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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and
behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry
by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From
a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs
to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial
to understand the alterations in the neural circuits associated with AD-related behavioral and
psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is
prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that
are associated with AD-related behavioral and psychological symptoms, and reviewed studies of
healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural
circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore,
we provide therapeutic implications for targeting neuronal circuits through various therapeutic
approaches and the appropriate timing of treatment for AD.
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1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia in the elderly and is a
significant health problem worldwide. The incidence of AD increases with age, with nearly
35% of 85-year-olds suffering from AD [1,2]. AD has been characterized by the aggregation
and accumulation of amyloid-β (Aβ) and hyperphosphorylated tau. In addition, AD is a
progressive neurodegenerative disease in which cognitive impairment is the main symp-
tom [3]. Moreover, the secondary symptoms are as follows: psychiatric, sensory, and motor
dysfunctions [4,5]. Therefore, AD treatment should inhibit cognitive decline and induce
various clinical symptoms [6]. Based on many theories and hypotheses, many clinical trials
are underway to treat AD. The U.S. Food and Drug Administration has recently approved
an Aβ-binding monoclonal antibody, aducanumab (Aduhelm), through an accelerated
approval pathway [7]. Although aducanumab may be beneficial in reducing in amyloid
plaques in the brains of AD patients, it is not associated with behavioral improvement.
Therefore, definitive treatment for cognitive and behavioral deficits is required.

Neural circuits are the main mediators of various behaviors controlled by the brain,
from simple functions to complex cognitive processes [8]. Interestingly, it is known that
Aβ and tau have been progressively impaired the synapses, neuronal circuits, and neural
networks in the brain with AD [9,10]. Several studies using neural tracing and radiological
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imaging, such as diffusion tensor imaging (DTI) and functional magnetic resonance imag-
ing (fMRI) have shown that neural pathways are altered in AD brains [11–13]. Damage
to neural circuits in the AD brain can result in cognitive impairment, such as memory
deterioration [14]. In addition, it has been suggested that the alterations in neural circuits
and network function due to pathological changes in synaptic plasticity might be associated
with several clinical symptoms, such as sensory and motor dysfunctions [4]. Interestingly,
clinical studies have shown changes in the sensory systems of patients with early-stage
AD, and that these changes take precedence over cognitive impairment [15–17]. From
this perspective, neural circuitry could be a target for treating various symptoms of AD.
Therefore, we selected the brain regions involved in changes in cognition and several
clinical manifestations of AD, and summarized the alteration of efferent pathways from
these AD-associated brain regions.

The challenge for neuroscience is to visualize the essential structural elements of
the brain from the perspective of neural connections related to behaviors [12,18]. For the
visualization of the neural connectivity or network related to behavior, there are three levels
of brain connectivity: macroscale, mesoscale, microscale [19]. The macroscale connectome
anatomically represents inter-area connections between distinct brain regions and shows
the most large-scale connection patterns in the brain. In particular, DTI and fMRI are
widely used to infer structural and functional connections in the living brain [20]. The
microscale connectome represents the level of pre-and post-synaptic connections between
single neurons. Microscale studies use electron and light microscopy to demonstrate neural
connections at the ultrastructural level [21]. The mesoscale connectome represents inter-
cellular connections between different neurons across different brain regions. In addition,
mesoscale connectivity provides a detailed understanding of the cell-type composition of
different brain regions, and the patterns of inputs and outputs that each cell type receives
and forms, respectively [22]. Therefore, the mesoscale connectome can connect information
collected at the level of both macroscale and microscale connectivity. In addition, at the
mesoscale level, both long-range and local connections can be described using a sampling
approach with diverse neuroanatomical tracers that enable whole-brain mapping in a
reasonable time frame across many animals [23].

To understand AD-related cognitive, behavioral, and psychological symptoms, a
precise connection of neural circuits should be examined. Moreover, understanding the
alterations of neural circuits in the brain with AD might provide a better understanding of
possible treatments that substantially affect the progression of AD. This review encompasses
and summarizes recent discoveries in terms of impairments/alterations of neural circuits
in the AD brain. In addition, we discuss various approaches for treating impaired neural
circuits in the brain with AD.

2. Neural Circuits Associated with AD
2.1. Hippocampal Pathways
2.1.1. Hippocampal Pathways in Healthy Brains

The hippocampal formation, which includes CA1-3, the dentate gyrus (DG), and
the subiculum, is one of the major regions of the limbic system [24]. The roles of the
hippocampal formation are well established in cognitive functions, such as learning and
memory [25,26]. In addition, hippocampal formation has been implicated in various
behaviors, such as pain and social behavior [27,28]. The hippocampal formation constitutes
a close connection between subregions and sends projections to various regions of the
brain (Figure 1).

The close connections between the subregions of the hippocampal formation are well
known. The hippocampal CA1 receives input from CA2 and CA3, and projects mainly
to the subiculum [26]. Most projections from CA1/the subiculum connect to higher-
order cortical regions via the entorhinal cortex (EC) [29]. CA2 sends projections to all
hippocampal CA subregions, the DG, and the entorhinal cortex [30]. In contrast to CA1,
which mainly connects to the deep layer of the entorhinal cortex, the projections from CA2
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mostly innervate layer II of the entorhinal cortex [31]. CA3 is known to send projections to
CA1, CA2, and the DG [30,32].
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Figure 1. Schematic diagram of the hippocampal efferent pathways indicating projection patterns
for the target regions: the yellow arrows represent the outputs from CA1; the green arrows in-
dicate the outputs from CA2; the red arrows indicate the outputs from CA3; the purple arrows
indicate the subiculum output; and the solid cyan line shows higher-order pathways. Abbreviations:
AM—anteromedial thalamic nucleus; AON—anterior olfactory nucleus; AV—anteroventral thala-
mic nucleus; BLA—basolateral amygdala; EC—entorhinal cortex; LHA—lateral hypothalamic area;
OFC—orbitofrontal cortex; LS—lateral septal nuclei; MB—mammillary bodies; MS/DB—medial
septum/diagonal band of Broca nuclei; MRN—median raphe nucleus; NAc—nucleus accumbens;
PFC—prefrontal cortex; POR—postrhinal cortex; PRC—perirhinal cortex; PVN—paraventricular
nucleus; RE—nucleus reuniens of the thalamus; RSC—retrosplenial cortex; SNc—substantia nigra
pars compacta; Sub—subiculum; SuM—supramammillary nucleus; VTA—ventral tegmental area.

The hippocampal formation sends output projections to various regions, in addition
to the subregions within the hippocampal formation. The hippocampal formation connects
with cortical areas through several direct or indirect pathways [33]. The hippocampal–
cortical pathway, through the medial/lateral entorhinal cortex, reaches the postrhinal,
perirhinal, orbitofrontal, and retrosplenial cortices [34]. The hippocampal CA1/subiculum
is also known to be directly connected to the medial/lateral prefrontal cortex (PFC) [35–37].
Furthermore, the PFC, receiving glutamatergic projections from CA1/the subiculum, sends
γ-aminobutyric acid (GABA)ergic projections to various regions, including the core of the
NAc, subthalamic nucleus, VTA, and SNc [38]. Hippocampal formation is also connected
to the septal area. All hippocampal CA subregions have been reported to directly output
to the septal area [39,40]. Furthermore, the DG and subiculum also directly innervate
the medial septum/diagonal band of Broca nuclei (MS/DB) [40]. In addition to the areas
mentioned above, the hippocampus also sends projections to the amygdala, thalamus,
and hypothalamus. The connectivity of ventral CA1 with the basolateral amygdala is
the one of the hippocampo-amygdala pathways [41]. The hippocampal formation sends
projections to the anterior thalamic nucleus (ATN), which consists of the anteromedial,
anterodorsal, and anteroventral nuclei [42,43]. The anteroventral thalamic nucleus is
the target region of dorsal CA1/subiculum innervation [44]. In contrast to dorsal CA1,
the output of ventral CA1/the subiculum reaches the anteromedial and anteroventral
nucleus via the medial mammillary body of the hypothalamus [44]. Ventral CA1 projects
to the lateral hypothalamic area (LHA) [45,46]. Hippocampal CA2 projections are sent to
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the paraventricular nuclei and supramammillary nucleus of the hypothalamus [39]. In
addition, it has been proposed that some CA1/subiculum neurons interconnect with the
nucleus reuniens of the thalamus (RE) and constitute the nucleus reuniens–CA1 circuit [47].
Hippocampal formation also projects to the mammillary nuclei, which are a part of the
hypothalamus [48]. CA1/the subiculum innervate the medial mammillary nucleus pars
lateralis, and medial mammillary nucleus pars medialis, of the mammillary body [49].
Neural connections from the hippocampal formation to the mammillary body lead to ATN
through the mammillothalamic tract [43,50]. Hippocampal CA1/the subiculum indirectly
modulate the ventral pallidum, ventral tegmental area (VTA), and substantia nigra pars
compacta (SNc) via glutamatergic projections to the nucleus accumbens (NAc) shell [38]. In
addition, the ventral subiculum has been reported to send direct glutamatergic projections
to the NAc core [51]. Moreover, the hippocampus is related to the olfactory network, and it
has been shown that the dorsoventral region of the hippocampus projects to the olfactory
bulb (OB) and anterior olfactory nucleus (AON) [12,52]. It was confirmed that the AON
received unidirectional synaptic input from CA1 of the hippocampus, unlike other regions
that indirectly received input from the hippocampus [53]. Furthermore, the median raphe
nuclei of the midbrain have also been reported as a target region for hippocampal CA2
innervation [39].

2.1.2. Hippocampal Pathways in the Brains with AD

By examining the frontal hippocampal connectivity of patients with probable AD, it
was demonstrated that the connectivity between the right frontal cortex and hippocampus
was significantly reduced [54]. In addition, patients with early AD showed impairment
of functional connectivity between the right hippocampus and various regions, such as
the medial prefrontal cortex (PFC); ventral anterior and posterior cingulate cortex; right
inferotemporal cortex; right cuneus; left cuneus; and the right superior and middle tempo-
ral gyrus [55]. Specifically, hippocampal diffusivity in early AD for hippocampal output
regions, such as the intrahippocampal region, parahippocampal gyrus, and posterior cin-
gulate cortex, was negatively correlated with 18F-fluorodeoxyglucose uptake [56]. Further-
more, patients with amnestic mild cognitive impairment (MCI) and AD showed decreased
gray matter volume, decreased functional connectivity between the bilateral hippocampus
and the region of interest, and impaired integrity of the fornix body [57]. Overall, the func-
tional connectivity of the right hippocampus was significantly decreased in the early stages
of AD, and the functional connectivity of the bilateral hippocampus reduced as the disease
progressed. Moreover, decreased tyrosine hydroxylase innervation in the subiculum of
a Tg2576 mouse model of AD caused a decrease in glutamatergic transmission from the
dorsal subiculum to the core of the NAc [51]. Disruption of this connectivity can damage
the VTA-hippocampus-NAc loop, which is involved in spatial memory, reward, and the
formation of novelty and persistent memory, thus affecting memory loss and cognitive
impairment in AD patients [58]. Another study providing topographical evidence between
the hippocampus and the septum, using neural tracers in 5XFAD mouse models, reported
that the hippocampo-septal pathway exhibited degeneration at both the early and late
stages of AD [40]. In 4.5-month-old 5XFAD mice compared with WT mice, projections
from the DG/subiculum to the MS were impaired, and 14-month-old 5XFAD mice had
reduced projections leading to the MS in all subregions of hippocampal formation [40].
Furthermore, the functional associations of the long-range CA1 lateral septal nuclei (LS) in-
hibitory circuits have been shown to be reduced in the J20 mouse model of AD [59]. Altered
spike-theta coordination and reduced phase-amplitude coupling between septal-theta and
CA1-theta were observed in a young J20 group compared to a control group, suggesting
damage to the circuitry between CA1 and the LS [59]. Moreover, dendritic loss of CA1 and
basolateral amygdala neurons, and impairment of hippocampus- and amygdala-related
memory, occured in APP/PS1 mice [60]. Given that hippocampo-amygdala interaction
plays a vital role in contextual fear conditioning [61], it could be speculated that alteration
of the hippocampo-amygdala pathway may be involved in the impairment of contextual



Biomedicines 2022, 10, 845 5 of 28

fear conditioning in the AD model [62]. In addition, impairment of hippocampal pathways
to the thalamus and mammillary body in AD can induce significant functional deficits. The
hippocampo-mammillary body pathway is essential for normal memory function [50]. It
has been suggested that the degeneration of projections from the subiculum and fornix to
the mammillary body and ATN may contribute to episodic memory loss in AD [63–65].
Furthermore, impairment of the hippocampo-mammillary body pathway may be a key
contributor to disorders of visuospatial orientation and memory [65]. Since the mammillary
body and thalamus are major members of the Papez circuit and the hippocampus [66],
circuit disconnection due to the impairment of hippocampal pathways can be fatal to
cognitive function. Based on previous studies, we have summarized those impairments
of the hippocampal pathway that occur in AD (Table 1). Unfortunately, few studies have
directly examined the altered efferent pathways in animal models of AD. Further studies
are needed to measure the impairment of individual hippocampal pathways and their
neurobehavioral implications.
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Table 1. Degeneration of the efferent pathways in the brains of AD mouse models.

Regions Models Neural Tracers Findings References

Hippocampal formation
Tg2576 mouse Fast Blue Subiculum → NAc ↓ Decreased glutamatergic transmission

from the subiculum to the NAc core. [51]

5XFAD mice DiI Hippocampal formation → MS ↓ The DG→MS and Sub→MS pathways
was degenerated before cognitive decline. [40]

Septal area

Tg601 mice DTIDTT MS → hippocampus ↓

The connectivity of the septo-hippocampal
pathway in the old (16- to 18-month-old)
mice was reduced compared to healthy

and adult (six- to eight-month-old) mice.

[67]

THY-Tau22 mice FG MS → hippocampus ↓
Innervation from the MS to the

hippocampus decreased in the 5XFAD
mice compared to WT mice.

[68]

J20 mice BDA MS → hippocampus ↓
GABAergic septo-hippocampal connection
was reduced in eight-month-old J20 mice

compared to WT mice.
[69]

VLW mice BDA MS → hippocampus ↓

The GABAergic septo-hippocampal
innervation on parvalbumin-positive

interneurons deteriorated in
two-month-old VLW mice compared to

WT mice.

[70]

5XFAD mice DiI MS → hippocampus ↓
Innervation from the MS to the

hippocampus decreased by about 52% in
the 5XFAD mice compared to WT mice.

[12]

5XFAD mice BDA MS → hippocampal formation ↓
Impairment of the connectivity of the
septo-hippocampal pathway occurred

before cognitive decline.
[40]
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Table 1. Cont.

Regions Models Neural Tracers Findings References

Locus coeruleus 5XFAD mice DiI LC → hippocampus ↓
Innervation from the LC to the

hippocampus decreased by about 69.1% in
the 5XFAD mice compared to WT mice.

[12]

Substantia nigra 5XFAD mice DiI SN → hippocampus ↓
Innervation from the SN to the

hippocampus decreased by about 41.3% in
the 5XFAD mice compared to WT mice.

[12]

Visual area 3xTg mice Cholera toxin beta subunit Retina → superior colliculus ↓

The retino-collicular pathway through
which RGCs reach the terminals in the

superior colliculus, which is the primary
target of RGCs, is impaired in
three-month-old 3xTg mice.

[71]

Olfactory area 5XFAD mice DiI OB → hippocampus ↓
Innervation from the OB to the

hippocampus decreased by about 52% in
the 5XFAD mice compared to WT mice.

[12]

Sub—subiculum; DG—dentate gyrus; DTT—diffusion tensor tractography; DTI—diffusion tensor imaging; GABA—gamma-aminobutyric acid; LC—locus coeruleus; MS—medial
septum; NAc—nucleus accumbens; OB—olfactory bulb; RSg—granular division of retrosplenial cortex; SN—substantia nigra. The right arrow indicates the direction of projection, and
the down arrow indicates decreased connectivity.
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2.2. Septal Pathways
2.2.1. Septal Pathways in Healthy Brains

The septal area is composed of two major regions: the lateral septal nuclei (LS) and
MS/DB [72,73] (Figure 2). The LS are a brain region characterized by an abundance of
GABAergic neurons [74] and are well known for taking input from the hippocampal
formation and sending outputs to the MS/DB [73,75]. In addition, the LS innervate the
hippocampus; hypothalamus; thalamus; midbrain; and CA3 of the ventral hippocampus
and its adjacent regions, the subiculum and the piriform cortex [76,77]. Efferent projections
of the LS reach most of the hypothalamus, such as the median, medial, and lateral preoptic
area; anterior, posterior, dorsomedial, ventromedial, and paraventricular hypothalamic
nucleus; LHA; and mammillary body [77–81]. Moreover, the LS sends its output to parts of
the thalamus, such as the medial habenula, paraventricular thalamus, paratenial nucleus,
and nucleus reuniens [77]. The LS also projects to the VTA of the midbrain [77,82].
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Figure 2. Schematic diagram of septal outputs indicating projection patterns from the LS and MS/DB
to the target regions. The yellow, blue, and red arrows represent the cholinergic, glutamatergic,
and GABAergic pathways from the MS/DB, respectively. Green arrows indicate LS projections.
Abbreviations: AHN, anterior hypothalamic nucleus; CC, cingulate cortex; DG, dentate gyrus; DMH,
dorsomedial hypothalamic nucleus; EC, entorhinal cortex; LHA, lateral hypothalamic area; LS, lateral
septal nuclei; MB, mammillary body; MHb, medial habenula; MS/DB, medial septum/diagonal band
of Broca nuclei; OB, olfactory bulb; PC, piriform cortex; PH, posterior hypothalamic nucleus; POA,
preoptic area; PT, paratenial nucleus; PVH, paraventricular hypothalamic nucleus; PVT, paraventric-
ular thalamus; RE, nucleus reuniens; RSC, retrosplenial cortex; Sub, subiculum; VMH, ventromedial
hypothalamus; VTA, ventral tegmental area.

There are three cell types in MS/DB projection to the hippocampus: cholinergic,
glutamatergic, and γ-aminobutyric acid GABAergic neurons [83,84]. The cholinergic
MS/DB-hippocampal pathway sends to hippocampal CA1 and CA3 [85,86]. The MS/DB
sends GABAergic and cholinergic projections to the subiculum and CA1 of the hippocam-
pus [87]. The glutamatergic MS/DB-hippocampal pathway innervates hippocampal CA1
and CA3 [88]. Although the association between the MS/DB and DG is known, there are no
studies on which types of neurons/projections are associated with reciprocal connectivity
between the MS/DB and DG. In addition, it is known that the MS/DB sends cholinergic
projections to various regions, such as the entorhinal cortex, cingulate cortex, retrosplenial
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cortex, OB, and PFC [89–92]. The MS/DB modulates mesolimbic dopaminergic neurons
by sending glutamatergic projections to the VTA of the midbrain [93]. The glutamatergic
MS/DB projection also reaches the LHA of the hypothalamus [94]. The MS/DB is also
projected onto the paratenial nucleus of the thalamus [78,95].

2.2.2. Septal Pathways in the Brain with AD

Several studies have demonstrated that the connection between the MS and the hip-
pocampus is impaired in the AD brain (Table 1). In particular, innervation from the MS
to the hippocampus decreased by approximately 52% in 5XFAD mice compared to WT
mice [12]. Another study revealed that the septo-hippocampal pathway began to degen-
erate in 4.5-month-old Aβ-overexpressing transgenic mice before neuronal loss in the
MS [40]. In particular, interconnections between the MS and DG/subiculum and inner-
vations from MS to CA3 were significantly impaired in 5XFAD mice before the onset of
cognitive dysfunction. In addition, disruption of the interconnections with MS and hip-
pocampal formation is accelerated, along with AD progression. A THY-Tau22 transgenic
mouse, which developed tau pathology in both the hippocampus and the basal forebrain,
showed disconnection between MS and the hippocampus [68]. Moreover, the connectivity
of the MS and hippocampus in 16- to 18-month-old tauopathy mice was reduced com-
pared to that in healthy mice and six- to eight-month-old tauopathy mice [67]. One study
suggested that altered GABAergic septo-hippocampal pathways, together with functional
deficits of phosphorylated tau–accumulating parvalbumin-positive neurons, were critical
factors in cognitive decline and the alteration of hippocampal activity patterns present
in the tau (VLW) mice [70]. In the hAPP-J20 mouse model of AD, a dramatic decrease in
GABAergic septo-hippocampal innervation was seen in eight-month-old mice [69]. Fur-
thermore, the loss of the GABAergic septo-hippocampal pathway resulted in the alteration
of synchronous activity in the hippocampus of the AD brain [69]. In particular, the septal
nucleus, which has strong reciprocal connectivity with the hippocampus, is a vulnerable
area in AD. The reciprocal connectivity of the septal nucleus and hippocampus is called the
septo-hippocampo-septal loop [72], and damage to this loop is well known in AD patients
and animal models of AD [12,96]. Moreover, animals with damage in the MS and dorsal
hippocampal formation mimic cognitive impairment in patients with AD [97]. Thus, im-
pairment of the septum via AD-related pathologies could influence learning and cognitive
disturbances [98], impairment of spatial and working memory [99,100], alteration of the
hippocampal theta rhythm [101], anxiety-like behavior [102], and arousal [103]. Despite the
potential clinical importance of the septal pathways in AD, the alteration of septal pathways
other than the septo-hippocampal pathway is still not fully investigated. Furthermore, few
studies have investigated the behavioral disorders of AD associated with the impairment
of septal pathways. In further studies, whole efferents of the septum that are impaired in
AD and their implications in AD-related behavioral disorders should be studied.

2.3. Locus Coeruleus Pathways
2.3.1. Locus Coeruleus Pathways in Healthy Brains

The locus coeruleus (LC), located in the lateral aspect of the fourth ventricle, is a
major source of noradrenaline (NA) in the central nervous system (CNS) [104]. In the
mammalian brain, axons of individual LC neurons branch extensively to innervate multiple
brain regions of the neuraxis. The LC is well known for sending projections to various
regions, such as the neocortex, limbic system, thalamus, hypothalamus, brainstem, and
cerebellum [105,106] (Figure 3).

There are widespread projections of the LC to the cerebral cortex, which is the critical
area for higher cognition, such as learning, memory, and affective function [107,108]. The
cortical regions that receive projections from the LC are the medial PFC, orbitofrontal
cortex, and anterior cingulate cortex (ACC) [109]. In particular, the medial PFC receives
approximately half of the LC projections targeting the cerebral cortex [109]. In addition, the
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LC also plays important roles in sensory and motor functions through connection with the
auditory cortex, main olfactory bulb (MOB), and motor cortex [110,111].
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Figure 3. Schematic diagram of the noradrenergic (NA) pathway from the LC to various regions,
such as the neocortex, pallidal regions, thalamus, hypothalamus, hippocampal formation, brainstem,
and cerebellum. The thickness of the arrow indicates the degree of connectivity. A1—primary au-
ditory cortex; ACC—anterior cingulate cortex; ARC—arcuate nucleus; BLA—basolateral amygdala;
CN—cochlear nucleus; CRN—caudal raphe nuclei; DG—dentate gyrus; DRN—dorsal raphe nuclei;
EW—Edinger–Westphal nucleus; FN—facial nucleus; HGN—hypoglossal nucleus; LDT—laterodorsal
tegmental nuclei; LHb—lateral habenula; M1—primary motor cortex; MNG—midline nuclear group;
MOB—main olfactory bulb; mPFC—medial prefrontal cortex; MS—medial septum; NVmt—trigeminal
motor nucleus; NVsnpr—trigeminal sensory nucleus; OFC—orbitofrontal cortex; ONC—oculomotor
nuclear complex; PeFLH—lateral hypothalamus/perifornical area; PPT—pedunculopontine tegmental
nuclei; PVN—paraventricular nucleus; RVLM—rostral ventrolateral medulla; SI—substantia innominate;
SN—salivatory nuclei; VA—ventral anterior nuclei; VLPO—ventrolateral preoptic area; VPL—ventral
posterolateral nucleus; VPM—ventral posteromedial nucleus; vSub—ventral subiculum.

The LC is the major source of NA in the hippocampus, which is the most critical
region for cognitive function [112]. Projections from the LC reach the hippocampal CA1,
CA3, DG, and ventral subiculum [113,114]. Moreover, NA projections from the LC to the
basolateral amygdala are important for stress responses, anxiety-like behavior, and aversive
learning [115–117]. The LC also sends outputs to the substantia innominate and MS, which
are part of the basal forebrain [118,119].

The thalamus and hypothalamus are important regions that link information from the
LC to the cerebral cortex. The LC provides intense innervation to parts of the thalamus,
especially to the intralaminar and midline nuclei, lateral habenula, and ventral anterior
nuclei [120–122]. In addition, the LC exhibits sparse innervation to the somatosensory
thalamus, such as the ventral posteromedial nucleus and ventral posterolateral nucleus
of the thalamus [123,124]. It has also been reported that there is connectivity from the LC
to the hypothalamus, including the ventrolateral preoptic area, paraventricular nucleus,
lateral hypothalamus/perifornical area, and arcuate nucleus [105].

The LC contributes to several physiological responses and sensory and motor functions
via outputs to the brainstem. NA axons originating from the LC reach the parasympa-
thetic preganglionic nuclei, including the Edinger–Westphal nucleus, salivatory nuclei, and
parasympathetic vagal nuclei [105]. The LC also connects with the dorsal raphe nuclei, pe-
dunculopontine tegmental nuclei, and laterodorsal tegmental nuclei [125–127]. Some of the



Biomedicines 2022, 10, 845 11 of 28

projections originating from the LC are sent to the motor nuclei, such as the facial nucleus,
hypoglossal nucleus, trigeminal motor nucleus, and oculomotor nuclear complex [105].
In addition, the LC is associated with correct motor performance by sending powerful
projections to the cerebellum [128].

2.3.2. Locus Coeruleus Pathways in the Brains with AD

A previous study revealed that innervation from the LC to the hippocampus was
decreased in 5XFAD mice [12]. Interestingly, the LC–hippocampal pathway was the most
severely degenerated circuit in the Aβ-overexpressing brain. Thus, it can be speculated
that the damage to the LC–hippocampal pathway by Aβ and tau is strongly attributable to
cognitive impairment in AD. Several studies have suggested that loss of NA innervation
can contribute to the initiation, progression, and severity of AD [129,130]. Surprisingly,
the loss of NA neurons in the LC is up to 70% in AD brains [131,132]. In particular, the
massive loss of LC-NA neurons in the brain with AD might result in the degeneration of
efferent pathways from the LC to several target regions (Table 1). Cognitive impairment
in AD may be caused by loss of the LC–medial PFC pathway, accounting for more than
half of the LC projections to the target regions [133]. Early impairment of the olfactory
and auditory systems may result from the loss of the LC–MOB and LC–primary auditory
cortex (A1) pathways [110,134,135]. The disruption of NA projections from the LC to the
basolateral amygdala, which makes an important contribution to anxiety-like behavior
and aversive learning, may occur in AD patients with anxiety [115–117]. Concomitant
circadian rhythm disturbances in AD can be associated with impairment of the pathway
from the LC to GABAergic neurons in the ventrolateral preoptic area [136,137]. Although
the LC pathway is important in AD pathogenesis, few studies have examined alterations in
LC circuitry. Unfortunately, no studies have investigated whether changes in the neural
circuits originating from LC can be directly associated with AD-related cognitive and
behavioral dysfunction.

2.4. Substantia Nigral Pathways
2.4.1. Substantia Nigral Pathways in Healthy Brains

The substantia nigra (SN) comprises midbrain dopaminergic nuclei [138]. The SN
consists of two major regions: the substantia nigra pars compacta (SNc) and substantia
nigra pars reticular (SNr) [138]. The SNc projects mostly dopaminergic axons, and the
SNr projects mainly GABAergic axons [139] (Figure 4). The SNc sends a dopaminergic
projection to the putamen and caudate nucleus of the dorsal striatum [140,141]. In addition,
the SNc sends dopaminergic projections to the pedunculopontine tegmental nucleus (PPT)
of the brainstem [142]. The SNr GABAergic neurons have three major target regions: the
thalamus, superior colliculus (SC), and PPT [143,144]. SNr sends an inhibitory GABAer-
gic projection toward the medial thalamus through the nigrothalamic pathway [145,146].
Neural tracing studies indicate that SNr neurons send projections to the thalamic nucleus,
including the intralaminar nuclei, as well as the ventral posterolateral, ventral posterome-
dial, ventral anterior, ventral lateral, mediodorsal, and thalamic reticular nuclei [147–151].
These GABAergic nigrothalamic pathways are the largest tract of the SNr neurons, and
the thalamus is the most prominent target region of SNr innervation [152–154]. The ni-
grothalamic pathway plays a crucial role in the basal-ganglia—cortical loop [155]. In this
loop, the thalamic nuclei receiving GABAergic projections from the SNr send glutamatergic
modulation to the cortical areas, including the dorsolateral prefrontal cortex, anterior cin-
gulate cortex, and OFC [156,157]. The second main target of SNr neurons is the SC, which
is known as the nigrocollicular pathway [158]. SNr neurons also innervate the PPT and
pontomedullary reticular formation (pmRF) [144,159,160].
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Figure 4. Schematic diagram showing each dopaminergic pathway and GABAergic pathway
from the SN to the target regions. The substantia nigra pars compacta (SNc) sends dopaminer-
gic projections to the striatum, hippocampus, and brainstem. The substantia nigra pars reticu-
lar (SNr) provides GABAergic projections to the thalamus and brainstem. The solid cyan line
shows higher-order cortical pathways. ACC—anterior cingulate cortex; CN—caudate nucleus;
DLPFC—Dorsolateral prefrontal cortex; MD—mediodorsal nucleus; ORC—orbitofrontal cortex;
PF—parafascicular nucleus; pmRF—pontomedullary reticular formation; PPT—pedunculopontine
tegmental nucleus; SC—superior colliculus; TRN—thalamic reticular nucleus; VPL—ventral
posterolateral nucleus; VA—ventral anterior nuclei; VL—ventral lateral nucleus; VPM—ventral
posteromedial nucleus.

2.4.2. Substantia Nigral Pathways in the Brains with AD

Several studies have reported deficits in the SN pathways in AD. Histological studies
in AD transgenic mice have reported deficits in the nigrostriatal pathway [161] (Table 1).
Consistently, imaging studies have reported impaired nigrostriatal pathways in the brains
of patients with AD [162,163]. The mesostriatal pathway from the SNc to the caudate nuclei
and putamen nuclei is also impaired in patients with AD [162]. Moreover, impairment of
the nigro-hippocampal pathway was detected in Aβ-overexpressing transgenic mice using
neural circuit tracing [12]. Considering that the dopaminergic system contributes to AD
symptoms [58], impairment of the nigro-hippocampal pathway may be associated with
impaired cognitive function in AD. Interestingly, in the postmortem brains of AD patients,
the SN showed an accumulation of Aβ plaques and NFTs [164,165]. These Aβ plaques
and NFTs result in neuronal loss in the SN, and may be related to the alteration of the
neural circuit and clinical symptoms of AD. Unfortunately, few studies are investigating the
alteration of substantia nigral pathways and their functions in the AD brain. Thus, whether
impairment of the substantia nigral pathways might influence AD-related symptoms
should be further studied.

2.5. Visual Pathways
2.5.1. Visual Pathways in Healthy Brains

The visual pathways constructed by the eye–brain connection induce various light-
induced behaviors, such as conscious image forming and subconscious non-image forming
visual functions [166,167]. Retinal ganglion cells (RGCs) project visual information to over
50 retinorecipient areas to provide image-forming functions, such as visual perception, and



Biomedicines 2022, 10, 845 13 of 28

contribute to non-image-forming functions, such as the pupillary light reflex and circadian
photoentrainment [168]. To date, the connectivity between the retina and retinorecipient
areas and its roles are well known [168,169] (Figure 5).
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Figure 5. Schematic diagram of visual efferent pathways indicating projection patterns from the
retina to brain regions: the solid black lines represent the pathways from the retina to the retinore-
cipient regions; the solid purple line indicates the geniculate pathway; and the solid orange line
shows the colliculo-pulvinar pathway. dLGN—dorsal lateral geniculate nucleus; dMTN—dorsal
medial terminal nucleus; DSGCs—direction-selective ganglion cells; IGL—intergeniculate leaflet;
ipRGCs—intrinsically photosensitive retinal ganglion cells; NOT-DTN—nucleus of the optic tract-
dorsal terminal nucleus; OPN—olivary pretectal nucleus; POR—postrhinal cortex; PPN—posterior
pretectal nucleus; SC—superior colliculus; SCN—suprachiasmatic nucleus; vLGN—ventral lateral
geniculate nucleus; vMTN—ventral medial terminal nucleus; V1—primary visual cortex.

The visual functions that form images can distinguish the shape, color, and movement
of objects within the field of view [170]. The lateral geniculate nucleus and SC are the
major brain regions related to image forming visual function [171,172]. The dorsal lateral
geniculate nucleus (dLGN), a thalamic visual center, links the retina and visual cortical
areas [173]. Additionally, the information from the retina into the dLGN is projected into
the primary visual cortex (V1) through the classical visual pathway [174]. This efferent
projection is called the retino-geniculo-cortical pathway [168,175]. The SC, which is one of
the major areas contributing to sensorimotor transformations, receives inputs from most
RGCs in the retina [174,176]. In addition, the SC sends projections to the higher-order
cortical areas, such as the V1 and post-rhinal cortex (POR), through the pulvinar. The visual
response of the POR is independent of V1, and the function of the POR is predominant in
its ability to distinguish moving objects compared to V1. These connections are collectively
called the retino-colliculo-pulvinar pathway [177].

The accessory optic system consists of the brainstem visual nuclei, such as the medial
terminal nucleus (MTN) and nucleus of the optic tract (NOT)–dorsal terminal nucleus
(DTN), which receives visual information directly from RGCs through accessory optic
tracts. The connectivity between the RGCs and the brainstem visual nucleus contributes to
slip-correction eye movement, which stabilizes the visual image and improves vision [178].
The MTN is connected with the RGCs that encode top–bottom motion, and this connectivity
is associated with the behavior of vertical eye movements. The nucleus NOT–DTN receives
projections from RGCs that encode forward motions and contribute to the function of
horizontal eye movements [179].
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Non-imaging visual regions, in which melanopsin-containing intrinsically photosensi-
tive RGCs (ipRGCs) are primarily connected, are involved in the regulation of non-image-
forming visual functions, such as the pupillary light reflex, circadian photoentrainment,
sleep, and mood [180]. Information from ipRGCs is relayed to the suprachiasmatic nucleus
(SCN), the vLGN, and the intergeniculate leaflet (IGL) areas, which are involved in cir-
cadian photoentrainment of the brain. In addition, ipRGCs send projections toward the
olivary pretectal nucleus (OPN) and the posterior pretectal nucleus (PPN) regions, which
are involved in the pupillary light reflex [181–183]. Moreover, a recent study identified
GABAergic circuits between the retina and non-image-forming regions that weaken the
sensitivity of non-image-forming functions [184].

2.5.2. Visual Pathways in the Brains with AD

One study using neural tracers in an AD animal model reported that impairment of the
retino-collicular pathway was observed in three-month-old 3xTg mice [71]. Another study
using DTI in AD patients showed damage to visual pathways, including the optic nerves,
optic tract, and corpus callosum [11]. Impairment of the pathway from the eye to the visual
cortex may contribute to visual impairment in AD. In particular, patients with AD have
been shown to exhibit abnormalities in visual functions, such as visual acuity, contrast
sensitivity, color vision, motion and depth perception, and visual field, as well as difficulties
in reading and finding objects [185,186]. In addition, defects of visual attention, visuospatial
construction, and visual memory have also been observed in individuals with AD [187].
Moreover, deficits in image-forming functions and disturbances in non-image-forming
functions, including the circadian rhythm and pupillary light reflex, are also present in the
patients with AD [188,189].

Alterations in visual neural circuits are associated with AD-related pathologies in the
retina [190,191]. In the early stage of AD, an accumulation of Aβ plaques and NFTs was
observed in the retinas of mouse models of AD, and these abnormal depositions promoted
inner retinal degeneration; this included a loss of the axons and dendritic spines of RGCs,
as well as a reduction in the thickness of the retinal nerve fiber layer (RNFL) [71,192]. In
patients with AD, histological analysis showed a 4.7-fold increase in retinal Aβ42 plaques
compared to age-matched controls [193]. In addition, the aggregation of Aβ and tau in the
retina of an AD mouse model increased the number of microglial cells [194]. In summary,
damage to RGCs and their axons appears in the early stage of AD, suggesting an alteration
in connectivity between the eye and the brain. Unfortunately, although the importance of
visual function in AD is well known, only a few studies have investigated alterations in
neural circuits associated with visual function (Table 1). Thus, future studies to reveal the
altered visual pathways according to the stages of AD could provide crucial insights for
its treatment.

2.6. Olfactory Pathways
2.6.1. Olfactory Pathways in Healthy Brains

In mammals, the olfactory system is divided into two distinct systems: the main
and accessory olfactory systems. The main olfactory system consists of the MOB as the
primary center and the main olfactory epithelium as the receptor [195] (Figure 6). In
contrast, the accessory olfactory system consists of the accessory olfactory bulb (AOB)
as the primary center and the vomeronasal organ (VNO) as receptors [196,197]. The
main olfactory system detects airborne substances, whereas the accessory system senses
fluid-phase stimuli. The olfactory information generated by odorous molecules in contact
with olfactory receptor neurons is transmitted by olfactory pathways, leading to diverse
behavioral and physiological functions such as neuroendocrine regulation, reproduction,
social behavior, communication, food-finding, and selection [198,199].



Biomedicines 2022, 10, 845 15 of 28

Biomedicines 2022, 10, x FOR PEER REVIEW 15 of 30 
 

2.6. Olfactory Pathways 

2.6.1. Olfactory Pathways in Healthy Brains 

In mammals, the olfactory system is divided into two distinct systems: the main and 

accessory olfactory systems. The main olfactory system consists of the MOB as the pri-

mary center and the main olfactory epithelium as the receptor [195] (Figure 6). In contrast, 

the accessory olfactory system consists of the accessory olfactory bulb (AOB) as the pri-

mary center and the vomeronasal organ (VNO) as receptors [196,197]. The main olfactory 

system detects airborne substances, whereas the accessory system senses fluid-phase 

stimuli. The olfactory information generated by odorous molecules in contact with olfac-

tory receptor neurons is transmitted by olfactory pathways, leading to diverse behavioral 

and physiological functions such as neuroendocrine regulation, reproduction, social be-

havior, communication, food-finding, and selection [198,199]. 

 

Figure 6. Schematic diagram of olfactory outputs indicating projection patterns from the olfactory 

bulb to the olfactory cortex. The MOB pathways, represented by solid black lines, are divided into 

parallel pathways originating from TCs and MCs: red arrows indicate the TC pathways; dark blue 

arrows indicate the MC pathways; and the light blue arrows indicate the AOB pathways. AOB—

accessory olfactory bulb; AON—anterior olfactory nucleus; AONd—dorsal part; AONpE—pars ex-

ternal; AONpv—posterior ventral part; APC—anterior piriform cortex; APCd—dorsal part; 

APCvr—ventrorostral subdivision; HP—hippocampus; LAa—anterior lateral amygdala; Lap—pos-

terior lateral amygdala; LEC—lateral entorhinal cortex; Maa—anterior medial amygdala; Map—

posterior medial amygdala; MCs—mitral cells; MOB—main olfactory bulb; MOE—main olfactory 

epithelium; OT— olfactory tubercle; OTcap—cap part; OTco—cortical part; TCs—tufted cells; TT—

tenia tecta; TTd—dorsal part; TTv—ventral part; VNO—vomeronasal organ. 

Several studies have shown that the MOB pathway sends information to olfactory 

regions, such as the AON, tenia tecta (TT), olfactory tubercle (OT), piriform cortex (PC), 

amygdala, and lateral EC [200,201]. The MOB pathway projects into the olfactory cortex 

as a distinct pathway depending on both the mitral cells (MCs), which convey slow sig-

nals, and tufted cells (TCs), which convey fast signals [202,203]. Interestingly, axons from 

TCs mainly reach the anterior region of the olfactory region, whereas efferent projections 

of MCs project to most olfactory regions other than the TC projection regions [202]. The 

pathways from TCs send olfactory signals to the pars external and posterior ventral part 

of the AON, the ventrorostral subdivision of anterior PC, and the cap part of the OT. In 

Figure 6. Schematic diagram of olfactory outputs indicating projection patterns from the olfactory
bulb to the olfactory cortex. The MOB pathways, represented by solid black lines, are divided
into parallel pathways originating from TCs and MCs: red arrows indicate the TC pathways; dark
blue arrows indicate the MC pathways; and the light blue arrows indicate the AOB pathways.
AOB—accessory olfactory bulb; AON—anterior olfactory nucleus; AONd—dorsal part; AONpE—
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Several studies have shown that the MOB pathway sends information to olfactory
regions, such as the AON, tenia tecta (TT), olfactory tubercle (OT), piriform cortex (PC),
amygdala, and lateral EC [200,201]. The MOB pathway projects into the olfactory cortex as
a distinct pathway depending on both the mitral cells (MCs), which convey slow signals,
and tufted cells (TCs), which convey fast signals [202,203]. Interestingly, axons from TCs
mainly reach the anterior region of the olfactory region, whereas efferent projections of
MCs project to most olfactory regions other than the TC projection regions [202]. The
pathways from TCs send olfactory signals to the pars external and posterior ventral part
of the AON, the ventrorostral subdivision of anterior PC, and the cap part of the OT. In
addition, the target areas from the MCs include the dorsal and ventral TT, dorsal AON,
cortical part of the OT, dorsal part of the anterior PC, posterior PC, anterior and posterior
lateral amygdala, lateral olfactory tract, and lateral EC [202,204]. TCs induce olfactory
behavior with a short-latency response when odor cues dissociate easily, whereas MCs have
a longer latency than TCs to maintain behavioral accuracy through fine odor discrimination
in a mixture of similar odors [202]. Moreover, a study investigating the molecular receptive
range reported that MCs showed a strong inhibitory molecular receptive range, whereas
TCs exhibited a weak or absent inhibitory molecular receptive range [184]. Likewise, unlike
the MC pathway, the TC pathway has no concurrent inhibition and induces large single
excitatory post-synaptic potentials [205].

In animal studies, it has been reported that innervation from the AOB mainly reaches
the medial amygdala [206,207]. This AOB–amygdala pathway is important for sex-hormone-
induced social behavior and reproductive behavior [208,209]. The functions of the AOB
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are well known in animals. However, in humans, VNO has regressed and AOB is non-
existent [210,211]. Therefore, in this review, we only describe the structure and function of
the MOB pathway, excluding AOB.

2.6.2. Olfactory Pathways in the Brain with AD

Impairment of the olfacto-hippocampal pathway has been detected in AD transgenic
mice [12] (Table 1, Figure 7). The degeneration of the olfacto-hippocampal connection
suggests that it may be the underlying mechanism of olfactory memory deficits in AD.
Interestingly, the dysfunctions in odor detection, recognition, and identification are early
symptoms of AD progression [212,213]. The disruption of odor identification may be
caused by an impairment of the MOB–anterior PC pathway, which regulates the threshold
for similar odor recognition [214,215]. The alterations of the MOB-AON route, which acts as
a storehouse for olfactory memory, may be a contributor to impaired odor perception [216].
The impairment of odor detection may be associated with disruption of the MOB-lateral
EC pathway, which regulates olfactory coding according to odors, experiences, and states
through odor-specific and restricted firing [217]. It has been established that Aβ and tau
are major causes of olfactory dysfunction in AD [218,219]. Notably, impairment of the
olfactory system occurs prior to AD onset. In an animal study, Tg2576 mice showed Aβ

pathology in the OB before the occurrence of memory loss [220,221]. Interestingly, AD
pathology in the OB may impair the olfactory system and affect several brain regions [222].
Monomeric and oligomeric Aβ from the OB propagate to other brain regions along the
neural connections [222]. In summary, the olfactory system was deficient in early AD.
In addition, the olfactory neuronal loss that accompanies functional impairment may
provide strong evidence suggesting alterations in the olfactory pathways in AD. Despite
the importance of olfactory connectivity, few studies have examined the impairment and
the degree of damage in the olfactory pathways of AD models. Thus, future studies to
reveal the altered olfactory pathways according to the stages of AD could provide crucial
insights for the treatment of AD.
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The red lines show the altered efferent pathways in AD brain using the neural tracers identified in
Table 1. The yellow lines indicate the output pathways that were investigated using various methods,
such as electrophysiology, biomedical imaging technologies, and immunohistochemical stanning.
The gray dotted lines represent the efferent pathways that affect various symptoms of AD, although
the alteration in the connectivity of gray dotted lines has not been directly visualized. A1—primary
auditory cortex; AON—anterior olfactory nucleus.

Moreover, as mentioned above, olfactory dysfunction appears earlier than AD on-
set; therefore, it has been recommended as a potential indicator of AD diagnosis [223].
Olfactory impairment has been proposed as a useful indicator for predicting the risk of
progression from MCI to AD [224,225]. Thus, there is a growing interest in the develop-
ment of diagnostic techniques that utilize olfactory impairment as an indicator of AD. For
instance, the ‘left–right nostril odor detection test’, based on the asymmetrical degeneration
of the olfactory pathway in AD patients, has been reported as a non-invasive and highly
sensitive brief test that can help diagnose AD [226]. Thus, novel studies on AD diagnosis
techniques using alteration of the olfactory pathway as an indicator are continuously being
conducted [227,228].

3. Targeting the Neural Circuits for Treatment of AD

In this review, we identified impairments in the neural circuits of the AD brain
(Figure 7). The degeneration of neural circuits is a trigger for the several clinical symptoms
of AD. In particular, it is known that cognitive decline in AD is caused by the impairment of
neural pathways [14,229]. Although the specific relationship between altered neural circuits
and behavioral deficits in AD is not yet fully understood, it is likely that various AD-related
neuropsychiatric symptoms have also been associated with neural circuit impairment [230].
Several studies have suggested that a therapeutic approach to restoring the neural circuit
may be effective in improving the clinical symptoms of patients with AD [10,231]. In
addition, as clinical trials targeting molecular pathologies such as Aβ and tau pathology
have failed one after the other, their potential as therapeutic targets of neural circuits is
increasing [9,231]. Therefore, it has been strongly suggested that the recovery of impaired
neural circuits can be an effective therapeutic target for the treatment of AD symptoms,
including cognitive and psychiatric deficits. Based on the accumulated evidence, we dis-
cuss the potential of neural circuits as therapeutic targets, as well as promising therapeutic
approaches for neural circuits in AD treatment.

For therapeutic strategies targeting neural circuits, it is important to choose the right
patient and time. The natural course of AD is as follows: preclinical, prodromal, mild,
moderate, and severe AD. In addition, AD patients are categorized based on imaging and
biofluid biomarkers using the ATN (A: Aβ, T: tau, N: neurodegeneration) classification
system [232]. Following the framework provided by ATN classifications, the right time
and patient for AD treatment targeting neural circuits would be prodromal to mild AD
patients with cellular dysfunction [233]. Moreover, deficits in several neural circuits in AD
occur in the early stages [13]. Strategies to restore damaged neural circuits are expected to
have a high probability of success in patients with MCI. Furthermore, the combination of
protecting or stimulating neural connections by targeting Aβ and tau is thought to be the
optimal strategy to alleviate both the pathology and symptoms of AD. Collectively, this
strategy of targeting neural circuits can be applied as a combination therapy in the early
stage of AD, and can help alleviate symptoms by activating the remaining circuit in the late
stage of AD.

Several potential therapeutic approaches have been proposed for the restoration of
neural circuits. Optogenetics, which uses light to modulate neural circuits, is emerging as a
novel approach for the treatment of CNS diseases [234]. Optogenetics has been proposed as
an accurate treatment that can specifically modulate only certain types of neurons [235]. Sur-
prisingly, the modulation of the glutamatergic pathway through optogenetic therapy in the
medial PFC of rodents increased recognition memory [236]. In addition, optogenetic ther-
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apy has been shown to have a significant therapeutic effect in an AD transgenic model [235].
In Tg2567 mice, optogenetic stimulation ameliorated the decline in spatial learning and
memory function by protecting the connectivity of the entorhinal–hippocampal CA1 path-
way [235]. Moreover, spatial memory was improved in J20 mice via optogenetic modulation
for gamma oscillations of the MS pathway [237]. Moreover, chemogenetics, which uses
designer receptors exclusively activated by designer drugs (DREADDs), has also been
suggested to be an effective method to modulate neural activity and correct neural circuit
dysfunction [238]. Chemogenetic therapy alleviated AD pathology in 5XFAD mice and
improved performance in behavioral tests by modulating the abnormal activity of neuronal
pathways in TgF344-AD rats [239,240]. Therefore, viral-mediated gene therapy, including
optogenetics and chemogenetics for damaged neural circuits, may be a promising treatment
for AD.

Another possible approach to modulating neural circuitry to treat AD-related symp-
toms is through transcranial electrical stimulation (tES). tES is a non-invasive treatment that
electrically stimulates the brain through the scalp and includes transcranial magnetic stimu-
lation (TMS), as well as transcranial direct current stimulation (tDCS) [241]. TMS stimulates
the brain using an intensive magnetic field [242]. In several studies, repetitive TMS restored
cognitive dysfunction in patients with MCI and with mild or moderate AD [243]. Another
study also suggested that TMS intervention in AD patients may contribute to the recovery
of memory loss and cognitive dysfunction in the brain with AD [244]. One of the suggested
potential mechanisms of TMS is the regulation of vulnerable circuit connectivity [243,244].
Based on these studies, a randomized clinical trial to verify the effectiveness of TMS in
patients with AD is ongoing (NCT03121066). Furthermore, tDCS improved motor and cog-
nitive functions, including recognition memory, in MCI and AD patients [245]. Moreover,
tDCS has been suggested to enhance cognitive function in a double-blind placebo control
trial in patients with mild and moderate AD [246].

Deep brain stimulation (DBS) is a surgical treatment that modulates the activation of
neural circuits through a neurostimulator device placed in the brain [247]. The therapeutic
effect of DBS is well known in neurodegenerative diseases [248]. In addition, accumulating
evidence suggests that DBS may be an effective method for improving AD [249]. DBS
for targeting the medial septum in a rat model of dementia restored spatial memory by
modulating the septo-hippocampal cholinergic pathway [250]. Moreover, DBS for targeting
the fornix and hypothalamus in AD patients induced the activation of memory circuits and
alleviated cognitive decline [251]. Several clinical trials are underway to investigate the
effectiveness of DBS in patients with MCI and AD. In addition, gamma entrainment using
sensory stimuli (GENUS) improved cognitive function by mitigating AD pathology and
restoring the function of neural circuits in AD mouse models [252]. In summary, there are
possible therapeutic approaches that can be used to modulate neural circuits and restore
damaged neural circuits in AD brains, and these therapies can be effective in improving
cognitive dysfunction. However, there are still some critical questions to be considered for
the effective clinical application of neural-circuit-targeted treatment of AD. Although thera-
peutic strategies targeting neural circuits have successfully restored the function of altered
neural circuits in AD, the long-term effects of these treatments are still unknown. Moreover,
the continuously increasing neuronal loss as AD progresses can reduce the effectiveness of
the neural-circuit-centered approach. Thus, it is promising to discover strategies that can
have neuroprotective effects in the AD brain by targeting neurodegeneration, including
neuronal death, synaptic loss, and neural circuit degeneration.

4. Discussion

This review provided a summary of altered neural pathways at the mesoscale level
(Table 1) and other levels in AD brains (Figure 7). The alteration of neural pathways,
leading to cognitive decline and behavioral impairment, is an important pathology directly
related to AD symptoms. Thus, we emphasize the importance of neural pathways for
understanding the pathological processes and clinical symptoms of AD. Furthermore, we
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discussed the therapeutic implications of approaches to targeting the neural circuits in AD.
Several studies and clinical trials have suggested that therapeutic methods to enhance the
activity and connectivity of neural circuits are effective in ameliorating AD pathogenesis.
Taken together, we conclude that strategies targeting altered neural pathways in the AD
brain are potent therapeutic targets for the treatment of AD. Thus, more research is needed,
to examine the alterations of the neural pathways in the brain with AD and develop the
therapeutic approaches that restore or protect neural connectivity in the AD brain.
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