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Abstract

Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous 
system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume ad-
justment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume 
regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) 
drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; 
and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, 
fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relation-
ship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this 
review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and 
will subsequently introduce functions that were recently discovered such as CSF production and absorp-
tion, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and 
drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will 
summarize future challenges in research. This review includes articles published up to February 2016. 
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History of CSF Discovery

Edwin Smith’s surgical papyrus is a medical docu-
ment from around the 17th century BC and is well 
known for its description of cerebrospinal fluid 
(CSF). It describes 48 cases, and the sixth case refers 
to a patient with a head injury due to a fight. This 
particular case contains a description of a commi-
nuted skull fracture followed by an explanation of 
fluid outflow from a tear in the membrane (dura 
mater) that covers the occipital region of the brain. 
This portrayal of fluid flowing out from the occipital 
region is considered to be the first description of 
CSF. Later, great Greek scholars such as Hippocrates 
and Herophilus studied the structure of the brain, 
although direct descriptions of CSF are not found. 
Furthermore, although great scholars such as  

Herophilus, Galen, da Vinci, Vesalius, Varolius, 
Vieussens, Ruysch, Pacchioni, Monro, Sylvius, and 
Luschka presented anatomical findings of the ventricles 
and subarachnoid space, the existence of CSF was 
not known for some time. This is postulated to be 
because attention was not focused on the presence 
of fluid that fills the ventricles and subarachnoid 
space and because CSF had most likely leaked 
out along with blood when cervical decapitation 
was performed during autopsy or dissection.1) For 
detailed descriptions of these historical accounts of 
CSF, starting with Edwin Smith’s surgical papyrus, 
refer to the textbook by Deisenhammer.2)

Subsequently, Cotugno,3) Swedenborg,4) and vonHaller5) 
described CSF in a systematic manner (Fig. 1). 
Cotugno, an Italian anatomist from Naples, observed 
the presence of water (“liquor cotunnii”) around 
the ventricles and the spinal cord by conducting 
20 autopsies. Another notable observation he made Received January 20, 2016; Accepted March 20, 2016
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Fig. 1  a: Albrecht von Haller (1708–1777) is a Swiss anatomist and physiologist. His book, Primae lineae physi-
ologiae in usum praelectionum academicarum. Gottingae: A. Vandenhoeck (1747), is shown. Von Haller, who was 
given credit for the discovery of cerebrospinal fluid (CSF) by Domenico Cotugno, stated interesting anatomical find-
ings including the observation that the consistency of CSF increases after death (Public domain). b: Domenico Felice 
Antonio Cotugno (1736–1822) is a Neapolitan anatomist. His book, De ischiade nervosa commentarius. Viennae: 
Apud Rudolphum Gräffer (1770), is shown. Cotugno reported that liquid is present and air bubbles are absent at 
the meninges when it is incised and opened carefully. Therefore, Cotugno postulated that the presence of CSF at 
the spinal cord and brain surface may have been overlooked with the conventional cervical decapitation method.1) 
Furthermore, Cotugno also confirmed the outflow of liquid when a drain is placed in the lumbar sac of a cadaver 
in the standing position. A notable aspect of the work by Cotugno is that he proved the presence of CSF in both 
the cranial cavity and the spinal cavity (Public domain). c: Emanuel Swedenborg (1688–1772) is an anatomist with 
a degree in mining engineering. Swedenborg described CSF using terms such as “spirituous lymph” and “highly 
gifted juice.” His book, The Cerebrum and Its Parts. London: James Speirs (1882), is shown (Public domain).
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was that the brain decreases in size and the rela-
tive volume of water increases with increasing age. 
These anatomical findings were summarized in 
“De Ischiade Nervosa Commentarius,” which was 
published in Latin in 1764 in Naples3) and in English 
in 1775 in London.1,6,7) Many researchers consider 
the discovery of CSF to be the work of Cotugno. 
However, it should be noted that Cotugno himself 
gave credit to von Haller, who we introduce next, 
for the discovery of CSF.2) von Haller was a Swiss 
physiologist, who presented a revolutionary article 
in 1747 that described that CSF is secreted within 
the ventricles and that CSF is absorbed by the veins. 
Swedenborg, who had a unique career, graduated from 
the University of Uppsala and received a degree in 
mining engineering. After working in the coal mines, 
he pursued the field of anatomy in Germany, France, 

and Italy from 1736 to 1740, although the precise 
years are unknown. Swedenborg drafted his work from 
this time period between 1741 and 1744; however, 
because he was a mining engineer, he was not able 
to meet a medical publisher, and his manuscript 
was abandoned for 150 years until its discovery in 
Stockholm. In 1882, it was finally published as “The 
Brain: Considered Anatomically, Physiologically and 
Philosophically” (translated and edited by RL Tafel) 
in London.4,8) Since the first academic description 
of CSF by these scientists, many researchers have 
studied the physiology of CSF within the central 
nervous system. The first appearance of the term 
“cerebrospinal fluid” in published literature is “Le 
liquid cérébro-spinal” in a French document written 
by Magendie in 18429) (Fig. 2). This term was used 
to describe fluid in the ventricles and subarachnoid 

Fig. 2  The front cover (left) and part of page 8 (right) of “liquide céphalo-rachidien ou cérébro-spinal” described 
by François Jean Magendie owned by Kyoto University Library are shown. The foramen of Magendie that exists 
at the exit of the fourth ventricle is named after this scientist, who is well known for demonstrating the connec-
tion between the ventricular system and subarachnoid space. However, he is also famous for using the term 
“Le liquid cérébro-spinal” for the first time (red underlined portion in right figure). Photos reprinted with the 
permission of Kyoto University Library.
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et al. and Ames et al. measured the electrolytes 
in the fluid secreted by the choroid plexus and 
compared these values with the serum electrolyte 
concentration to examine the production of CSF.20,21) 
Investigations of the microstructure of the choroid 
plexus led to a variety of conclusions such as 
CSF is passively produced via hydrostatic pres-
sure,22) CSF production is dependent on gradients 
of osmotic and hydrostatic pressures,23) and CSF 
is actively produced independent of hydrostatic 
pressure or colloid osmotic pressure.24) There is a 
well-known study by Welch regarding the amount 
of CSF production in the choroid plexus in which 
the author measured the hematocrit in the artery 
that drains into the choroid plexus and in the vein 
that drains out from the choroid plexus in an animal 
experiment with the goal of measuring the amount 
of CSF production from choroid plexus blood flow 
volume.25) Eventually, for measuring the amount of 
CSF production, methods such as extracorporeal 
perfusion of the choroid plexus26,27) and ventriculo-
cisternal perfusion developed by the Pappenheimer 
group that can measure CSF production and absorption 
at the cerebrospinal cavity28,29) became widespread 
as standard techniques.23,30,31) In recent years, it has 
become feasible to observe the state of the choroid 
plexus, which changes morphologically along with 
the heartbeat, by inserting a micro-video probe into 
the lateral ventricle, and this method has been 
attracting attention as a novel research technique.32)

Milhorat, famous for his studies on the choroid 
plexus,33) had frequently questioned the view that 
the choroid plexus is the sole place in which CSF 
is produced based on the choroid plexus excision 
experiments he carried out in animals.34,35) Further-
more, when examining the overall amount of CSF 
produced in the ventricles and subarachnoid space, 
58.5% of CSF is produced in the extra-ventricular 
CSF space in dogs,30) and 33% of CSF is produced 
at non-choroid plexus structures in rabbits.36) This 
led to the recognition that a considerable amount of 
CSF is produced outside the choroid plexus, and the 
focus on CSF production eventually shifted to non-
choroid plexus sites.35,37) Hammock et al. reported 
that CSF production and composition do not change 
when the choroid plexus is excised from humans and 
monkeys,38) and Tamburrini et al. reported an insuf-
ficient decrease in CSF production with endoscopic 
bilateral choroid plexus cauterization.39) Milhorat,34) 
who was already skeptical that the choroid plexus is 
the sole site of CSF production, conducted a bilateral 
plexectomy in a 5-year-old child and found that CSF 
formation did not change after 5 years.40,41) Of course, 
removal of the choroid plexus is incomplete with 
plexectomy of the lateral ventricles alone because the 

space and has been translated into various languages 
as “cerebrospinal fluid,” which has subsequently 
become established as a medical term.

Short summary
1.	�E dwin Smith’s surgical papyrus is the first 

description of fluid surrounding the brain that 
is thought to be CSF. 

2.	� von Haller first described the existence of CSF 
systematically.

3.	�T he term “cerebrospinal fluid” first appears in 
a document written by Magendie.

CSF Is Also Produced by Structures 
Other than the Choroid Plexus

The discovery of the choroid plexus by Galen and 
Vesalius10,11) naturally led to investigations of the 
choroid plexus as the production site of CSF, because 
choroid plexus protrusion is observed mostly at 
the ventricles, and some protrudes from the fourth 
ventricle into the subarachnoid space at the foramen 
of Luschka. Willis demonstrated that this choroid 
plexus displays a glandular structure,12) and Davson 
et al. concluded that this structure is ideal for CSF 
production.13) Later, Dandy et al. demonstrated in 
dogs that ventricular dilatation does not occur when 
the foramen of Monro is blocked and when the 
choroid plexus is excised from the lateral ventricle, 
but dilatation is observed on the side in which the 
choroid plexus is preserved, demonstrating that the 
choroid plexus is the site of CSF production.14,15) 
However, Hassin et al. contradicted this experiment 
conducted by Dandy et al. and stated from an early 
stage that CSF is produced by structures other than 
the choroid plexus.16) It is also important to note that 
Hassin considered that an intimate exchange between 
CSF and interstitial fluid occurs and that this plays 
an essential role in maintaining the homeostasis of 
the central nervous system17–19) (Footnote 1).

Next, we will introduce the mechanism of CSF 
production in the choroid plexus. de Rougemont  

At an early stage in 1933, Hassin published a 
radical concept that overturned the established 
theory up to that point regarding the physiology 
of CSF at an early stage in 1933. His article claimed 
that CSF does not circulate, it acts as tissue fluid 
of the brain, it is not produced by the choroid 
plexus, it is not absorbed by the arachnoid gran-
ulation, it eliminates waste products that accom-
pany neural activity, and it is eliminated through 
the perineural space, all of which were farseeing 
observations.19)
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choroid plexus in the third and fourth ventricles still 
remains. However, it has been shown clinically that 
eliminating the majority of choroid plexus function 
does not cure hydrocephalus; thus, this procedure is 
not established as a standard therapeutic method.39) 
The over-production of CSF has been detected in 
hyperplasia of the choroid plexus and in some choroid 
plexus papillomas, and it is therefore necessary to 
specify that, without a doubt, excessive CSF produc-
tion certainly takes place at the choroid plexus.42,43)

We will now focus on the lateral and third 
ventricles where the majority of the choroid plexus 
is present. If CSF produced by the choroid plexus 
is not absorbed within the ventricles, then all CSF 
produced anatomically should flow out from the 
Sylvian aqueduct. To test this hypothesis, Orešković 
et al. placed a cannula in the Sylvian aqueduct of 
cats to observe CSF outflow.44) The authors monitored 
potential CSF outflow from the cannula inserted into 
the Sylvian aqueduct for a long period of time, but 
not a single drop of CSF emerged from the cannula.44) 
They consequently concluded that a balance of CSF 
production and absorption is maintained in the 
lateral and third ventricles.44) While this article by 
Orešković et al. is important, it does not provide the 
mechanism for the onset of obstructive hydrocephalus 
that clinicians frequently experience, indicating that 
their conclusion is still debatable. 

We will now introduce several articles that explored 
non-choroid plexus structures as sites of CSF produc-
tion. Some articles sought out the brain itself as the 
site of CSF production,45,46) whereas others claimed 
CSF production from the cerebral superficial suba-
rachnoid space,37) the perivascular system,47) or the 
pial artery.48) Moreover, a study suggested its produc-
tion by the spinal cord,49) and another has shown 
the presence of ependymal fluid secretion from the 
ependyma of the spinal cord central canal.50) Based 
on these reports, it is difficult at the present time 
to claim the choroid plexus as the sole source of 
CSF production. In addition, the ventriculo-cisternal 
perfusion method that spread due to the report by 
Pappenheimer et al. which was consequently utilized 
in studies investigating CSF production28) has been 
questioned in cat experiments by Maraković et al.51) 
as there are limitations in performing invasive proce-
dures in animals to conduct CSF studies. Moreover, 
this method is invasive in humans, indicating the 
difficulty with its application in humans. In the 
future, studies using different methods are desired. 

Short summary
1.	�T he classical concept in which the choroid plexus 

is the sole production site of CSF has changed 
due to recent studies that have demonstrated 

the existence of other non-choroid plexus sites 
that produce CSF. 

2.	�T he ventriculo-cisternal perfusion method 
that became widespread due to the report by 
Pappenheimer et al. is being questioned at the 
present time for its interpretation. 

3.	�I n obstructive hydrocephalus, the ventricles 
dilate above the obstruction site. However, if the 
balance between CSF production and absorp-
tion is maintained within the ventricles, then 
obstructive hydrocephalus does not explain the 
mechanism of ventricle dilatation. 

CSF Is Also Absorbed by Structures Other 
than Arachnoid Granulation Or villi 

In the rather unique article by Milhorat et al., CSF 
absorption by the choroid plexus, which is normally 
considered to be the CSF production site, was 
suggested in eight patients with hydrocephalus.52) 
However, Wislocki et al. experimentally disproved 
CSF absorption by the choroid plexus,53) and addi-
tional experiments regarding CSF absorption by 
the choroid plexus were therefore not conducted. 

Key et al. published an extremely famous article 
in 1875 showing that CSF is absorbed by the arach-
noid granulation or villi (Figs. 3, 4).54) Many classic 
textbooks cited this particular article, and for a long 
time thereafter it was believed that the arachnoid 
granulation or villi absorbs CSF.55–59) Certainly, the 
unique shape of the arachnoid villus in which it 
protrudes into the superior sagittal sinus from the 
subarachnoid space facilitates its interpretation as a 
pathway where CSF in the cerebral superficial suba-
rachnoid space is absorbed by the venous system.60) 
However, there have been objections against the work 
by Key et al. because the pressure in which colored 
gelatin with soluble Berlin blue was injected into 
the subarachnoid space of a cadaver was high at 60 
mmHg, and changes in arachnoid villus morphology 
may have occurred because the dye was injected 
in a non-physiological condition.61) Later, using 
radioisotopes (RIs) in an animal experiment, Davson  
et al. explained the circulation of CSF from the lateral 
ventricle to the arachnoid granulation or villi.62) 
With regard to CSF absorption from the arachnoid 
villi, this process has been demonstrated through 
an association between CSF pressure and venous 
sinus pressure63) and through light microscopic and 
electron microscopic observations.47,60,64–67) However, 
there are reports regarding the arachnoid granulation 
or villus, which protrudes into the lateral lacunae 
of the superior sagittal sinus, suggesting that open 
channels of communication are present between the 
CSF and blood through the arachnoid villi,68) that 
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CSF communication occurs through its extracellular 
space,60,66) that CSF passes through the arachnoid 
villi via a one-way valve mechanism,69) and that 
the arachnoid villi are covered by endothelium and 
do not allow free fluid passage,70) indicating that a 
histological consensus has yet to be attained. It is 
important to note here that the human arachnoid 
granulation or villus is more developed compared 
to the rat arachnoid granulation or villus71) and that 
interspecies differences should be taken into consid-
eration when interpreting the experimental results.

We will now shift our focus to the histological 
investigations that were conducted to study the 

human arachnoid villi. An interesting observation 
from studies in humans that investigated arachnoid 
granulation modifications that occur along with 
development is that although some researchers oppose 
this idea,72) the arachnoid granulation does not exist 
during prenatal and neonatal periods.73,74) If this was 
true, it is necessary to ascertain a CSF absorption 
route other than the arachnoid granulation that exists 
around the venous sinus during the fetal to neonatal 
stages.75) Aside from the venous system absorption 
described later, lymphatic drainage is considered to 
function earlier than the arachnoid granulation.76)

With regard to absorption from structures other 
than the arachnoid villi or granulation, there is 
indirect evidence from magnetic resonance imaging 
(MRI) that during childhood CSF is absorbed from 
capillaries due to hydrostatic pressure.77) On an 
experimental level, Bowsher administered radioac-
tive feline serum protein into the CSF space and 
found that CSF migrates not only via the arachnoid 
granulation, but also to the pia mater capillaries in 
the brain and spinal cord.78)

Regarding CSF absorption at sites other than 
the areas around the venous sinuses, it has been 
reported that the compositions of aqueous humor 
and CSF closely resemble each other79) and that 
the perineural olfactory sheath is an important site 
of CSF outflow.80,81) Some have also reported that 
the areas around the optic nerve and retro-orbital 
tissue are involved in the absorption of CSF.82–85) 
It is interesting that the article by Key et al. that 
drew attention for describing CSF absorption by 
the arachnoid villi also describes the absorption of 
CSF from these retro-orbital tissues.54) In addition, 
Manzo et al. demonstrated in rabbit experiments 
that CSF is absorbed by the inner ear.86)

We will now discuss the absorption of CSF by 
the spinal canal. There are reports that discussed 
CSF absorption by the spinal canal49,87–89) and by the 
spinal nerve root.90,91) There are also reports that 
stated the presence of the arachnoid villi or granula-
tion in the vicinity of the spinal nerve root92,93) and 
suggested that CSF is absorbed here.87) Moreover, fluid 
movement in the perivascular space (Virchow-Robin 
space) of the spinal cord94) has been demonstrated. 
Pollay stated that the spinal arachnoid granula-
tion plays an auxiliary role when the intracranial 
arachnoid granulation becomes non-functional,76) 
and Weed reported that CSF absorption from the 
cranial subarachnoid space is faster than that from 
the spinal subarachnoid space.95) The above reports 
primarily explored the migration of CSF into the 
venous blood.

If the arachnoid villi, which are located at the 
convexity in the parietal region as a continuation 

Fig. 3  The front cover of Key A, Retzius G. Studien in 
der anatomie des nervensystems und des bindegewebes. 
Stockholm: Norstedt & Söner (1875) owned by Niigata 
University Library is shown. This article is always refer-
enced when cerebrospinal fluid (CSF) absorption from the 
arachnoid granulation or villi is described. The detailed 
illustrations of the cerebral superficial subarachnoid space 
and Virchow-Robin space are key characteristics of this 
article. There are illustrations in which CSF eliminated 
from the subarachnoid space is present in the retro-orbital 
tissue and cervical lymphatic system, and there are also 
descriptions of anatomical findings that are widely sugges-
tive of CSF absorption. Images of the copies are taken 
with the permission of Niigata University Library. 
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intracranial pressure.96) In addition, the discovery 
of red blood cells in the arachnoid granulation 
channels after subarachnoid hemorrhage confirms a 
role for these channels in CSF outflow in adults.97,98) 
Thus, the association between CSF absorption and 
the arachnoid villi cannot be completely rejected.

Next, we will shift our focus to the associa-
tion between CSF and the lymphatic system. The 

of arachnoid tissue, have minimal involvement in 
CSF absorption, then it would be understood as a 
simple anatomical structure that is suspended in 
the brain in the perpendicular direction. The role 
of the arachnoid villi in CSF absorption may be 
minor, although there is an important article by 
Kida et al. who stated that the arachnoid villi are 
responsible for CSF absorption in a state of increased 

Fig. 4  Tafel XXIX Figure 4 (upper panel) and Tafel XXVIII Figure 2 (lower panel) of the first volume of “Studien 
in der anatomie des nervensystems und des bindegewebes. Stockholm: Norstedt & Söner (1875) by Key A, Retzius 
G. owned by Niigata University Library are shown. Detailed figures of the arachnoid villi that protrude from the 
subarachnoid space are depicted. Images of copies are taken with the permission of Niigata University Library.
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article by Key et al., which proved absorption by 
the arachnoid granulation or villi and CSF migra-
tion to retro-orbital tissues, also appears here, as it 
clearly demonstrated the migration of dye injected 
into the subarachnoid space to the cervical lymph 
node.54) Schwalbe injected Berlin blue into the dog 
subarachnoid space and found that the lymphatic 
system is an important pathway that absorbs 
CSF.99) Love et al. reported that the lymph flow 
increases and the protein concentration in the lymph 
decreases when artificial CSF is injected into the 
cisterna magna,100) and Hasuo et al. reported that 
the lymph flow increases when the intracranial 
pressure rises,101) indicating an indirect association 
between lymph and CSF absorption. Bradbury et al. 
injected 125I- or 131I-albumin into the ventricles and 
caudate nucleus and found that there are drainage 
pathways into the cervical lymphatic vessels from 
the Virchow-Robin space and perivascular spaces 
through the subarachnoid space and also from the 
olfactory lobe through the submucous space of the 
nasal cavity.102–104) McComb et al. used 125I-albumin 
in cats to show that CSF drains into the lymphatic 
system both under normal pressure and augmented 
intracranial pressure conditions.105) Furthermore, 
Mortensen and Sullivan visually portrayed in a dog 
experiment that a contrast agent in the CSF migrates 
to the cervical lymphatic vessels.106) Mathieu et al. 
reported non-invasive in vivo hyperspectral imaging 
to identify the CSF lymphatic drainage system.107) 
Later, many reports proved the migration of CSF 
into the lymphatic system through experiments 
using dye, contrast agents, and RI. A pathway in 
which CSF re-appears in the lymphatic system 
is unlikely once it migrates from the arachnoid 
granulation or villi to the venous system. For this 
reason, a pathway that has been attracting atten-
tion in recent years is one in which CSF reaches 
the nasal mucosa from the cribriform plate through 
tissue around the olfactory nerve and subsequently 
migrates to the cervical lymph node.108) Recently, 
Johnston et al. injected microfil into the cisterna 
magna of sheep, pigs, rabbits, rats, mice, and human 
cadavers and demonstrated that the microfil migrates 
to the olfactory bulb and cribriform plate in all 
these mammals.109) Moreover, Di Chiro et al., who 
studied CSF behavior by administering an RI tracer 
into the CSF space,110) injected gadolinium contrast 
agent into the cisterna magna of dogs and found on 
MRI that the contrast agent aggregates in the nasal 
mucosa.111) Furthermore, an animal experiment, 
albeit a paradoxical one, has demonstrated that the 
prelymphatic space expands and cerebral edema 
develops when the cervical lymphatic vessels are 
ligated in cats and rabbits.112) Using an analytical 

modeling approach, Fard et al. showed that CSF is 
primarily absorbed by the lymphatic system and that 
impairment in the lymphatic system induces high-
pressure hydrocephalus, emphasizing the importance 
of the lymphatic system as an absorption route of 
CSF.113) In addition, a study mentioned the presence 
of a link between the spinal cord subarachnoid 
space and the lymphatic system.114) Although CSF 
migration has been investigated carefully in other 
cranial nerves, it appears that except for the olfactory 
nerve, these nerves have minimal involvement.76)

CSF movement in the subarachnoid space and 
ventricles, which are the CSF reservoirs, has been 
considered to follow a pathway in which CSF 
produced by the choroid plexus descends the 
ventricular system of the brain and drains into 
the subarachnoid space via the fourth ventricle 
exit, ultimately reaching the arachnoid granulation 
or villi for absorption. However, recent research 
progress has illuminated different views. Greitz 
modified the traditional interpretation of radio-
nuclide cisternography and negated the bulk flow 
theory, which states that CSF ultimately reaches the 
arachnoid villi for absorption.28,115) He furthermore 
concluded that CSF is mixed through pulsatile 
flow, is diluted with newly secreted CSF from the 
ventricular system, and is ultimately absorbed by 
the blood vessels. Recently published MRI analyses 
of CSF movement also refuted the unidirectionality 
of CSF and demonstrated a repetition of stirring and 
spreading or oscillating within reservoirs such as 
the ventricles and subarachnoid space.116–127)

In other words, several different views regarding the 
absorption of CSF were published. These included: 
the opinion that lymphatic drainage is the primary 
pathway for CSF absorption;128) an explanation in a 
review by Pollay that both the arachnoid granula-
tion or villi and lymphatic system are involved in 
CSF absorption with a comparable balance;76) the 
observation that 40–48% of the CSF in the cranial 
compartment drains into the extracranial lymphatics 
according to experiments in sheep conducted by 
Boulton et al.;129) an explanation that the arachnoid 
granulation or villi play an essential role in CSF 
absorption and that the lymphatic system is an 
accessory pathway that supplements the arachnoid 
granulation or villi according to a review by Weed;95) 
and a view by Courtice et al. that very little CSF 
drains into the lymphatic system in experimental 
rabbits.130) However, Grzybowski et al. proved that 
fluid passage is observed when harvested human 
arachnoid villi are perfused and subsequently exam-
ined morphologically with electron microscopy,64) 
and furthermore, Welch et al. conducted a perfusion 
experiment of monkey arachnoid villi and concluded 
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that substances smaller than erythrocytes can pass 
through the arachnoid villi.131) Thus, the results from 
these experiments do not completely disprove CSF 
absorption by the arachnoid villi. In animal experi-
ments, it appears that the ratio of arachnoid granula-
tion or villi to lymphatic routes for CSF absorption 
differs depending on the experimental method and 
species used, and a consensus has yet to be reached. 

 The next question is: is the nasal mucosa the only 
route in which CSF and interstitial fluid reach the 
cervical lymph node? The lymphatic system is present 
in every part of the body and plays an essential role 
in transporting immune response substances.132–134) 
For many years it was considered that the brain 
does not contain lymphatic vessels and that it is 
a special organ that is isolated from the systemic 
lymphatic system. Because CSF and interstitial fluid 
travel freely, it was considered that interstitial fluid 
and CSF, rather than lymphatic vessels, played a 
similar role as lymph to transport immune response 

substances in the brain. Although the nasal mucosa 
pathway is a well-known route in which CSF drains 
into the lymphatic system, recently, the presence of 
the lymphatic system was discovered in the dura 
mater and has been attracting interest. In 2015, while 
the Kipnis group was exploring pathways in which 
T cells circulate within the central nervous system, 
they discovered an area where immune cells aggre-
gated around the venous sinus in the dura mater 
of mice, and conducted an analysis and provided 
an explanation using markers such as lymphatic 
endothelial markers.135) They subsequently named 
these luminal structures “meningeal lymphatic 
vessels” and demonstrated that these vessels connect 
to the cervical lymphatic system. Interestingly, they 
also noted that a similar tissue is found around the 
venous sinus of the dura mater in humans and that 
additional studies are necessary.135) The existence 
of lymphatic drainage has been postulated for some 
time, and an article by Kida et al. in 1993 described 
that the “CSF drains directly from the subarachnoid 
space into nasal lymphatics in the rat” and presented 
a figure that depicts “dural lymphatics” together 
with the olfactory pathway, which is worth noting 
(in Fig. 5: “Anatomy, histology and immunological 
significance”).128) Surprisingly, according to a report 
from Bucchieri et al.,136) the presence of lymphatics 
in human dura mater had already been described by 
Mascagni (1787) in “Vasorum lymphaticorum corporis 
humani historia et ichnographia.”137) However, because 
the dura mater arises to direct and guide the skull, 
some may consider it no wonder if the lymphatic 
system exists in the dura mater. Louveau et al. 
injected fluorescent tracer dye into the ventricles 
and demonstrated its appearance in the meningeal 
lymphatic vessels.135) Likewise, in 2015, Aspelund 
et al. discovered a similar structure in mice with 
findings that dural lymphatic vessels are found 
extensively at the base of the skull and penetrate the 
base of the skull along with the cranial nerves, and 
that tracers administered into the brain parenchyma 
exit into the dural lymphatic vessels.138) Thus, it is 
suggested that CSF reaches the meningeal lymphatic 
vessels through some sort of pathway; however, the 
precise mechanism of this pathway is yet unknown. 
Perhaps, because meningeal lymphatic vessels exist 
near the venous sinus, an anastomosis of the venous 
and lymphatic systems mediates this pathway. Or, 
perhaps CSF drainage into the lymphatic system is 
present around the nerve foramina at the base of the 
skull, similar to the cribriform plate. Although it is 
a fact that lymphatic vessels are absent in the brain 
parenchyma, additional studies regarding meningeal 
lymphatic vessels and the drainage of CSF and inter-
stitial fluid are anticipated.

Fig. 5  Cerebrospinal fluid (CSF) exit pathways from the 
subarachnoid space are shown. The first pathway shows 
absorption by the arachnoid granulation or villi and 
subsequent exit through the venous sinus. The second 
pathway shows CSF migration from the meningeal 
lymphatic vessels to the cervical lymph node. There are 
other routes in which CSF reaches the cervical lymph 
node from the cribriform plate via the nasal mucosa.
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Short summary
1.	� Key et al. indicated the arachnoid granulation 

or villi and retro-orbital tissues as pathways 
for CSF absorption and also showed that dye 
administered into the subarachnoid space reaches 
the cervical lymph node.

2.	� Various locations within the central nervous 
system such as the arachnoid granulation or 
villi, periphery of some cranial nerves including 
the olfactory nerve, spinal nerve root, and capil-
laries of the brain parenchyma are postulated 
as routes for CSF absorption.

3.	�CS F that exits from the subarachnoid space to 
the dura mater and epidural space is known to 
travel to the systemic circulation via the venous 
sinus or to the cervical lymphatic system through 
the nasal mucosa or meningeal lymphatic vessels 
(Fig. 5).

4.	�T he route in which CSF migrates from the 
subarachnoid space to the meningeal lymphatic 
vessel is yet unknown, and further elucidation 
is awaited.

Exchange between Interstitial  
Fluid and CSF

Until now, we have summarized previous works related 
to CSF production and absorption that are historically 
important. But, does CSF, which fills the ventricles 
in the deep brain and the brain surface, and inter-
stitial fluid in the brain parenchyma ever exchange 
substances? And do CSF in the ventricles and CSF 
in the subarachnoid space maintain a completely 
independent existence? If the subarachnoid space 
and ventricles exist as a reservoir of CSF, pathways 
in which CSF moves in and out from this reservoir 
are necessary. Several studies have derived answers 
to these questions. Weller et al. demonstrated a clear 
pathway in which CSF secreted by the ventricles and 
subarachnoid space and interstitial fluid secreted 
by the brain parenchyma, spread through diffusion 
and further with bulk flow, and eventually reach 
the cervical lymph nodes.139) Bradbury and Abbott 
stated that interstitial fluid, which is secreted into the 
extracellular space through the blood-brain barrier, 
mixes with CSF and maintains the balance between 
CSF production and absorption.140,141) It has also been 
reported that interstitial fluid production and bulk 
flow in the brain are profoundly involved in brain 
volume regulation.142) Morphologically, the existence 
of the Virchow-Robin space143,144) has gained interest, 
and the term “Virchow-Robin space” has been used 
synonymously with perivascular space,145–149) periarte-
rial space,150,151) and paravascular space,152–154) although 
these terms are also used distinctly at times. In this 

review, we will use the terms “Virchow-Robin space” 
or “Virchow-Robin space and perivascular spaces” 
(Footnote 2). In 1921, Wislocki et al. injected dye 
into dilated rabbit ventricles and demonstrated that 
the dye migrates from the walls of the ventricles to 
the brain parenchyma and that the granules that have 
taken up the dye are present at the Virchow-Robin 
space and perivascular spaces.53) CSF migration through 
the ependymal layer of the ventricles was proven 
by a tracer study that demonstrated the presence 
of its unrestricted movement in this area,155–159) and 
furthermore Weller et al. stated that the movement 
of interstitial fluid and CSF at the ventricular wall is 
bidirectional.160) Recently, Bedussi et al. demonstrated 
that interstitial fluid from the striatum migrates to the 
ventricles.161) A study that used electron microscopy 
showed that although a tight junction is present between 
ependymal cells, water molecules move through a 
paracellular pathway.162) Brightman and Palay also 
used electron microscopy to discover the ependymal 
movement of water.163,164) In addition, it was shown in 
an animal experiment that edema occurs around the 
ventricles when they dilate due to hydrocephalus.165) 
Furthermore, Naidich et al. used the term “periven-
tricular CSF edema” to describe low density with a 
decreased computed tomography (CT) value around 
the ventricles on CT images, and this later changed to 
“periventricular lucency,” a term that is widely used 
today.166) Weller et al. conducted an animal experiment 
and found with electron microscopy that CSF that 
migrated from the ventricles is eliminated through 
the Virchow-Robin space and perivascular space.167) 
Additionally, there is also a report that demonstrated 
with CT that metrizamide leaks from the ventricles 
into the surrounding areas when the ependymal layer 
ruptures.168) Because CSF freely migrates to the brain 
parenchyma from the ventricular wall, it has also been 
reported that this CSF enters the extracellular space169) 
and that extracellular fluid is equivalent to CSF.170) 
Hassin published in 1924 that CSF communication is 
present at the Virchow-Robin space and perivascular 

The renowned German anatomist Rudolf Virchow 
(1821–1902), known for discovering the Virchow-Robin 
space, made his greatest contribution in the dissec-
tion of the lymphatic system. In particular, he noted 
the relationship between cancer and lymph nodes. 
It should also be acknowledged that he was the first 
to use the terms lymphoma and lymphosarcoma.132) 
Furthermore, it is interesting whether it is coincidental 
that the Virchow-Robin space, named after Virchow, 
acts as an interstitial fluid drainage route in the brain 
and that CSF moving in the Virchow-Robin space is 
eventually connected to the cervical lymph node.
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spaces,18) and Zhang et al. demonstrated with electron 
microscopy that there is a continuity from the human 
pia mater to the Virchow-Robin space and perivascular 
spaces.149) Furthermore, although it has been shown 
with MRI in humans that the Virchow-Robin space 
and perivascular spaces connect with the ventricular 
wall, which is situated deep in the brain,171) it is 
understood by many researchers that these spaces enter 
the cortex from the cerebral superficial subarachnoid 
space together with the artery96,147,149,156,172,173) and that a 
cul-de-sac structure is observed at a certain point after 
entry.172,174) The substance that forms the periphery of 
the Virchow-Robin space is the glial membrane (glia 
limitans), which covers the brain parenchyma.175) The 
basement membrane of the glia joins the outer vascular 
membrane at the deep Virchow-Robin space, and this 
is where the cul-de-sac structure exists.176) The pial 
sheath is present on the outside of the vascular wall 
and migrates to the brain surface to cover the pial 
cells. This migration occurs at the point where the 
blood vessels enter the Virchow-Robin space, and the 
outer layer of the Virchow-Robin space ends here.177) 
Fenestration forms in the pial sheath around the blood 
vessels, and substance transport takes place at this 
location.149) It has been demonstrated in the Virchow-
Robin space that horseradish peroxidase administered 
into the cerebral superficial subarachnoid space is 
taken up by the brain parenchyma and is subsequently 
cleared within 24 hours.178) A separate human study 
has also shown that metrizamide administered into 
the subarachnoid space migrates to the parenchyma of 
the cerebrum and cerebellum.179) These reports indicate 
that CSF not only circulates in the subarachnoid space 
and Virchow-Robin space, but also freely enters and 
exits the brain parenchyma. Yang et al. administered 
tracer into CSF and demonstrated the presence of free 
fluid communication between perivascular CSF and 
interstitial fluid.180) Furthermore, it has been demon-
strated histologically that water movement occurs not 
only in the Virchow-Robin space, but also between the 
subarachnoid space and brain parenchyma via the pia 
mater.181) Recently, fluid motion in the Virchow-Robin 
space and perivascular spaces has gained vast interest, 
and this has led to studies that utilize mathematical 
models.182) This fluid motion in the Virchow-Robin 
space has also been attracting attention as a pathway 
for β-amyloid elimination.153,183–189) In 1968, Földi  
et al. claimed that the perivascular space functions as 
a lymphatic drainage system in the brain.190) In addi-
tion, impairment in peri-arterial drainage is considered 
to be the mechanism of onset of cerebral autosomal 
dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL), and is known to 
be strongly associated with the onset of immuno-
logical diseases as well as age-related changes in the 

brain.151,186,187) Moreover, arterial pulsation is known 
to be profoundly involved in substance movement 
within the Virchow-Robin space and perivascular 
spaces.191) The migration of β-amyloid that has drained 
from the brain parenchyma into the subarachnoid 
space is known to change with age, and it has been 
reported that β-amyloid deposits are observed at the 
Virchow-Robin space and perivascular spaces due 
to age-related weakening of arterial pulsation in 
the perivascular space.187) Furthermore, the intimate 
relationship between glia and the vascular network 
as well as the elimination of substances through 
the Virchow-Robin space is called the “glymphatic 
system” or “garbage truck of the brain” and a review 
concerning the decrease in the function of this system 
due to age and neurodegenerative, neurovascular, and 
neuroinflammatory diseases has been published.192–194)

There are no tight junctions at the pia mater, which 
forms the outside of the brain parenchyma, and it 
has been shown with electron microscopy that water 
molecules freely migrate through this area.195) Regarding 
the behavior of fluid in the extracellular space of the 
brain parenchyma, there are several theories including 
bulk flow in which interstitial fluid motion occurs 
in a unidirectional manner through the intercellular 
space141,196,197) as well as diffusion.198–200) Furthermore, 
studies that used tracers such as 3H-water showed 
the presence of rapid capillary absorption of CSF 
after its migration to the extracellular space.155,185) A 
pathway in which interstitial fluid in the brain paren-
chyma travels to the cervical lymph node through 
the Virchow-Robin space and perivascular spaces 
has been explained using tools such as dye, contrast 
agents, 125I-albumin, and 3H-tritiated diisopropyl-fluo-
rophosphate.190,201–207) Xie et al. presented an interesting 
report in which β-amyloid in interstitial fluid clears 
through the Virchow-Robin space and perivascular 
spaces and increases during sleep.208) Furthermore, 
there is an article that reported the morphology and 
function of the Virchow-Robin space and perivascular 
spaces in association with increasing age of animals, 
and it is interesting that the authors linked such 
morphology and function with the elimination of 
β-amyloid that increases with age.209) In addition, Bulat  
et al. showed that CSF is secreted through capillary 
filtration and absorbed by adjacent microvessels.210) They 
also demonstrated that ventricular dilatation does not 
occur even when the cerebral aqueduct of animals is 
blocked and that the balance between CSF production 
and absorption in the ventricles is maintained. On the 
other hand, a tracer study that showed CSF migration 
from the subarachnoid space to the brain parenchyma 
via the Virchow-Robin space and perivascular spaces 
demonstrated the differences in the time required to 
migrate to the brain parenchyma based on differences 
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in molecular weight.153) This study also demonstrated 
that once CSF reaches this point, it can freely enter 
and exit the extracellular space from the ependyma and 
subarachnoid space, and also that there is a pathway 
in which CSF drains from the brain parenchyma into 
the lymphatic system. Furthermore, it is also interesting 
that cerebrovascular pulsation induces fluid move-
ment in the Virchow-Robin space and perivascular 
spaces and plays an important role in interstitial fluid 
exchange.152) A similar study has also explored the 
association between fluid movement and the arteries 
in the Virchow-Robin space and perivascular spaces 
of the spinal cord.211) CSF that saturates the tissues 
of the central nervous system frequently exchanges 
substances with interstitial fluid and is subsequently 
eliminated into reservoirs such as the subarachnoid 
space and ventricles. Thus, intimate exchange between 
CSF and interstitial fluid is considered to be essential 

for maintaining the homeostasis of the brain.148,185) 
These works contrast with the traditional textbook 
or review concepts of CSF production and absorp-
tion,55,56,58,59,212–232) and recent reviews describe new 
findings related to this topic. 108,150,233–248)

Short summary
1.	�T he subarachnoid space and ventricles exist 

as a reservoir of CSF and are known to exten-
sively exchange water and substances with the 
surrounding tissue.

2.	�CS F enters the brain parenchyma, mixes with 
interstitial fluid that is produced there, and is 
eliminated into reservoirs such as the subarachnoid 
space and ventricles from the brain parenchyma 
as CSF again (Fig. 6).

3	�T he exchange between CSF and interstitial fluid 
is bidirectional (Fig. 6).

Fig. 6  A schematic diagram of cerebrospinal fluid (CSF) and interstitial fluid exchange among the ventricle, suba-
rachnoid space reservoir, and brain parenchyma is shown. Glia, which covers the neurovascular unit, is located 
at the border of the area in which water enters and exits the brain and spinal cord, and water is exchanged 
at the aquaporin channel of astrocyte foot processes or at other sites through the endothelium via diffusion or 
vesicular transport. Water movement at the ependymal layer, pia mater, and Virchow-Robin space is bidirectional. 
The right cerebral hemisphere has a mixing of interstitial fluid secreted within the brain parenchyma and CSF 
that enters the brain parenchyma, and subsequent drainage from the brain parenchyma into the CSF reservoir 
(subarachnoid space and ventricles). The left cerebral hemisphere shows that CSF penetrates from the ventricles 
and subarachnoid space into the brain parenchyma.
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4.	�T he Virchow-Robin space is an important exit 
route from the slightly deep area of the brain 
parenchyma to the subarachnoid space for 
interstitial fluid and CSF (Fig. 6).

5.	�CS F and interstitial fluid play an important 
role in the exchange of substances in the brain 
parenchyma and are therefore essential for 
maintaining the homeostasis of the brain.

 Water Exchange through the Aqua Pore 
in the Cell Membrane

Agre, a researcher of human erythrocytes, focused 
on a certain unique protein that exists on the cell 
membrane of erythrocytes, overexpressed this protein 
in oocytes of African clawed frogs (Xenopus laevis), 
and found that water permeability is markedly 
enhanced.249) Agre named this protein, a pore that 
is present on the cell membrane and that plays 
an important role in passing water, “aquaporin” 
(AQP).250) It has been believed for a long time that 
a special structure is necessary for water to pass 
through the lipid bilayer of the cell membrane, 
and with the discovery and elucidation of AQP 
studies on the movement of water molecules have 
accelerated dramatically. In 2003, Agre received 
the Nobel Prize in Chemistry for this work. Fig. 7 
shows the structure of AQP.249–253) At the narrowest 
portion of the AQP pore, asparagine/proline/alanine 
(NPA) motifs facilitate water molecules to pass 
through by breaking the hydrogen bond between 
water molecules that come in contact with each 
other252,254–256) (Fig. 8). At least 14 AQPs have been 
discovered to date.257) Some AQPs (AQP-3, AQP-7, 
AQP-9) are known to pass not only water, but also 
other molecules such as glycerol.258) AQP-1, 3, 4, 5, 
8, and 9 are known to exist in the tissues of the 
central nervous system.259–261) Among the AQP family 
members, AQP-1 is known to be highly expressed 
in the choroid plexus,262–264) and AQP is therefore 
considered to be involved in CSF production and 
absorption.265) AQP-4 is widely distributed in the 
brain including the astrocyte foot processes, glia 
limitans, and ependymal and subependymal astro-
cytes, and many researchers therefore have selected 
AQP-4 as the target topic of research.258,260,266–271) 
AQP-4 is present at an important location in which 
interstitial fluid and CSF exchange occurs, and the 
presence of AQP is therefore necessary for water 
exchange to occur between the interstitial fluid and 
CSF cavity.272,273) Although interstitial fluid movement 
is non-specific and slow, water movement through 
AQP exhibits directionality and selectivity and is 
faster compared to interstitial fluid movement.274)  
Thus, AQP-4 plays a key role at the glia and 

ependymal layer where interstitial fluid and CSF 
contact each other272) and facilitates water exchange 
with some degree of selectivity that occurs faster 
than in the brain parenchyma. Recently, it has 
become feasible to visualize the location of AQP-4 
with positron emission tomography, and this has 
been a major advancement for studies that aim to 
ascertain the movement of water that enters and 
exits the brain parenchyma.275) AQP-4 controls 
cell volume by regulating chloride and calcium276) 
and is also involved in potassium clearance after 
neural activity because it coexists with potassium 
channel, indicating that AQP-4 exhibits other neuro-
physiological effects other than a physical role of 
allowing water permeability.277,278) Indeed, AQP-4 is 
responsible for removing metabolites produced by 
neural activity through water permeability, thereby 
greatly contributing to the functional maintenance 
of the brain.153,258,279–282) 

Let us shift our focus to AQP studies conducted 
in various disease states. Peritumoral edema around 
gliomas is known to upregulate AQP-1, and there have 
been studies that endeavored to design treatments for 

Fig. 7  Aquaporins (AQPs) are proteins with a molecular 
weight of 26–30 kDa and are composed of ~250–290 
amino acid residues. AQPs pass through the membrane 
six times in the vicinity of the pore (membrane-spanning) 
and allow water to travel in both directions through 
this pore. Reprinted with permission from Reference309) 
Figure 1. (Zelenina M: Regulation of brain aquaporins. 
Neurochem Int 57: 468–488, 2010).
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peritumoral edema by upregulating AQP-1 via genetic 
modification or directly inhibiting AQP-1.283,284) AQP-4 
knockout mice were created by Ma et al. in 1997.285) 
Subsequently, studies using AQP-4 knockout mice 
in various diseases became popular.278,286–288) There 
is also an article that investigated the relationship 
between cerebral blood flow and AQP and showed 
that the regional cerebral blood flow increases 
when AQP-4 is inhibited.289) In addition, the protec-
tive effect of progesterone may be related to the 
down-regulation of AQP-4 expression in hypoxic 
ischemic brain damage.290) Furthermore, it is also 
interesting that a review discussed the association 
between AQP-4 blockage and heat generated by 
neural activity in relation to the link between blood 
flow and heat diffusion.291) There are also numerous 
studies that used AQP as a therapeutic target.292,293) 
In addition, neuromyelitis optica spectrum disorder 
is an autoimmune disorder of the central nervous 
system characterized by AQP-4 autoantibodies.294–297) 
Regarding the diagnostic significance of AQP-4, there 
is a report that measured anti-AQP-4 antibody in 
the CSF to aid in the diagnosis of neuromyelitis 
optica.296,298) Bloch et al. reported that kaolin-induced 
hydrocephaly dilates the ventricles and augments 

intracranial pressure in AQP-4 null mice but does 
not change ventricular dilatation or intracranial 
pressure in wild-type mice, demonstrating that the 
mechanism of removing excess CSF retention in the 
ventricles is impaired in AQP-4 null mice.299)

In contrast, it has been reported that AQP-4 
deletion mice exhibit less edema after acute water 
intoxication and ischemic stroke, and that the func-
tional prognosis is also favorable.300) Furthermore, 
mice with AQP-4 gene deletion also do not show 
changes in the integrity or morphology of the blood-
brain barrier.301) It has also been reported that AQP-4 
null mice have small ventricles, produce less CSF, 
and exhibit increased water content in the brain.302) 
Recently, based on these contradictory study results 
on AQP, it has become viewed in general that AQP 
does not play an important role under physiologi-
cally normal conditions.280,281)

Short summary
1.	�A QP molecules present on the cell membrane 

play an important role in the passage of water 
through the cell membrane.

2.	�A QP-1 is present in the choroid plexus, and 
AQP-4 is distributed widely in the brain in 
areas such as the astrocyte foot processes, glia 
limitans, and ependymal and subependymal 
astrocytes. These AQPs play a key role in the 
water permeability of CSF and interstitial fluid.

3.	�T he function of AQP differs between physi-
ologically normal and abnormal conditions.

4.	�T he development of diagnostic and therapeutic 
methods targeting AQP has been initiated.

Future Directions

1.	I t is necessary to focus once again on the ventricles, 
and this pertains to classical anatomical observations. 
The interesting shape of the ventricular system is 
visually clear and poses a scientific conundrum. 
The question arises: why is this unique ventricular 
structure, which shares common features with other 
mammals, built in this particular shape and size? 
With this particular shape, CSF and interstitial fluid 
communicate to exchange fluids. Tanycytes and 
microglia form bridges between the ependymal surface 
and the pial membrane, establishing an intimate 
relationship between neurons and endothelial cells. 
The solid lines in Fig. 9 indicate almost the same 
distance from each ventricular surface to the most 
adjacent subarachnoid space throughout the brain. 
Thus, the exchange of CSF and interstitial fluid is 
clearly important. Of particular importance is the 
existence of the distal portion of the Sylvian fissure, 
which is the large subarachnoid space underneath 

Fig. 8  Some aquaporins (AQPs) contain a structure 
called the NPA (asparagine-proline-alanine) motif. The 
center portion of this motif has an hourglass-shaped 
structure, which penetrates through the lipid bilayer. 
Substance transport occurs here. AQP1 only allows water 
to pass through. At this hourglass-shaped portion, the 
diameter is narrowest at approximately 2.8 Å, which 
is the size in which one water molecule can just pass 
through. Water molecules can traverse in both directions 
at this site. Reprinted with the permission from Refer-
ence255) Figure 1. (Badaut J, Lasbennes F, Magistretti PJ, 
Regli L: Aquaporins in brain: distribution, physiology, 
and pathophysiology. J Cereb Blood Flow Metab 22: 
367–378, 2002).



M. Matsumae et al.430

Neurol Med Chir (Tokyo) 56, July, 2016

the frontal and temporal lobes. Without this fissure, 
the distance between the third ventricular wall 
and the nearby subarachnoid space (Fig. 9, dashed 
line) would be much longer than that between the 
other ventricular walls and subarachnoid spaces. As 
shown in Fig. 9, morphological observation shows 
that the Sylvian fissure extends deep between the 
frontal and temporal lobes. However, white matter 
is mostly present between the convexity of the 
subarachnoid space and the lateral ventricular wall, 
whereas the basal ganglia are interposed between 
the Sylvian fissure and the third ventricular wall. 
Generally, water moves more rapidly in the white 

matter than the gray matter. Thus, from the view-
point of water movement, the subarachnoid space 
such as the Sylvian fissure is better positioned to 
more deeply enter the brain parenchyma than the 
subarachnoid space of the convexities. Therefore, 
from the point of view of CSF and interstitial fluid, 
investigation of the rate of water movement in both 
the white and gray matter is a research issue for 
the future. 

Next, we discuss the shape of the rounded ante-
rior horns of the lateral ventricle that extend into 
the frontal lobe. The body of the lateral ventricle 
curves upward from the posterior half of the 
frontal lobe to the parietal and occipital lobes 
in a manner that lifts these lobes. Furthermore, 
the ventricles take a form that slightly raises the 
temporal lobe from the trigone to the temporal 
horn. It is important to anatomically re-examine 
(1) why the ventricles display such a shape so 
that they are in a floating state within the brain 
regardless of the body position and (2) whether or 
not the ventricles are positioned nearly equidistant 
from the subarachnoid space because such form is 
advantageous for substance and fluid exchange in 
the deep white matter.
2.	I t is obviously necessary to consider the differ-
ences in experimental methods and in species 
when examining the results from animal studies. 
For example, with regards to CSF absorption, it is 
thought that the human arachnoid granulation or 
villi are more developed than the rat arachnoid 
granulation, and in contrast, human leptomenin-
geal anastomosis is less developed compared to 
other species. Taking these into consideration, it 
is presumable that the ratios of drainage of CSF 
into the venous system and lymphatic system are 
different among species. Thus, analyses of water 
molecule movements with MRI and CSF movement 
with non-invasive methods such as positron emis-
sion tomography targeting AQP or β-amyloid are 
desired, especially in humans.
3.	T he successful discovery of the meningeal 
lymphatic vessel in 2015 is a major accomplish-
ment. However, the pathway in which CSF in the 
subarachnoid space reaches this meningeal lymphatic 
vessel is unknown, and further analysis including 
its mechanism is anticipated in the future. 
4.	A QP plays a key role in water permeability, 
and is important in the interstitial fluid-CSF 
exchange. However, a consensus regarding its 
role in physiologically normal conditions and in 
physiologically abnormal conditions is desired in 
the future. 
5.	W ith regard to the movement of interstitial fluid 
and CSF, which have gained interest as elimination 

Fig. 9  An axial slice of the cerebrum from a cadaver 
shows that the distance from the subarachnoid space 
to the lateral ventricular wall as well as the distance 
from the Sylvian fissure to the third ventricular wall is 
almost equal in each region (solid lines). Cerebrospinal 
fluid (CSF) and interstitial fluid travel a long distance 
when the distal part of the Sylvian fissure is not present 
between the third ventricle and the convexity of the 
subarachnoid space (dashed line). Reprinted with the 
permission from Reference310) modified Figure 1. [Sato O: 
[Reconsideration of research into cerebrospinal fluid], in 
Arai, H, Ishikawa, M, Mori, E (eds): iNPH: Idiopathic 
Normal Pressure Hydrocephalus. Kyoto, Kinpodo, 2014, 
pp 8–18 (Japanese)].
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routes for heat generated by neural activity and 
metabolites of neural activity, the promotion of studies 
focus not only on CSF exit from the brain, but also 
on entrance of nutrients into the brain parenchyma 
and the subsequent signal transduction, is desired.

Conclusion

Liquid that covers the brain was observed over 
2000 years ago, and von Haller was the first to 
systematically describe its existence. Moreover, the 
widely accepted medical term “cerebrospinal fluid” 
was first used by Magendie. CSF is produced not 
only by the choroid plexus, but also by many other 
non-choroid plexus structures, and is absorbed not 
only by the arachnoid granulation or villi, but also 
by many other non-arachnoid granulation or villus 
structures. Glia, which covers the neurovascular 
unit, is located at the border of the area where 
water enters and exits the brain and spinal cord, 
and water exchange occurs through the endothe-
lium via diffusion or vesicular transport at AQP 
channels on astrocyte foot processes, or at other 
sites. Extensive exchange of CSF and interstitial 
fluid occurs between CSF reservoirs (ventricles 
and subarachnoid space) and the brain paren-
chyma, and this exchange occurs in a bidirectional 
manner. The homeostasis of the central nervous 
system is maintained through CSF and interstitial 
fluid exchange, which facilitates processes such 
as adjustment of cerebrospinal volume, nutrient 
and drug transport, signal transduction, metabo-
lite elimination, and dissipation of heat generated 
by neural activity.303) CSF eliminated from the 
subarachnoid space is known to move out via a 
pathway from the arachnoid granulation or villi 
to the venous system, and via a pathway from the 
meningeal lymphatic vessels within the dura mater 
and where the cranial nerve exits the dura mater 
to the lymphatic system.304) Concerning studies 
on CSF physiology, from anatomical examina-
tions to histological assessments and from studies 
in ventriculo-cisternal perfusion (Pappenheimer 
et al.29)) to dynamic assessment of water with 
MRI,272,305–308) numerous new research results such 
as the discovery of water channels, notably AQP, 
as well as the discovery of a lymphatic drainage 
path that works along with the venous drainage 
path have emerged. Thus, we are diving into new 
territory regarding studies on the homeostasis of 
the central nervous system, primarily of CSF. 
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