TAD and Pup (without outlier

trajectories), followed by clusters of size 3, etc. (B) The majority of the unique clusters are sparse graphs, with their number of

edges much smaller than the number of edges in complete graphs growing with N(N-1)/2 where N is the number of nodes.

The average edge-to-node ratio is 1.54 (slope indicated by solid black line), indicating predominantly tree-like graphs that

sometimes have a few additional edges (cross-linked branches).

https://doi.org/10.1371/journal.pcbi.1010036.g006
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longer-range reorientational motional modes of the order of an IDP’s persistence length and

beyond. Model-free analysis is not applicable to IDP relaxation data due to the absence of a

well-conserved global rotational diffusion tensor as reference frame. [27] Instead, a residue-

by-residue interpretation can applied where the correlation function of each site is described

as a multiexponential function of the type of Eq 8 with 6 exponential dynamics modes.

[28,50,55,64,78] The hierarchy of dynamics modes depicted in Fig 3 shows a broad distribu-

tion of time scales including rapid librational motions (< 100 ps) and dominant low nanosec-

ond motions, which sample the different local energy basins of backbone φ,ψ dihedral angles.

The slowest modes with time scales in the range of 3–20 ns represent predominantly collective

segmental reorientational motions. A similar hierarchy of time scales has been observed by

fluorescence depolarization kinetics measurements of α-synuclein. [48] These collective

motions involve medium to longer-range interactions between residues that can be elucidated

by graph theoretical analysis of the MD trajectories described here. For Pup, many of these

slower motional modes have correlation times around 3–4 ns whereas for p53TAD they are on

average twice as large. For both proteins the three distinct bands of time scales are pervasive

across their polypeptide sequence (Fig 3E and 3F).

MD methodology has made great strides in recent years to toward an increasingly realistic

representation of disordered proteins. [26] Besides experimental scattering data, quantitative

NMR has played a key role for the independent validation of MD ensembles. Because NMR

spin relaxation parameters fully quantitatively reflect IDP dynamics at atomic-level resolution

both in terms of motional amplitudes and time scales, their accurate reproduction by MD has

been an important but also very challenging task. A recent comparison of commonly used MD

force fields that do not use residue-specific backbone potentials showed for several IDPs signif-

icant force-field dependences with the best results obtained when the analysis was restricted to

average correlation functions of chunks of 10-ns subtrajectories. [56] The need to exclude

slower time-scale motions, which are prominent in both experimental data and simulations

(see for example Fig 3), may reflect the lack of convergence due to limited sampling. Beneficial

for all simulations was the improvement of the TIP4P-D water model over TIP3P preventing

overly collapsed IDP ensembles, which is consistent with other computational studies. [38,57]

Because of the observed discrepancies between experiments and MD simulations, some studies

applied post factum adjustments to the MD simulations in order to improve agreement, which

include uniform or selective scaling of the MD time scale or correlation times [27–30] or the

reweighting of sub-trajectories. [64] Here, we chose a different approach: rather than relying

on post factum modifications, we use the residue-specific ff99SBnmr2 force field, which was

specifically designed for the improved representation of IDPs without the need of any correc-

tions. [57,58] A correction-free MD approach has recently been reported for the intrinsically

disordered SH4UD protein with the Amber ff03ws force field, which does not use residue-type

independent backbone dihedral angle potentials, and no time-scale dependent data, such as

NMR spin relaxation, were used for validation. [79] NMR chemical shifts were back-calculated

using SHIFTX2, [80] which, besides 3D structural information, makes extensive use of protein

sequence data. Here, we back-calculated NMR chemical shifts using PPM [81] (S4 Fig), which

only uses the physical parametrization of chemical shifts with respect to 3D protein structure

of each snapshot, achieving very good agreement with experiment. [73]

The close correspondence observed between experimental and computed 15N relaxation R1

and R2 relaxation rates for both IDPs studied here (Fig 3), without the need for post factum
corrections, attests to the accuracy and robustness of the computational protocol used. It

applies REMD for the generation of conformational ensembles belonging to different tempera-

tures from which 10 representative structures at 300 K were randomly selected as starting

structures for 1-μs MD trajectories whereby all simulations made use of the ff99SBnmr2 force
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field and the TIP4P-D water model. MD-derived longitudinal 15N R1 follow the shapes of the

experimental R1 profiles with a small tendency to underestimate the experimental 15N R1 rates

by 4–6% whereas 15N R2 relaxation rates overestimate the experimental values on average by

26% for Pup and 34% for p53TAD. This level of agreement is significantly better than for pre-

viously reported comparisons of this type.

Few individual trajectories (10–20%) show systematically larger differences with respect to

experiment than the rest. For the proteins studied here, they are trajectories #4 of p53TAD and

#5 and #7 of Pup (S2 Fig, S4 Table). These trajectories are characterized by the persistent for-

mation of secondary structure (#4 of p53TAD and #5 of Pup) (Fig 4C and 4D) or by a col-

lapsed overall geometry with a reduced<Rg> compared to the other trajectories (trajectory #7

of Pup) (S5 Table). At the individual trajectory level, these outlier trajectories are in poorer

agreement with experimental data and their removal from the set of 10 trajectories during the

back-calculation of relaxation rates further improves the agreement with experiment (S3 Fig).

From such diagnostic analysis it follows that these outlier trajectories are either overrepresented

in the original simulations or the result of simulation artifacts, for example, caused by inaccura-

cies of the underlying force field. Removal of individual trajectories based on comparison with

experiment should be applied with great care and be reserved primarily for diagnostic purposes,

such as the analysis of shortcomings of the simulations. While post factum trajectory selection

or reweighting can provide better agreement with experiment, it is generally unclear whether

the altered ensembles are in fact consistent with a Boltzmann ensemble belonging to an alterna-

tive force field, thereby complicating the physical interpretation of such ensembles.

Although it is difficult to identify individual force field terms responsible for the IDP behav-

iour observed in the outlier trajectories, these results can nonetheless provide useful input to

guide future force field improvements. With more computer power, it will be possible to gain

better statistics by generating a larger number of trajectories for the improved sampling of con-

formational space allowing the more rigorous assessment of the underlying force field, the

water model, and other aspects of the computational methods used. Conversely, such insights

may allow the further improvement of force fields and methods for applications also to other

proteins. In fact, the ff99SBnmr1 force field, which is the parent force field of ff99SBnmr2, was

developed and optimized using this strategy by the systematic reweighting of MD snapshots

based on many trial force fields using experimental NMR data of intact proteins. [82]

The good agreement of the MD simulation with experimental observables both motivates

and justifies the analysis of other protein properties observed in the MD trajectories that are

difficult to measure. This includes the analysis of transient inter-residue interactions. The

molecular driving forces of these interactions are fundamentally similar to those of ordered

proteins although average hydration properties may differ. [79] In contrast to ordered pro-

teins, inter-residue interactions between non-sequential amino acids are short-lived. There-

fore, the time-averaged interaction maps (Fig 4A and 4B) offer only partial insights as they

conceal the compositions and distributions of instantaneous interaction clusters. In fact, the

relatively large network reflected by the average contact map contrasts the much smaller size

of graphs that exist at any given time, which attests to the very heterogeneous and transient

nature of instantaneous contact clusters. The highest occupancy of pairwise contacts found is

around 0.5, which mostly belong to (i,i+3) contacts. For a list of the most frequent pairwise

contacts, see S2 and S3 Tables.

Snapshot by snapshot analysis revealed the dominance of small cluster sizes over larger

ones (Fig 6). For both p53TAD and Pup, clusters with 2 or 3 residues make up more than 50%

of all clusters and clusters with more than 10 residues have notably low occurrence, although

their formation could be functionally relevant during molecular recognition events. Because

clusters consisting of residue pairs dominate intra-residual interactions in both IDPs, further
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analysis of the interaction network was performed based on pairwise contacts. Contact maps

were generated for p53TAD and Pup averaged over all MD trajectories and pairwise contacts

that have occupancies larger than 0.2 visualized as separate graphs (Fig 4E and 4F). Instanta-

neous clusters can belong to such larger graphs as exemplified by clusters A1.1, A1.2, A1.3 for

p53TAD and clusters B1.1 and B1.2 for Pup (Fig 4E and 4F). The dominant clusters are char-

acterized by a mix of hydrogen bonds, salt bridges (e.g., involving Arg65 in cluster A2, Arg8 in

star-like cluster B1.2, and Arg56 in cluster B3), hydrophobic and aromatic interactions (e.g.,

Phe19, Leu22/25/26, and Trp23 in cluster A1). These are consistent with the driving forces

attributed to liquid-liquid phase separation, namely intermolecular contacts among aromatic

residues, [83–85] electrostatic interactions, [86–88] and hydrophobic interactions. [89]

The majority of clusters are linear graphs with few circular sub-graphs leading to the linear

relationship between the number of nodes and number of edges (Fig 6B). Acidic residues tend

to have low cluster participation whereas arginine residues have the highest participation in

both proteins (Fig 5A and 5B). This difference in cluster participation between cationic and

anionic residues is also evident in Fig 5C and 5D. Among the neutral amino acids, those with

larger side chains are more prone to interactions with non-neighboring residues due to their

intrinsically larger distance range. In fact, Pro, Val, Ser, Ala, Gly have the lowest interaction

propensities among neutral residues and among pairs of chemically similar residues, such as

Gln vs. Asn and Leu vs. Val, the larger residue (Gln, Leu) dominates the smaller one (Asn,

Val).

A primary biological function of p53TAD is to negatively regulate p53 by interacting with

the ubiquitin ligases MDM2 and MDMX for the degradation of p53. This interaction is one of

the earliest and best studied interactions between an IDP and a folded protein both by experi-

ment [67–69] and computation. [90] In order to better understand the molecular recognition

mechanism underlying the formation of this complex, a realistic and accurate description of

the free state of p53TAD is of central importance. For MD studies, the choice of the protocol,

especially of the force field and water model, is consequential. A recent unbiased REMD study

of free p53TAD reported the detailed comparison using five different MD force fields all with-

out residue-specific backbone potentials. Based on 1-μs long replicas major differences were

revealed in terms of the structural propensities among them and also with respect to experi-

mental data. [91] An even longer simulation of residues 10–39 of p53TAD for a total length of

1.4 ms analyzed by Markov state models identified substantial populations of β-sheets across

the sequence, [92] a behavior that is at variance with the above mentioned REMD ensembles

[91] as well as with experimental solution NMR data. [67] Along with many other studies, it

shows that force fields need to be chosen following extensive testing to ensure that long trajec-

tories, generated with considerable computational effort, offer the most realistic biophysical

insights about these highly complex, heterogeneous systems.

In addition to forming transient intramolecular contacts, IDPs can also dynamically inter-

act with other IDPs driving the formation of liquid-liquid phase separation. With a rapidly

increasing body of experimental data on LLPS condensates, [9,10,93] all-atom MD simulations

have an important role to play for a mechanistic understanding of emerging phase separation

properties. Since the molecular driving forces of LLPS are the same as for intramolecular IDP

interactions, [94] such as those described here, the optimal accuracy of force fields along with

adequate sampling schemes of the heterogeneous condensate environment will be key for the

quantitative interpretation of experimental data, allowing the prediction of condensate forma-

tion and eventually may open the way for new interventional approaches to actively reprogram

condensates and their properties.

Although a possible role of Pup in LLPS is not known, LLPS involving full-length p53 has

been documented and p53TAD has been implicated in both phase separation and oncogenic
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amyloid aggregation. [76,95] Multivalent electrostatic interactions between the N-terminal

domain, p53TAD, and the C-terminal domain were identified as critical for LLPS, which were

shown to be positively modulated through molecular crowding and negatively modulated by

the addition of DNA and ATP molecules and post-translational modification. It was suggested

that compartmentalization of p53 into the droplets suppresses its transcriptional regulatory

function, while its release from droplets under cellular stress can activate p53. [76] These find-

ings point to the need for the comprehensive characterization of these intermolecular interac-

tions at residue- and atomic-level resolution. The agreement with experiment reported here

clearly suggests that MD methodology has reached a level of accuracy allowing it to make criti-

cal contributions toward this goal.

The results of our study further advance the long-held premise of MD simulations to realis-

tically describe IDP ensembles on their native dynamics time scales toward the better under-

standing of their biophysical properties and biological function. Both IDPs chosen in this

study, p53TAD and Pup, undergo folding upon binding to their protein targets and it will be

interesting to see how the protocol will perform for IDPs that do not fold when interacting

with other proteins. For both p53TAD and Pup, the use of REMD allows the adequate sam-

pling of conformational space for the generation of a representative set of initial structures that

are then subjected to long, continuous MD simulations. The close agreement found for the

extendedness of the simulated IDPs with experiment and polymer theory suggests an appro-

priate balance between the ff99SBnmr2 force field and the TIP4P-D water model at the global

scale. It favorably complements the authentic IDP behavior achieved by this protocol on the

local scale in terms of its compliance at the individual residue level with coil libraries, scalar

couplings, and chemical shifts. In addition to the realistic modeling of ensemble properties,

our protocol also reproduces motional amplitudes and time scales encoded in quantitative

NMR spin relaxation data with near experimental accuracy suggesting that the dominant min-

ima of the free energy surface together with their many low-lying transition states are realisti-

cally captured by this comprehensive computational framework. These results prompted a

more detailed analysis of short-lived inter-residue interactions, which was achieved by graph

theory revealing characteristic inter-residue contact patterns and the extraction of residue-

type specific interaction propensities. The realistic IDP conformational dynamics model

achieved by the protocol described here advances our increasingly mechanistic and predictive

understanding of IDPs along with their interactions and binding properties with ordered and

disordered molecular targets ranging from regulatory pathways to emerging LLPS

phenomena.

Methods

Molecular dynamics simulations

Fully extended structures of p53TAD and Pup were prepared using the LEaP program in

AmberTools16. [96] After equilibration, they were used to run replica-exchange MD (REMD)

simulations for the sampling of conformational space (36 replicas for each IDP covering a tem-

perature range from 298–353 K for p53TAD and 298–365 K for Pup, see S1 Table) with each

replica being 1 μs of length. Exchange was attempted every 10 ps and the exchange probability

was about 0.3. For each IDP, 10 structures were randomly selected from the room-temperature

(298 K) REMD ensemble and used as initial structures to run free MD simulations for 1 μs in

the NPT ensemble at 300 K and 1 atm. The protein force field and water model used in all sim-

ulations were AMBER ff99SBnmr2 and TIP4P-D.

All MD simulations were performed using the GROMACS 2020.2 package. [97] The inte-

gration time step was set to 2 fs with all bond lengths containing hydrogen atoms constrained
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by the LINCS algorithm. Na+ or Cl- ions were added to neutralize the total charge of the sys-

tem. A 10 Å cutoff was used for all van der Waals and electrostatic interactions. Particle-mesh

Ewald summation with a grid spacing of 1.2 Å was used to calculate long-range electrostatic

interactions. A cubic simulation box extending 8 Å from the protein surface in all three dimen-

sions was used. Energy minimization was performed using the steepest descent algorithm for

50,000 steps. The system was simulated for 100 ps at constant temperature and constant vol-

ume with all protein heavy atoms positionally fixed. The pressure was then coupled to 1 atm

and the system was simulated for another 100 ps. The final production run of 1 μs length was

performed in the NPT ensemble at 300 K and 1 atm. For simulation details, see S1 Table.

Radius of gyration tensor calculations and derived quantities

In order to map the global shape of p53TAD and Pup conformers, radius of gyration tensors

were computed as 3×3 matrices S from each snapshot of the room-temperature REMD ensem-

ble and the free MD simulations as follows: [98]

Sab ¼
1

2N2

XN

i;j¼1

ðrðiÞ
a
� rðjÞ

a
ÞðrðiÞb � rðjÞb Þ ð2Þ

where rðiÞaðbÞ is cartesian coordinate α (β) (= x, y, z) of atom i in the coordinate system that has

its origin in the center of mass of the molecule. Diagonalization of S yields three non-negative

eigenvalues 0�λ1�λ2�λ3 from which the radius of gyration Rg is obtained, Rg = (λ1+λ2+λ3)1/2,

the asphericity A, [98,99]

A ¼
ðl3 � l2Þ

2
þ ðl3 � l1Þ

2
þ ðl2 � l1Þ

2

2ðl3 þ l2 þ l1Þ
2

ð3Þ

and the prolateness P, [100]

P ¼
ð2l3 � l2 � l1Þð2l2 � l3 � l1Þð2l1 � l3 � l2Þ

2ðl
2

3
þ l

2

2
þ l

2

1
� l3l2 � l3l1 � l2l1Þ

3=2
ð4Þ

The asphericity measures the degree to which the three axis lengths of the ellipsoid of iner-

tia (eigenvalues) are equal, whereas the prolateness P indicates whether the largest or smallest

axis length is closer to the middle axis length. P takes values between -1 and 1, quantifying the

transition from oblate to prolate shapes. Normalized time-correlation functions of Rg(t), made

offset-free, were computed according to

CRgðtÞ ¼< ðRgðtÞ� < Rg >ÞðRgðtþ tÞ� < Rg >Þ>t= < ðRgðtÞ� < Rg >Þ
2
>t ð5Þ

as an average over all 1-μs MD trajectories.

According to polymer theory, for an unfolded polymer the ensemble-averaged Rg scales

with the number of residues N as [62,77]

< Rg >¼ r0N
n ð6Þ

where ρ0 is a constant reflecting the average size of a residue and the Flory exponent ν deter-

mines the overall compactness of the polymer serving as a reference.

Back-calculation of R1, R2 relaxation rates

For IDPs, the normalized time-autocorrelation function C(t) of the lattice part of the spin-

relaxation active magnetic dipole-dipole interaction cannot be factorized into an overall
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tumbling part and an internal dynamics part. Rather, we compute the full C(t) directly from an

MD trajectory using the second-order Legendre polynomial:

C tð Þ ¼
1

2
h3½eðtÞeðtþ tÞ�2 � 1i ð7Þ

where e(t) is the unit vector defining the 15N–1H bond orientation whereby snapshots were

not aligned with respect to a reference snapshot. The angular brackets indicate averaging

from time τ = 0 to TMD−t, where TMD is the total trajectory length. The calculation of C(t)
was efficiently performed by the fast Fourier transform (FFT) using the Wiener–Khinchin

theorem. For acceptable statistical convergence, the analysis of C(t) was limited to its initial

portion from t = 0—TMD /3. Next, a multiexponential decay function was fitted to C(t):

[101]

CðtÞ ¼
P6

i¼1
Aie

� t=ti ð8Þ

where Ai and τi are the best fitting parameters subject to the conditions:

P6

i¼1
Ai ¼ 1 Ai � 0; ti � 0 ð9Þ

The spectral density function J(ω) can be then analytically obtained via Fourier transforma-

tion of C(t):

J oð Þ ¼ 2
R1

0
CðtÞcos ðtÞdt ¼

P6

i¼1

2Aiti

1þ ðotiÞ
2

ð10Þ

NMR spin relaxation parameters R1 and R2 were then computed using the standard expres-

sions: [102–105]

R1 ¼ d00½3JðoNÞ þ JðoH � oNÞ þ 6JðoH þ oNÞ� þ c00o
2

NJðoNÞ ð11Þ

R2 ¼
1

2
d00 4Jð0Þ þ 3JðoNÞ þ JðoH � oNÞ þ 6JðoHÞ þ 6JðoH þ oNÞ½ �

þ
1

6
c00o

2

N 4J 0ð Þ þ 3J oNð Þ½ � ð12Þ

where d00 ¼
1

20

m0

4p

� �2 h
2p

� �2
g2
Hg

2
Nhr

� 3
NHi

2
and c00 ¼

1

15
Ds2. μ0 is the permeability of vacuum, h is

Plank’s constant, γH and γN are the gyromagnetic ratios of 1H and 15N, and rNH = 1.02 Å is the

backbone N-H bond length. The 15N chemical shift anisotropy was set to Δσ = -160 ppm.

Analysis of inter-residue contacts and residue clusters by graph theory

Contact analysis was performed on all snapshots of the MD simulations of both p53TAD and

Pup. A contact is considered formed when the nearest distance between atoms from two dif-

ferent residues is smaller than 4 Å. First-neighbor contacts (between residues i,i+1), and sec-

ond-neighbor contacts (between residues i,i+2) were excluded since they are present for most

residues. For each residue in p53TAD and Pup, the total number of contacts formed by a par-

ticular residue is determined and normalized by the number of MD snapshots. Each snapshot

was converted to a graph where residues are represented as nodes and contacts between two

residues are represented as edges between them. The initial graph was then decomposed into a

maximal number of disconnected graph components called clusters, i.e. there is no edge

between any node in the cluster and any node outside the cluster. The size of a cluster corre-

sponds to the number of its nodes.
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Validation: Lei Yu.

Visualization: Lei Yu.

Writing – original draft: Lei Yu, Rafael Brüschweiler.
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