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Abstract: Elevated intraocular pressure (IOP) is a major risk factor in developing primary open angle
glaucoma (POAG), which is the most common form of glaucoma. Transforming growth factor-beta 2
(TGFβ2) is a pro-fibrotic cytokine that plays an important role in POAG pathogenesis. TGFβ2
induced extracellular matrix (ECM) production, deposition and endoplasmic reticulum (ER) stress in
the trabecular meshwork (TM) contribute to increased aqueous humor (AH) outflow resistance and
IOP elevation. Drugs which alter the glaucomatous fibrotic changes and ER stress in the TM may be
effective in reducing ocular hypertension. Astragaloside IV (AS.IV), a novel saponin isolated from
the roots of Astragalus membranaceus, has demonstrated antifibrotic and ER stress lowering effects
in various tissues during disease conditions. However, the effect of AS.IV on glaucomatous TM
fibrosis, ER stress and ocular hypertension has not been studied. Primary human TM cells treated
with AS.IV decreased TGFβ2 induced ECM (FN, Col-I) deposition and ER stress (KDEL, ATF4 and
CHOP). Moreover, AS.IV treatment reduced TGFβ2 induced NF-κB activation and αSMA expression
in TM cells. We found that AS.IV treatment significantly increased levels of matrix metalloproteases
(MMP9 and MMP2) and MMP2 enzymatic activity, indicating that the antifibrotic effects of AS.IV are
mediated via inhibition of NF-κB and activation of MMPs. AS.IV treatment also reduced ER stress in
TM3 cells stably expressing mutant myocilin. Interestingly, the topical ocular AS.IV eye drops (1 mM)
significantly decreased TGFβ2 induced ocular hypertension in mice, and this was associated with
a decrease in FN, Col-1 (ECM), KDEL (ER stress) and αSMA in mouse TM tissues. Taken together,
the results suggest that AS.IV prevents TGFβ2 induced ocular hypertension by modulating ECM
deposition and ER stress in the TM.

Keywords: astragaloside IV; trabecular meshwork; TGFβ2; myocilin; ECM; MMP; ER stress; POAG;
glaucoma

1. Introduction

Primary open angle glaucoma (POAG) is the most common type of glaucoma, ac-
counting for nearly 74% of all glaucoma cases [1,2]. Elevated intraocular pressure (IOP)
is the only modifiable risk factor associated with POAG [3]. The balance between aque-
ous humor (AH) secretion from the ciliary body and its outflow through the trabecular
meshwork (TM) are physiologically important to maintain normal IOP. In POAG, there is
increased resistance to aqueous humor outflow through the TM, leading to an elevation
of IOP [4,5]. Increased synthesis and deposition of extracellular matrix (ECM) proteins in
the TM (TM fibrosis) are responsible for TM dysfunction and the subsequent increase in
AH outflow resistance [6–9]. Apart from ECM deposition, our studies have shown that ER
stress also plays a major role in glaucomatous TM dysfunction [10–15]. The endoplasmic
reticulum (ER) is involved in the synthesis, folding, and trafficking of proteins in eukaryotic
cells. Pathology associated with disease conditions such as protein misfolding (myocilin-
associated glaucoma) or increased synthesis (steroid or TGFβ2-induced glaucoma) can
disturb protein homeostasis in the ER, resulting in ER stress. ER stress and ECM deposition
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are interlinked through signaling mechanisms. Chronic ER stress disturbs ER homeostasis
affecting the processing and secretion of ECM proteins, leading to abnormal ECM accumu-
lation in the TM [9]. Conversely, increased synthesis of ECM proteins overloads the ER
processing capacity, which leads to induction of ER stress and ultimately to abnormal ECM
accumulation in the TM [15]. Current glaucoma therapeutics are effective in reducing IOP,
but none address the underlying pathological mechanisms of TM dysfunction in POAG
such as ECM accumulation and ER stress. Thus, targeting ECM accumulation and ER
stress in the TM may provide a novel treatment that mitigate disease progression in the
treatment of glaucoma.

Several factors including TGFβ2 are known to contribute to glaucomatous IOP ele-
vation. TGFβ2 levels are elevated in aqueous humor samples and TM tissues of POAG
patients [16–19]. TGF-β2 induces epithelial-to-mesenchymal transition (EMT-like) changes
in TM cells, such as increased ECM production, actin stress fiber formation and alpha
smooth muscle actin (α-SMA) expression [20–22]. Treatment of primary human TM cells
with TGFβ2 increases synthesis and deposition of ECM [20,23]. Adenoviral injections of
bioactive TGFβ2 have been shown to elevate IOP and induce ECM deposition in mouse TM
tissues [24,25]. In addition, TGFβ2 treatment elevated IOP and increased ECM deposition
in TM tissues of the ex-vivo human anterior segment perfusion culture model [20,26].
Recently we have demonstrated that TGFβ2 treatment induces ECM deposition and ER
stress in primary human TM cells and TM tissues of ex-vivo cultured human corneo-scleral
segments [11]. TGFβ2 induced ocular hypertension was found to be associated with in-
duction of ER stress in mouse TM tissues (manuscript under preparation, Patil et al., 2021).
These studies show that increased ECM deposition and ER stress are important players in
TGFβ2 induced ocular hypertension.

Pharmacological agents that modulate ECM synthesis, composition and ER stress
in the TM have been shown to reduce ocular hypertension. Li et al. demonstrated that
netarsudil, a rho-kinase inhibitor, decreased glucocorticoid-induced ocular hypertension
by decreasing TM tissue fibrosis [27]. The current IOP lowering drugs, prostaglandin
analogs and beta-blockers, modulate ECM composition in the ciliary body via activation
of MMPs [28–30]. We and others have shown that mTOR inhibitors effectively reduce
glaucomatous IOP elevation and are associated with a reduction in TM fibrosis and ER
stress [31,32]. Zode et al. have reported that topical ocular phenylbutyric acid (PBA)
treatment rescues mutant myocilin associated and steroid induced ocular hypertension by
decreasing ER stress in the TM [33,34]. In addition, recent findings have demonstrated that
PBA reduces ECM synthesis and deposition in the TM by increasing MMP9 activity [35].
Recently we have shown that ISRIB treatment (previously shown to reduce ER stress)
effectively reversed steroid and mutant myocilin induced ocular hypertension [10]. These
studies demonstrate the importance of discovering new pharmacological agents that simul-
taneously target glaucomatous TM fibrosis and ER stress for the treatment of glaucoma.

Natural compounds derived from medicinal plants are becoming an important source
for the development of new drugs as they exhibit minimal side effects [36]. Astragaloside-
IV (AS.IV, Figure 1) is a novel saponin isolated from the roots of Astragalus membranaceus, a
commonly used Chinese medicinal herb. It has been shown to have several therapeutic
effects and a good safety profile compared with other natural products, making it a promis-
ing lead compound for drug discovery. AS.IV exhibited antifibrotic activity in animal
models of disease including renal, hepatic, and myocardial fibrosis [37–39]. A number of
studies have examined the ER stress lowering activity of AS.IV in several disease mod-
els [40–43] and found it is mainly mediated by inhibiting the ATF4-CHOP pathway [44].
Ongoing clinical studies have revealed that administration of AS.IV is safe, making it an
attractive drug [45,46]. To date, there is no study that has evaluated the role of AS.IV
in glaucoma. Based on the recent findings demonstrating the antifibrotic and ER stress
lowering effects of AS.IV, we hypothesized that AS.IV may reduce fibrotic changes and
reduce ER stress in the TM and consequently lower IOP. In the present study, we found
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that AS.IV treatment lowered TGFβ2 induced ocular hypertension in mice and is further
associated with decreased ECM deposition and ER stress in the TM.

Int. J. Mol. Sci. 2021, 22, x 3 of 16 
 

 

found that AS.IV treatment lowered TGFβ2 induced ocular hypertension in mice and is 
further associated with decreased ECM deposition and ER stress in the TM. 

 
Figure 1. Chemical structure of astragaloside IV. A pentacyclic triterpenoid that is cycloastragenol 
having β-D-xylopyranosyl and β-D-glucopyranosyl residues attached at positions O-3 and O-6 re-
spectively (3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl-cycloastragenol). C14H68O14. 

2. Results 
2.1. Astragaloside IV Treatment Attenuates the TGFβ2 Induced Fibrotic Changes and ER Stress 
in TM Cells 

Previous studies have demonstrated the anti-fibrotic and ER stress lowering activi-
ties of AS.IV in different cell types and tissues [37–44]. Here, we have examined whether 
AS.IV treatment prevents TGFβ2 induced ECM deposition and ER stress in primary hu-
man TM cells (n = 3 cell strains). Western blot analysis revealed that TGFβ2 treatment 
significantly increases ECM deposition and ER stress induction as shown by increased 
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munostaining revealed that TGFβ2 treatment increased the FN, Col-I (ECM markers), 
KDEL and CHOP (ER stress markers) staining in primary human TM cells compared to 
vehicle treated control, and AS.IV co-treatment effectively reduced the staining intensities 
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strated that AS.IV significantly reduces the TGFβ2 induced ECM deposition and ER stress 
in TM cells. However, AS.IV treatment did not show any effect on TGFβ2 induced ECM 
changes and ER stress at the lower 50 µM dose (Figure S1). 

Figure 1. Chemical structure of astragaloside IV. A pentacyclic triterpenoid that is cycloastragenol having β-D-xylopyranosyl
and β-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively (3-O-β-D-xylopyranosyl-6-O-β-D-
glucopyranosyl-cycloastragenol). C14H68O14.

2. Results
2.1. Astragaloside IV Treatment Attenuates the TGFβ2 Induced Fibrotic Changes and ER Stress in
TM Cells

Previous studies have demonstrated the anti-fibrotic and ER stress lowering activities
of AS.IV in different cell types and tissues [37–44]. Here, we have examined whether AS.IV
treatment prevents TGFβ2 induced ECM deposition and ER stress in primary human TM
cells (n = 3 cell strains). Western blot analysis revealed that TGFβ2 treatment significantly
increases ECM deposition and ER stress induction as shown by increased ECM (FN) and
ER stress (GRP 78, ATF4 and CHOP) markers compared to the vehicle (Veh) treated control.
TGFβ2 induced fibrotic response and ER stress are significantly suppressed by AS.IV co-
treatment (at 100 µM concentration) (Figure 2A,B). Similarly, immunostaining revealed
that TGFβ2 treatment increased the FN, Col-I (ECM markers), KDEL and CHOP (ER stress
markers) staining in primary human TM cells compared to vehicle treated control, and
AS.IV co-treatment effectively reduced the staining intensities of both ECM and ER stress
markers (Figure 2C,D). These studies have clearly demonstrated that AS.IV significantly
reduces the TGFβ2 induced ECM deposition and ER stress in TM cells. However, AS.IV
treatment did not show any effect on TGFβ2 induced ECM changes and ER stress at the
lower 50 µM dose (Figure S1).
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Figure 2. AS.IV treatment prevents the TGFβ2 induced ECM deposition and ER stress in TM cells. The primary human
TM cells were treated with vehicle, TGFβ2 (5 ng/mL) and TGFβ2 plus AS.IV (100 µM) for 3 days. (A,B) The cell lysates
were analyzed by Western blot (A) and densitometric (B) analysis of ECM (FN) and ER stress (GRP78, ATF4, and CHOP)
markers. The AS.IV co-treatment significantly reversed the TGFβ2 induced ECM changes and ER stress. (n = 3 cell strains,
data represented as mean ± SEM, 2-way ANOVA, Tukey’s multiple comparisons test, * p < 0.05, ** p < 0.01, **** p < 0.0001).
(C,D) represents immunostaining analysis on fixed TM cells treated with vehicle, TGFβ2 and TGFβ2 plus AS.IV. A prominent
decrease in FN, Col-I (ECM), KDEL and CHOP (ER stress) staining in the AS.IV co-treated cells compared to the TGFβ2
treatment alone, indicates decreased ECM deposition and ER stress (n = 3 cell strains, scale bar 10 µm).

2.2. Astragaloside IV Treatment Inhibits TGFβ2 Induced NF-κB Activation and αSMA Expression
in TM Cells

The activation of NF-κB signaling plays an important role in TGFβ2 induced ECM pro-
duction and ocular hypertension [47]. Previous studies have demonstrated the inhibitory
effect of AS.IV against NF-κB activation in various cell types and tissues [48–50]. Here,
we have examined the effect of TGFβ2 and AS.IV on NF-κB activation in TM cells. The
primary human TM cells (n = 3 different cell strains) were treated with Vehicle, TGFβ2
(5 ng/mL) and TGFβ2 (5 ng/mL) plus AS.IV (100 µM) at different time points (1, 2 and
6 h) and the cell lysates were analyzed for pNF-κB and NF-κB levels by Western blot
and densitometry (Figure 3A,B). TGFβ2 treatment activated NF-κB signaling (increased
pNF-κB/NF-κB or pNF-κB/GAPDH levels compared to vehicle control) as early as 2 h
after the treatment. AS.IV co-treatment suppressed the TGFβ2 induced NF-κB activation,
as evident by significantly decreased pNF-κB/NF-κB levels compared to TGFβ2 treat-
ment alone. The inhibitory effect of AS.IV on TGFβ2 induced NF-κB activation was more
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prominent at 6 h compared to 2 h after the treatment (Figure 3A,B and Figure S2). In con-
sistence with previous studies, the TGFβ2 treatment significantly increased αSMA levels
in primary human TM cells as shown in Western blot and densitometric analysis [10,20,51]
(Figure 3C,D). AS.IV co-treatment reduced αSMA levels, however this reduction is not
statistically significant (p = 0.07051) (Figure 3D). This may be due to variability in AS.IV
action against three different cell strains collected from three different donors. In contrast
to the Western blot, immunostaining analysis revealed that AS.IV co-treatment effectively
reduced the αSMA staining against TGFβ2 induction (Figure 3E).
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Figure 3. AS.IV treatment attenuates TGFβ2 induced NF-κB activation and αSMA expression. (A,B) Western blot (A)
and its densitometric (B) analysis of TM3 cell lysates treated with vehicle, TGFβ2 (5 ng/mL) and TGFβ2 plus AS.IV
(100 µM) at various time points (1, 2 and 6 h). The TGFβ2 significantly increased pNF-κB/NF-κB levels at 2 & 6 h after
the treatment, indicating the activation of NF-κB signaling. The AS.IV co-treatment significantly suppressed the TGFβ2
induced NF-κB activation (n = 3 replicates, data represented as mean ± SEM, 2-way ANOVA, Tukey’s multiple comparisons
test, ** p < 0.01, *** p < 0.001, **** p < 0.0001). (C–E) Western blot (C), its densitometric (D) and immunostaining (E) analysis
of primary human TM cells treated with vehicle, TGFβ2 (5 ng/mL) and TGFβ2 plus AS.IV (100 µM) for 3 days. The TGFβ2
treatment significantly increased the αSMA expression whereas AS.IV co-treatment prominently suppressed. Scale bar
10 µm. (n = 3 cell strains, data represented as mean ± SEM, 2-way ANOVA, sidak’s multiple comparisons test, * p < 0.05,
** p < 0.01, *** p < 0.001).

2.3. Antifibrotic Effects of AS.IV Are Mediated via Increased Metalloproteases Activity in
TM Cells

Matrix metalloproteases (MMPs) are important modulators of aqueous humor outflow
and IOP by continuously remodeling the TM extracellular matrix composition. Previous
studies have demonstrated that ocular hypertension leads to changes in the expression
and activity of several MMPs in the TM [52]. In the present study, Western blot and
its densitometric analysis of the primary human TM cell lysates treated with TGFβ2
showed a significant decline in MMP9 expression compared to vehicle treated control
(Figure 4A,B). Conversely, TGFβ2 treatment slightly increased MMP2 expression levels
compared to vehicle, but this increase is not statistically significant (Figure 4C,D). AS-IV co-
treatment restored the MMP9 levels to near vehicle control (Figure 4A,B) and significantly
increased MMP2 levels compared to vehicle (Figure 4C,D). We further evaluated the
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effects of TGFβ2 and AS.IV on the enzyme activities of MMPs by conducting a gelatin
zymography (Figure 4E,F). The primary human TM cells were treated with vehicle, TGFβ2
(5 ng/mL), TGFβ2 + AS.IV (100 µM) and TGFβ2 + AS.IV + minocycline (100 µM) for
3 days in serum free condition and the spent medium was concentrated and subjected to
gelatin zymography (Figure 4E). Surprisingly, the densitometric analysis of zymography
(Figure 4F) revealed that both TGFβ2 and AS.IV co-treatments increased MMP2 enzymatic
activity as evident from the increased MMP2 gelatinolytic band intensity compared to the
vehicle control. However, this increase in enzymatic activity was statistically significant
only with AS.IV co-treatment (p = 0.0181) but not with TGFβ2 treatment alone (p = 0.1300).
The minocycline (a pan-MMPs inhibitor) co-treatment significantly inhibited the MMP2
enzymatic activity compared to AS.IV co-treatment, act as a positive control. Unfortunately,
we did not detect the corresponding MMP9 gelatinolytic bands in gelatin zymography.
These data indicates that AS.IV regulate ECM composition by modulating MMPs levels
and their activities in the TM cells.
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Figure 4. AS.IV treatment enhances the MMPs activity in the TM cells. (A–D) The primary human TM cells were treated
with vehicle, TGFβ2 (5 ng/mL) and TGFβ2 plus AS.IV (100 µM) for 3 days and the cell lysates were subjected to Western
blot (A,C) and its densitometric (B,D) analysis of MMP9 and MMP2 (n = 3 cell strains, data represented as mean ± SEM,
One-way ANOVA, Tukey’s multiple comparisons test, * p < 0.05). TGFβ2 treatment resulted in a significant reduction of
MMP9 levels and a slight increase in MMP2 levels. AS.IV co-treatment prominently increased both MMP9 and MMP2
levels. (E,F) The primary human TM cells were treated with vehicle, TGFβ2 (5 ng/mL), TGFβ2 plus AS.IV (100 µM) and
TGFβ2 + AS.IV (100 µM) + minocycline (200 µM) for 3 days in a serum free medium and spent medium was concentrated
and subjected to the gelatin zymography (E). The densitometric analysis (F) of the gelatinolytic bands corresponding to
MMP2 activity revealed that AS.IV treatment significantly increased the MMP2 activity and this was completely inhibited
by minocycline (minoci) treatment, a PAN MMPs inhibitor (n = 3 cell strains, data represented as mean ± SEM, One-way
ANOVA, Tukey’s multiple comparisons test, * p < 0.05, ** p < 0.01, *** p < 0.001, ns—not significant).

2.4. Astragaloside IV Treatment Effectively Decreases Mutant Myocilin Associated ER Stress in
the TM Cells

Myocilin (MYOC) mutations resulting in elevated IOP are responsible for approxi-
mately 4% of POAG and most cases of autosomal dominant juvenile-onset-open-angle
glaucoma [4,53]. We have previously reported that expression of mutant myocilin (Y437H)
leads to accumulation inside the ER of the TM cells and triggers ER stress [9,33]. In this
study, we utilized this in vitro model (mutant myocilin induced ER stress) to verify the
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ER stress lowering activity of AS.IV. TM3 cells stably expressing DsRed tagged mutant
myocilin (Y437H) were treated with vehicle and AS.IV (50 and 100 µM concentration) and
lysates were subjected to Western blot analysis of ER stress markers (Figure 5A). AS.IV
treatment at 100 µM concentration effectively reduced mutant myocilin associated ER stress
as evident from a prominent decrease in GRP78, GRP94 and ATF4 levels compared to the
control. Interestingly, AS.IV mediated ER stress reduction is associated with decreased FN
and mutant myocilin accumulation in the TM cells. AS.IV treatment at 50 µM concentration
also decreased mutant myocilin accumulation and ER stress but this decrease is not as
prominent as 100 µM concentration. Similarly, immunostaining analysis also revealed that
AS.IV (100 µM) treatment effectively reduced the DsRed (represents mutant myocilin),
KDEL and CHOP expression levels compared to the control (Figure 5B,C), indicating that
AS.IV mediated reduction of ER stress prevents mutant myocilin accumulation in the
TM cells.
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tagged mutant myocilin (DsRed-MYOCY437H) were treated with AS.IV (50 and 100 µM) for 3 days. The cell lysates were
analyzed by Western blot using ER stress markers (KDEL that recognizes GRP78 & GRP94, ATF4), ECM marker (FN) and
myocilin. The AS.IV at 100 µM concentration effectively reduced mutant myocilin induced ER stress and that is further
associated with reduction in FN and intracellular accumulation of mutant myocilin (n = 2 replicates). (B,C) TM3 cells stably
expressing DsRed-MYOCY437H were treated with AS.IV (100 µM) for 3 days. The cells were fixed and stained for KDEL (B)
and CHOP (C). AS.IV treatment prominently reduced KDEL and CHOP staining which is associated with decreased DsRed
expression in the cells indicating the reduction in the mutant myocilin accumulation (n = 3 replicates). Scale bar 50 µm.

2.5. Astragaloside IV Treatment Reversed the TGFβ2 Induced Ocular Hypertension in the Mice

Next, we examined whether topical ocular AS.IV eye drops lower IOP in a mouse
model of TGFβ2 induced ocular hypertension. Three-month old C57 mice were divided
into two groups, and one group received a single intravitreal injection of Ad5.CMV.TGFβ2
(1 × 107 pfu/eye) while the other group was injected with Ad5.CMV.Null (1 × 107 pfu/eye)
vectors bilaterally. Two weeks post injection, a significant IOP elevation was observed in the
Ad5.TGFβ2 injected group compared to the Ad5.null injected group. After confirming the



Int. J. Mol. Sci. 2021, 22, 12508 8 of 16

TGFβ2 induced OHT, both groups received AS.IV (1 mM) topical ocular eye drops twice a
day for 2 weeks in one eye and vehicle eye drops (0.1% DMSO) in the contralateral eye. The
IOPs were recorded every week for 2 weeks. Within a week, AS.IV treated eyes showed
significantly decreased IOPs (16.58 ± 0.594) compared to the vehicle treated contralateral
eyes (20.5 ± 0.436) in the Ad5.TGFβ2 group (Figure 6A). Similarly, the Ad5.Null group
treated with AS.IV also showed a slight reduction in IOPs (14.27 ± 0.146) compared to the
vehicle treated contralateral eyes (15.77 ± 0.111), however the reduction was not statistically
significant (p = 0.8224). The AS.IV effect on TGFβ2 induced IOP elevation was similar in
both the 1st week and in 2nd week after treatment (Figure S3).
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Figure 6. Topical ocular AS.IV treatment attenuates the TGFβ2 induced ocular hypertension in mice. The C57BL/6J mice
(3–4 months age) eyes were injected with adenoviral vectors expressing bioactive form of TGFβ2 or Null intravitreally.
After 3 weeks following injections, both groups received 5 µL of 1 mM AS.IV topical eye drops in the left eyes and vehicle
eye drops (DMSO) in the contralateral right eyes twice daily. (A) One week of AS.IV treatment significantly lowered
IOPs in TGFβ2-injected left eyes compared to the contralateral right eyes (n = 3–6 biologically independent samples, data
represented as mean ± SEM, Two-way ANOVA, Tukey’s multiple comparisons test, **** p < 0.0001). (B–E) Immunostaining
(B,D) on paraffin sectioned mouse eyes from the groups and their densities (C,E) revealed that AS.IV treatment significantly
decreased the staining intensities of αSMA, ECM and ER stress markers in TM tissues of Ad5.TGFβ2 injected eyes. Scale bar
50 µM, TM-trabecular meshwork indicated with an arrow and rectangle box, CB- ciliary body, Schlemm’s canal indicated
with an asterisk (n = 3–8 biological replicates, data represented as mean ±SEM, Two-way ANOVA, Tukey’s multiple
comparisons test, * p < 0.05, **** p < 0.0001, ns—not significant).

The immunostaining and density analysis of ECM and ER stress markers (FN, Col-I,
KDEL), and the expression of αSMA in the eye sections from the above groups revealed
that Ad5.TGFβ2 lead to a significant increase in FN, KDEL (Figure 6B,C) and Col-I, αSMA
(Figure 6D,E) expression levels in the TM region compared to the Ad5.Null (vehicle) group.
However, treatment with AS.IV reversed the TGFβ2 induced changes as evident from the
significant reduction of FN, KDEL and αSMA staining compared to the TGFβ2 group.
Similarly, AS.IV treatment decreased the Col-I staining, but was not statistically significant
(p = 0.0760). This may be due to a low sample size (n = 3) that can be resolved by increasing
the number of samples to achieve a statistically significant reduction. These data indicate
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that AS.IV treatment modulates TGFβ2 induced ECM deposition and ER stress, thereby
decreasing ocular hypertension.

3. Discussion

TM dysfunction and the associated increase in aqueous humor (AH) outflow resistance
contribute to IOP elevation in POAG. Lowering IOP remains the only therapeutic approach
for preserving visual function in glaucoma patients. The majority of IOP lowering drugs
do not target TM pathology to improve trabecular meshwork AH outflow [54]. Therefore,
there is an unmet need to identify novel drugs that can prevent or reverse TM dysfunction
by targeting the underlying molecular mechanisms. Evidence has suggested that increased
synthesis and deposition of ECM (TM fibrosis) and induction of ER stress in the TM are
associated with TM dysfunction in glaucoma [6–15]. The drugs that target TM fibrosis
or ER stress are effective in lowering IOP [10,27,31–35]. Based on previous literature, we
found that AS.IV, a natural saponin exhibited both antifibrotic and ER stress lowering
activities in various diseases [37–44]. We hypothesized that AS.IV can effectively mitigate
the TGFβ2 induced OHT by modulating ECM deposition and ER stress in the TM. In
support of our hypothesis, and demonstrated in this study, topical ocular AS.IV treatment
significantly decreased TGF-β2 induced ocular hypertension in mice. It is possible that
the IOP lowering activity of AS.IV was mediated via reduction of ER stress and ECM
deposition in the TM, as evident from significantly decreased ECM and ER stress markers
in the AS-IV treated TM tissues. Although we have not evaluated AS.IV drug penetration
through the ocular tissues, the pharmacological changes observed in the AS.IV treated
group indicates that AS.IV can reach the TM to exert its pharmacological action.

The rationale behind selection of the TGFβ2 induced OHT model over the other
conventional models is multifactorial. The pathological role of TGFβ2 in POAG has been
extensively studied. Additionally, increased levels of TGFβ2 have been reported in the
aqueous humor and TM tissues of POAG patients [16–19]. Expression of bioactive TGFβ2
has been found to elevate IOP in mice [24,25]. Moreover, TGFβ2 induced OHT resem-
bles the disease phenotype seen in POAG patients. Similar to POAG, TGFβ2 treatment
increases ECM synthesis and deposition in the TM that is associated with induction of
ER stress [11,20,26]. TGFβ2 levels (pro and active) are elevated both in steroid-induced
glaucoma [14] and myocilin-associated glaucoma [55], suggesting that TGFβ2 signaling is
an important mediator in OHT models.

Inconsistent with the previous report [47], TGFβ2 treatment significantly enhanced
NF-kB activation in the TM cells and is necessary for TGFβ2 induced ECM production and
ocular hypertension. It has been shown that AS.IV suppresses TGFβ1 induced renal fibrosis
by inhibiting NF-kB activation [56,57]. Similarly, AS.IV treatment significantly suppressed
the TGFβ2 mediated activation of NF-kB in TM cells, suggesting that the antifibrotic effects
of AS.IV are mediated via inhibition of NF-kB signaling. The exact mechanism involving
the inhibition of NF-kB in preventing TGFβ2 induced ECM deposition in the TM cells is un-
known. However, it is known that the activation of NF-kB downregulates BAMBI, a known
endogenous inhibitor of TGFβ signaling (via inhibition of SMAD3 activation) [58–61]. It is
possible that AS.IV mediated inhibition of NF-kB signaling promotes BAMBI expression
that directly inhibits canonical TGFβ2 signaling (SMAD3 dependent) and TM fibrosis.

In addition, the other important regulators of ECM turnover in tissues are matrix
metalloproteinases (MMPs). Reduced activity of MMPs is involved in increased ECM
deposition in glaucomatous TM tissues [62–64], whereas increasing MMPs’ activity in
perfused human anterior segment organ cultures increased outflow facility [64]. Although
several MMPs are expressed in the TM, MMP-2 (gelatinase A) and MMP-9 (gelatinase B)
are the most prominent and have been well studied. Hence, we have examined the
effects of TGFβ2 and AS.IV on the levels and activities of MMP2 and MMP9 in the TM
cells. Consistent with the previous report [65], primary human TM cells treated with
TGFβ2 slightly increased the expression and enzymatic activity of MMP2. In contrast,
the expression levels of MMP9 were significantly decreased. Increased MMP2 activity
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might be due to a feedback response of the TM cells to TGFβ2 induced ECM deposition.
Bradley et al. (2001) have reported that activity of MMP2 increases against TM mechanical
stretch within 24–72 h, while activities of other MMPs remain unchanged [66], indicating
that MMP2 is the initial responder against TM fibrosis induced by TGFβ2. However, this
slightly increased MMP2 activity may not be sufficient to minimize TM fibrosis, under the
conditions of sustained ECM deposition and significantly reduced MMP9 levels. AS.IV
co-treatment with TGFβ2 significantly increased the expression and activity of MMP2 and
restored the MMP9 levels to the level of the vehicle-treated group. A recent study has
documented that MMP9 knockout mice exhibit an aberrant increase in ECM deposition,
reduced AH outflow, and early onset ocular hypertension, suggesting that AS.IV mediated
increase in MMP9 levels are critical to effectively controlling ECM turnover in the TM [67].
It should be noted that we did not observe the corresponding MMP9 gelatinolytic bands in
zymography gels, and this may be due to the low basal expression of MMP9 in the TM
cells compared to MMP2 [62].

Apart from ECM deposition, reorganization of the actin cytoskeleton in the TM is
known to contribute to TM stiffness and IOP elevation [68,69]. The role of TGFβ2 in actin
cytoskeletal remodeling in the TM is well studied. TGFβ2 has been shown to increase
α-SMA expression and its incorporation into the actin stress fibers [10,20,51]. Consistent
with this, primary human TM cells treated with TGFβ2 showed a significant increase in
α-SMA expression. AS.IV co-treatment reversed TGFβ2 induced α-SMA expression in
TM cells. It is possible that AS.IV directly inhibits TGFβ2 mediated SMAD3 activation
and thereby controls the α-SMA expression in TM cells, as shown in other cell types and
tissues [39,70].

ER stress is another important player in glaucoma pathogenesis. Chronic or sustained
ER stress can initiate cell death via the pro-apoptotic ATF4-CHOP pathway. The chronic
ER stress-inducible pro-apoptotic markers ATF4 and CHOP are significantly increased in
mouse models of glaucoma and in TM tissues from POAG donors [9,11,12,71]. Adenoviral
expression of ATF4 in the TM elevates IOP in WT mice and is associated with increased
fibrotic changes in the TM [10]. Genetic or pharmacological inhibition of ATF4-CHOP
pathway rescued ocular hypertension in mice, which is associated with decreased ECM
deposition and ER stress in the TM [10]. In this context, AS.IV exhibited ER stress lowering
activity in several disease models by targeting ATF4-CHOP pathway [44,72,73]. Similarly,
in this study AS.IV reduced TGF-β2 and mutant myocilin induced ATF4 and CHOP levels,
which is further associated with a reduction in ER stress and ECM accumulation in the TM.

In conclusion, our data provides new evidence that AS.IV rescues TGF-β2 induced
ocular hypertension by modulating ECM deposition and ER stress in the TM. Our results
support AS.IV as a natural compound that may be useful for the prevention or treatment
of glaucoma. We believe that the molecular basis of AS.IV therapeutic efficacy may not be
limited to the inhibition of one or two pathways as described in this study. The efficacy
may result from a combination of several pathways, which warrants further investigation.
The ongoing clinical studies have revealed that administration of AS.IV is safe in humans.
However, in this study AS.IV exhibited pharmacological actions at a higher dose both
in vitro (100 µM) and in vivo (1 mM). It is reported that saponins over an extended period
at a high dose may exhibit some toxic side effects. We did not observe side effects either
in vitro (such as cell death) nor in mice receiving 1mM topical ocular AS.IV. It should
be noted that these studies are of short duration. An investigation of AS.IV safety on
long-term use is recommended.

4. Materials and Methods
4.1. Antibodies and Reagents

Antibodies and reagents were purchased from the following sources: fibronectin
(catalog # Ab2413, Abcam, Boston, MA, USA), collagen I (catalog # NB600-408, Novus Bio-
logicals, Centennial, CO, USA), KDEL (catalog # Ab12223, Abcam), ATF4 (catalog # SC-200,
Santa Cruz Biotechnology, Dallas, TX, USA), CHOP (catalog # 13172, Novus Biologicals),
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αSMA (catalog # ab5694, Abcam), pNF-κB p65 (S536) (catalog #3031S, Cell Signaling
Technology, Danvers, MA, USA), NF-κB p65 (D14E12) (catalog #8242T, Cell Signaling
Technology), MMP9 (N2C1) (catalog #100458, Genetex, Irvine, CA, USA), MMP2(catalog
#104577, Genetex), myocilin (catalog # ab41552, Abcam), GAPDH (catalog # 3683, Cell
Signaling Technology), and β-actin (catalog # 4970, Cell Signaling Technology). Recombi-
nant human TGFβ2 (catalog # 302-B2-010, R&D systems), astragaloside IV (catalog # 12069,
Cayman Chemicals, Ann Arbor, MI, USA). Adenoviral vectors expressing bioactive TGFβ2
or null were purchased from the University of Iowa viral vector core facility (Iowa City,
IA, USA).

4.2. TM Cell Culture and Treatments

Primary human TM cell strains (n = 3) & transformed TM3 cells were cultured in
DMEM-low glucose medium (Sigma, St. Louis, MO, USA) supplemented with 10% fetal
bovine serum (Atlas Biologicals, Fort Collins, CO, USA), L-glutamine (Gibco, Life Technolo-
gies, Grand Island, NY, USA), and penicillin-streptomycin (Gibco, Life Technologies). For
the characterization of primary human TM cells, cells were examined for the expression
of fibronectin, collagen, and laminin as well as dexamethasone induction of cross-linked
actin networks and myocilin as described previously [74]. Different set of treatments were
performed as mentioned below: (i) Human primary TM cells (n = 3) were treated with
either vehicle (4 mM HCl containing 0.1% BSA) or recombinant human TGFβ2 (5 ng/mL)
or TGFβ2 plus AS.IV (50 and 100 µM) in 0.5% FBS containing DMEM medium for 3 days.
(ii) To examine the effect of AS.IV on TGFβ2 induced NF-κB activation, transformed TM3
cells were treated with either vehicle (4 mM HCl containing 0.1% BSA) or recombinant
human TGFβ2 (5 ng/mL) alone or in combination with AS.IV (100 µM) at different time
points (1, 2 and 6 h). (iii) To examine the effect of AS.IV on mutant myocilin (Y437H)
induced ER stress, transformed TM3 cells stably expressing DsRed-tagged-MYOCY437H

were generated by transient transfection with pDsRed2-MYOCY437H plasmid and selection
of colonies using G418 antibiotics (0.6 mg/mL; Gibco, Life Technologies) [9,32]. These
stable clones expressing mutant myocilin were maintained in DMEM-low glucose medium
supplemented with 10% fetal bovine serum (Atlas Biologicals) and G418 antibiotics. The
TM3 cells expressing DsRed-tagged-MYOCY437H, cultured in the media mentioned above,
were treated with or without AS.IV (50 and 100 µM) for 3 days. After the treatment,
the cell lysates were collected for Western blot analysis, and fixed cells were utilized for
immunostaining analysis.

4.3. Gelatin Zymography

To access the effect of AS.IV on the activity of gelatinases (MMP2 and MMP9), the
primary human TM cells were treated with either vehicle (4 mM Hcl containing 0.1% BSA)
or TGFβ2 (g/mL) or TGFβ2 (5 ng/mL) plus AS.IV (100 µM) for 3 days under serum-free
conditions. The conditioned media was concentrated using pierce protein concentrators
with 10 K MWCO (Catalog # 88513, ThermoFisher Scientific, Waltham, MA, USA). The
concentrated conditioned media was subjected to gelatin zymography electrophoresis using
Novex 10% Zymogram Plus (gelatin) Protein Gels (catalog #ZY00100BOX, ThermoFisher
Scientific) under native conditions. Following electrophoresis, gels were incubated in
zymogram renaturing buffer (catalog # LC2670, ThermoFisher Scientific) for 30 min at room
temperature with gentle agitation. Then, gels were incubated with zymogram developing
buffer (catalog #LC2671, ThermoFisher Scientific) for 12 h at room temperature. Then gels
were stained with SimplyBlue Safestain (catalog # LC6060, ThermoFisher Scientific) at
room temperature until clear bands were visible against a dark background.

4.4. Experimental Animals

All experimental procedures were conducted in accordance with and adherence to
the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. The
experimental protocol was approved by the Institutional Animal Care and Use Committee
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(IACUC) (Protocol #: IACUC-2018-0032) of the University of North Texas Health Science
Center (UNTHSC). Three-month-old C57BL/6J mice purchased from the Jackson Labora-
tory (Bar Harbor, ME, USA) were utilized in this study. Animals were allowed to roam
freely in their cages, have access to food (standard mouse chow) and water ad libitum, and
were maintained under 12 h light/12 h dark conditions.

4.5. Adenoviral Injections

To generate TGFβ2 induced ocular hypertension in mice, adenoviral vector expressing
bioactive form of TGFβ2 was injected intravitreally (1 × 107 pfu/eye in 2 µL injection
volume) in C57 mice as described earlier [24]. Intravitreal injection of Adenoviral null
vector-alone served as control. The TGFβ2 induced ocular hypertension was confirmed by
measuring IOP once a week. After confirming ocular hypertension, the mice were given
topical ocular AS.IV eye drops twice a day for 2 weeks. The mice were euthanized and the
eyes were enucleated, fixed in 4% PFA, and processed for paraffin sectioning and staining.

4.6. IOP Measurements

Daytime IOPs were measured using a TonoLab rebound tonometer (Colonial Medical
Supply, Londonderry, NH, USA) between 9 am and 11 am under isoflurane anesthesia
(isoflurane 2.5% and oxygen 0.8 L/min) as previously described [9,10,32,75]. Six individual
IOP measurements were obtained in a masked manner and averaged to obtain the final
IOP value for each eye. To avoid the influence of isoflurane, the IOP measurements were
completed within 2–3 min.

4.7. Western Blot Analysis

Primary human TM cells or transformed human TM3 cells were lysed in RIPA lysis
buffer as described previously [10,11,32]. Equal protein concentrations of lysates were
loaded and run in denaturing 4–12% bis-Tris gels (NuPAGE bis-Tris gels, Life Technologies).
The separated proteins in the gel were then transferred onto a polyvinylidene difluoride
(PVDF) membrane. The blots were blocked in 10% nonfat dried milk prepared in 1xPBST
(PBS with 0.1% Tween 20) for 2 h at room temperature and then incubated with the
appropriate primary antibodies (1:1000) on a rotating shaker for overnight at 4 ◦C. The
blots were washed three times with 1xPBST followed by a secondary antibody (horseradish
peroxidase-conjugated) incubation for 1.5 h at room temperature. The blots were developed
using ECL detection reagents (SuperSignal West Femto maximum sensitivity substrate,
Life Technologies). For the detection of phosphorylated NF-κB, the blots were incubated
with 3% BSA instead of 10% nonfat dried milk for blocking and antibody incubation.

4.8. Immunostaining

Enucleated mouse eyes were fixed in 4% paraformaldehyde (PFA) overnight, washed
three times with 1xPBS, and dehydrated/immersed in 70% ethanol, processed and embed-
ded in paraffin. Five-micron thin paraffin sections were prepared. For immunostaining of
tissue sections, the slides were deparaffinized using two washes of xylene rehydrated with
descending gradients of ethanol (100%, 90%, 70%, and 50%) and finally with 1× PBS. The
slides were then subjected to antigen retrieval in 0.1 M citrate buffer (pH 6) for an hour
in a water bath set at 60 ◦C. Slides were then blocked in 10% goat serum containing 0.1%
Triton X-100 for 2 h at room temperature and incubated with respective primary antibodies
(1:300 dilution) in blocking buffer overnight at 4 ◦C. Sections were washed 3 times with
1× PBS and incubated with appropriate Alexa Fluor secondary antibody (1:500 dilution;
Invitrogen, Waltham, MA, USA) for two hours at room temperature. Slides were then
washed 3 times with 1× PBS and mounted with DAPI mounting media (VECTASHIELD
Antifade Mounting Medium, Vector Laboratories, Burlingame, CA, USA). Following the
same procedure, sections without the primary antibody incubation were used as negative
control. Images were taken using a fluorescence microscope (Keyence, Itasca, IL, USA).
For immunostaining of TM cells, cells were fixed in 4% PFA for 15 min, permeabilized
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with 0.1% Triton X-100 in PBS for 10 min and stained with the appropriate antibodies as
described above.

4.9. Statistical Analysis

All the data are presented as mean ±SEM. Statistical significance between two groups
was analyzed using the unpaired 2-tailed Student’s t-test. For data between multiple
groups, one-way or two-way ANOVA with Tukey’s multiple comparisons test was used.
p ≤ 0.05 was considered statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222212508/s1.
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