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Abstract Microbial biofilms are involved in almost all infec-
tious pathologies of the oral cavity. This has led to the search
for novel therapies specifically aimed at biofilm elimination.
In this study, we used atomic force microscopy (AFM) to
visualize injuries and to determine surface roughness, as well
as confocal laser scanning microscopy (CLSM) to enumerate
live and dead bacterial cells, to determine the effects of pho-
todynamic therapy (PDT) on Enterococcus faecalis biofilms.
The AFM images showed that PDT consisting of methylene
blue and a 670-nm diode laser (output power 280 mW during
30 s) or toluidine blue and a 628-nm LED light (output power
1000 mW during 30 s) induced severe damage, including cell
lysis, to E. faecalis biofilms, with the former also causing an
important increase in surface roughness. These observations
were confirmed by the increase in dead cells determined using
CLSM. Our results highlight the potential of PDT as a prom-
ising method to achieve successful oral disinfection.
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Introduction

A microbial biofilm is a three-dimensional, complex structure
attached to a surface or interface and comprising microorgan-
isms embedded in an extracellular polymeric matrix [1].
Although laboratory studies of biofilm formation and struc-
ture commonly make use of monospecies biofilms, in nature,
biofilms are frequently formed by more than one species and
in some cases by hundreds of species. An excellent example is
oral biofilms, referred to as dental plaques [3, 4]. These typi-
cally contain an enormous variety of bacterial species, many
of which are responsible for infections in the oral cavity and
even elsewhere in the body [2]. Dental caries, periodontal
diseases, endodontic infections, and numerous pathologies
beyond the oral cavity have been attributed to the proliferation
of oral bacteria and their ability to form and participate in
stable polymicrobial biofilms.

Microbes living in a biofilm are subjected to environmental
conditions that promote behaviors clearly different from those
of planktonic forms. Transcriptomic studies have identified
several genes that are overexpressed in sessile vs. planktonic
bacteria, whereas other genes are downregulated [5]. In addi-
tion, bacteria in biofilms are typically much more resistant to
antimicrobials than their planktonic counterparts [6], although
the latter are used in the clinical testing of susceptibility.

Oral bacteria grow exclusively (or almost) in biofilms.
Thus, the main goal of oral disinfection is biofilm destruction,
together with elimination of the remaining viable bacteria.
Because of its anatomical complexity, the root canal system
acts as a reservoir of several bacterial species that grow in
biofilms. Mechanical disruption and antimicrobial therapies
are currently the most frequently used methods to treat and
eliminate oral biofilms; however, the effectiveness of these
strategies is limited by the emergence of resistant microorgan-
isms and the common persistence of a small proportion of
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viable bacteria, both of which can largely if not completely
regenerate the community [7]. Consequently, there has been
extensive research into the development of alternative thera-
peutic methods, such as laser light treatments and photody-
namic therapy (PDT) [8, 9]. In the former, high-power lasers
are used together with an intracanal optical fiber first to kill the
microorganisms by means of a photothermal effect and then to
disinfect areas unreachable by traditional endodontic treat-
ments [10-12]. However, high-power lasers may cause ther-
mal injuries to dental tissues, such as dentin carbonization and
cratering, root resorption, cementum melting, and periradicular
necrosis [13—15]. Thus, PDT, in which low-power lasers drive
photochemical reactions, has been suggested as a promising
approach to fight oral infections without the undesirable effects
associated with temperature increases. PDT is based on the use
of photosensitizers, molecules that are activated by light in the
presence of air. Activation leads to the generation of highly
reactive singlet oxygen and free radicals that have cytotoxic
effects on living cells [2]. Singlet oxygen is a diamagnetic form
of oxygen and is responsible for the damaging effects of sun-
light on organic materials. It is usually produced by means of
photosensitizer pigments (most of them vital stains) and is
stable for over an hour at room temperature. PDT has been
used to kill cancer cells and bacteria, by exploiting their sensi-
tivity to singlet oxygen. In principle, photosensitizers can pen-
etrate both gram-positive and gram-negative bacteria, without
affecting host cell viability [16]. Moreover, bacteria are unlike-
ly to develop resistance to repeated photosensitization [17].
Several studies have reported the successful use of PDT in
reducing bacterial counts in the root canal system,
recommending it as an adjunctive antimicrobial procedure in
conventional endodontic treatment [18-22]. It has been point-
ed out that PDT is as effective as conventional 5 % NaOCl
irrigation against Enterococcus faecalis [23]. Moreover, the
efficacy of PDT on biofilms seems to be strain dependent [24].

In this study, we examined the effects of PDT on biofilms
of Enterococcus faecalis, a gram-positive bacterium resistant
to some antibiotics and frequently found in the oral cavity of
patients who have undergone root canal treatment. Our com-
bined approach consisted of atomic force microscopy (AFM),
confocal laser scanning microscopy (CLSM), and surface
roughness determinations. The results highlight the potential
of PDT to achieve successful oral disinfection.

Material and methods

Bacterial strain, culture conditions, and biofilm formation
E. faecalis, American Type Culture Collection (ATCC)
29212, was grown overnight in 20 ml of trypticase soy broth

(Scharlau, Barcelona, Spain) at 37 °C with orbital shaking at
250 rpm. The culture was used to inoculate 24-well culture
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plates containing 2 ml of growth medium to yield a bacterial
concentration of 10° colony-forming units (cfu)/ml. Each well
contained a Thermanox coverslip previously coated with a
0.01 % (w/v) poly-L-lysine hydrobromide (Sigma-Aldrich,
Dorset, UK) solution to enhance bacterial cell adhesion and
to prevent biofilm removal during the experiments. The plates
were incubated at 37 °C for 24 h under gentle shaking
(60 rpm) to allow biofilm formation.

Photosensitizers and light sources

The photosensitizers tested in this study consisted of two dyes,
toluidine blue O (TBO), at 0.1 mg/ml, and 3,7-
bis(dimethylamino)-phenazathionium chloride trihydrate
(methylene blue, MB), at 0.005 % (w/v) in phosphate-
buffered saline containing hydroxymethylcellulose as a
mucoadhesive viscosity agent (Periowave, Ondine
Biopharma, Vancouver, BC, Canada). Both TBO and MB
are commonly used in oral antimicrobial PDT. Their activities
as potent photosensitizers against gram-negative and gram-
positive bacteria were previously documented [2].

A light-emitting diode (LED) lamp (FotoSan; CMS Dental,
Copenhagen, Denmark), emitting in the red spectrum with a
peak at 628 nm (620—640 nm), was used as the light source
together with TBO. The LED lamp has an output power of
1000 mW for 30 s, total energy delivered was 30 J; surface at
the end of the fiber was 6 mm diameter, and an energy density
of 106.4 J cm 2. For MB, diode laser light (Periowave;
Ondine Biopharma, Vancouver, Canada) emitting at a wave-
length of 670 nm served as the light source. It has an output
power of 280 mW during 30 s, total energy delivered was
8.4 J, and an energy density of 271 J cm 2.

PDT

The biofilms were gently washed with distilled water to re-
move nonadherent bacteria. The experimental conditions were
(1) biofilms sensitized with TBO in darkness for 1 min, (ii)
biofilms sensitized with TBO in darkness for 1 min and then
treated with LED for 30 s, (iii) biofilms sensitized with MB in
darkness for 1 min, and (iv) biofilms sensitized with MB in
darkness for 1 min and then exposed to diode laser for 30 s.
The controls consisted of (i) biofilms treated neither with pho-
tosensitizers nor with light sources, (ii) biofilms treated only
with the diode laser for 30 s, and (iii) biofilms treated only
with the LED lamp for 30 s. After treatment, all of the biofilms
were gently washed with distilled water and visualized by
AFM and CLSM.

AFM imaging

Samples were imaged in air using an atomic force microscope
XE-70 (Park Systems, Korea). All images were collected in
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noncontact mode using pyramidal-shaped silicon cantilevers
with a spring constant of 40 N m ™', a resonance frequency of
+300 kHz, and their upper sides coated with aluminum to
enhance the reflectivity of the laser beam. AFM images were
simultaneously acquired with several scan sizes (100, 25, and
6.25 um?) at a scan rate of 0.3-0.5 Hz. Data acquired during
surface scanning were converted into images of topography,
amplitude, and phase and then analyzed using XEP and XEI
software (Park Systems, Korea). Topography images reveal
the shape and structure of the sample as well as surface differ-
ences. Amplitude images highlight the sample outline and
allow visualization of fine surface details. Phase images show
variations in the elasticity and viscoelasticity of the sample.

CLSM imaging

Biofilms on the Thermanox coverslips were washed three
times with distilled water to remove loose bacteria and then
stained using the LIVE/DEAD BacLight bacterial viability kit
(Molecular Probes, Eugene, OR). In this system, live bacteria
stain with Syto 9 to produce a green fluorescence whereas
bacteria with compromised membranes stain with propidium
iodide to produce a red fluorescence. Images of the double-
stained biofilms were acquired using a Leica TCS-SL filter-
free spectral confocal laser scanning microscope (Leica
Microsystems, Mannheim, Germany) equipped with a 488-
nm argon laser and 543- and 633-nm He/Ne lasers (Centres
Cientifics i Tecnologics, Universitat de Barcelona, Barcelona,
Spain) and ax 63 oil immersion objective (1.4 numerical ap-
erture) zoom 1, where the x, y, and z voxel size corresponded
to 0.23x0.23x0.4 um with an image resolution of 1024 x
1024 pixels. The pinhole size was kept at the minimum setting
(1.0-1.08 AU). Image saturation was prevented by lowering
the gain and offset in the brightest signal. Sequential scanning
was carried out for each channel. CLSM images were ana-
lyzed by using ImageJ software (National Institutes of health,
Bethesda, MD, USA). A threshold selection method was cre-
ated to distinguish between one and two bacteria. Alive and
dead bacteria percentages were calculated from the total num-
ber of bacteria. Values (percentages) were arcsine trans-
formed. Furthermore, data were analyzed by Kolmogorov-
Smirnov test and Levene one-way ANOVA tests. P values
lower than 0.05 were considered as statistically significant.

Surface roughness

AFM was also used to measure the surface roughness of the
treated and untreated biofilms. The roughness average (R,),
defined as the average distance from the roughness profile to
the center plane of the profile, was calculated from the ac-
quired topography images for every scan size and treatment.

Bacterial enumeration

The CLSM images were analyzed using ImageJ (National
Institutes of Health, Bethesda, MD, USA) to enumerate viable
and dead bacteria, differentially stained as described above. A
thresholding procedure was established for every image, and a
watershed separation was applied to separate clusters of bac-
teria. Percentages of live and dead bacteria in every treatment
were determined.

Results
Visualization of PDT effectiveness

Representative AFM images of treated E. faecalis biofilms are
shown in Fig. 1. An analysis of the AFM topography 3D-
images showed that PDT induced severe morphological and
surface alterations of the biofilms as well as a broad spectrum
of injuries to the resident bacterial cells, whereas in the un-
treated biofilms, E. faecalis retained its typical coccoid shape
(Fig. 1a). In the biofilms treated with TBO (1 min) plus LED
(30 s), bacterial wall destruction, loss of the typical cell mor-
phology, and leakage of the intracellular contents were ob-
served (Fig. 1f). The injuries to biofilms treated with MB
(1 min) plus diode laser (30 s) were similar (Fig. 1g) but much
more apparent. Neither TBO nor MB alone was able to induce
noticeable morphological alterations (Fig. 1d, e), as only a
small proportion of bacterial cells were even slightly affected.
Conversely, light therapy in the absence of the dyes caused
slight changes in biofilm topography (Fig. 1b, c).

Surface roughness

Changes in the surface roughness of treated vs. untreated
biofilms can be numerically expressed using the XEI software
and processing the topography images previously obtained at
scan sizes of 25 and 6.25 um?. Figure 2 shows the mean
surface roughness values (R,) of control and treated
E. faecalis biofilms. PDT-treated biofilms had high surface
roughness values. By contrast, the roughness values measured
after treatment of the biofilms with the dyes or with either light
source alone were not significantly modified.

CLSM

Enumeration of the viable and dead bacteria for every treat-
ment showed a significant increase in bacterial death in
E. faecalis biofilms treated with PDT. Neither of the photo-
sensitizers alone resulted in significant bacterial killing, as the
proportion of living bacteria in either case was almost identi-
cal to that in the negative controls (about 2 %). LED treatment
in the absence of photosensitizer had a slight lethal effect, with
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Fig.1 AFM 3D topography images of E. faecalis biofilms: untreated (a),
exposed to LED for 30 s (b), exposed to diode laser for 30 s (¢), sensitized
1 min with TBO (d), sensitized 1 min with MB (e), sensitized 1 min with

approximately 24.2 % of the individual cells exhibiting red
fluorescence. Diode laser treatment alone, at least at the power
tested, was unable to kill bacteria. On the contrary, PDT
caused significant bacterial injury, with more than 95 % le-
thality in the case of diode laser plus MB and 79 % in the case
of LED plus TBO (Fig. 3).

The results of CLSM showed predominance of red fluores-
cence indicating damaged biofilm cells following PDT treat-
ments in comparison with the control showing green color
dominance in biofilm. Representative CLSM images of
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TBO and exposed to LED for 30 s (f), and sensitized 1 min with MB and
exposed to diode laser for 30 s (g). Scan size=25 pm?

untreated and PDT-treated biofilms are shown in Fig. 4. On
the double-fluorescence images of living plus dead bacteria,
the majority of the cells in the untreated biofilms stained green
(Fig. 4a), indicating a high level of bacterial viability. In
biofilms treated with LED plus TBO (Fig. 4b) or diode laser
plus MB (Fig. 4c), most of the bacteria stained red, indicating
significant bacterial killing. In these PDT-treated images,
orange-staining bacteria were considered to be damaged cells.
Table 1 shows statistical analysis of the results of CLSM
experiments.
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Fig. 2 Graphical representation of surface roughness (R,) in nanometers, according to the different treatments tested and surface scan sizes. Bars
represent the standard error of the mean. The mean surface roughness values are shown in the table below

Discussion

In the biofilm mode of growth, microorganisms firmly at-
tached to a surface or interface are enclosed in an extracellular
polymeric matrix formed by polysaccharides, nucleic acids,
proteins, water, and cell debris. This matrix offers protection
against host defenses and often restricts the penetration of

antimicrobial agents [1, 25]. Thus, for infections of the oral
cavity, in which the causative agents typically reside in
biofilms, conventional treatments are often ineffective. A ther-
apeutic approach is therefore needed that focuses on biofilm
removal, the eradication of persistent cells, and the decontam-
ination of oral surfaces. PDT has been used to eliminate bac-
terial as well as cancer cells. Recently, it has emerged as an

Fig. 3 Graphical representation 100
of living and dead bacteria,
according to the different
treatments tested. Bars represent 80 -
the standard error of the mean

60 -

30 - T m % LIFE

m % DEATH
20 -
0o -
v - Q
& &L L &L ¢ 5
& & &
C % \y"

@ Springer



1524

Lasers Med Sci (2015) 30:1519-1526

Table 1  Multiple comparisons of percentages of alive/dead bacteria
after treatments

Control TBO MB LED LASER LED+TBO

TBO 0.802

MB 0916  0.999

LED 0.068  0.534 0.385

LASER 0999 0864 0.953 0.086
LED+TBO  0.000  0.002 0.002 0.0048 0.000

LASER+MB 0.000  0.000 0.000 0.010 0.000 0973

Statistically significant values are in italics

alternative in the removal of oral biofilms and thus in the
prevention or amelioration of infections of the oral cavity.

In the present work, we used three different approaches,
AFM, CLSM, and surface roughness determination, to study
the efficacy of PDT in the elimination of E. faecalis biofilms
formed on Thermanox coverslips. E. faecalis is commonly
found in the root canal system of the teeth, where its
biofilm-type growth has been documented.

AFM is a powerful tool that, with easy sample preparation,
provides high-resolution imaging of microbiological systems
[26], individual microbial cells [27], and microbial biofilms
[28]. It has also been used to study the mechanical and

Fig. 4 CLSM images of

E. faecalis biofilms: untreated (a),
treated with LED plus TBO (b),
and treated with diode laser plus
MB (c¢). Viable (green) bacteria
(lef?), dead (red) bacteria (middle),
and viable and dead bacteria
(right). Scale bar=10 pm
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adhesive properties of microbial cells [26], to assess surface
properties such as roughness, both in air and in liquid [29], to
evaluate morphological effects of treatments, including those
targeting microorganisms [30], and to study microbial cell
processes and interactions [31]. However, a limitation of
AFM is that under physiological conditions, some structures
and morphological features, such as flagella or biofilm matrix
components, are poorly visualized by liquid imaging [27,
32-34] because of deficient adhesion of the microbial cells
to the substrate. This, in turn, generates sufficient noise during
scanning such that image quality is compromised [35, 36]. In
our study, we used air-dried samples since AFM imaging of
dried microbial preparations is well established [33, 37]. The
advantages include easy sample preparation and high-
resolution imaging of microbial cell surfaces [38, 39]. AFM
visualizations in air are commonly used to evaluate morpho-
logical changes in treated vs. nontreated microbial surfaces
[34, 39-44]. Thus, it was the method of choice in the analysis
of our air-dried treated and untreated biofilms. Imaging of the
latter revealed their normal morphology and low nano-
roughness values throughout the incubation period. This result
confirmed that the significant morphological alterations and
surface injuries observed in the treated samples were produced
by PDT and were not sample processing artifacts. Specifically,
AFM of the sensitized biofilms revealed that with TBO or MB
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alone only, a small proportion of bacterial cells showed bac-
terial wall perturbations (Fig. 1d, e). Similar alterations were
produced after treatment by light in the absence of dyes
(Fig. 1b, c¢). However, E. faecalis biofilms exposed to PDT
(Fig. 1f, g), and particularly those treated with MB and diode
laser, showed severe alterations.

A relevant parameter to characterize surface morphology is
the determination of surface roughness, expressed as the ar-
ithmetic average roughness R, [45]. An increase in cell sur-
face roughness is indicative of a distorted cell morphology,
bacterial wall destruction, and leakage of cellular contents,
all of which were observed in the PDT-treated biofilms, thus
confirming the AFM findings. The surface roughness data
also showed that the greatest damage occurred in biofilms
exposed to MB and diode laser (Fig. 2). In irradiated cells,
photosensitizers may cause alterations to membrane integrity
and thus also damage cytoplasmic components [46]. These
results support the use of PDT to destroy E. faecalis biofilms.

CLSM was used to assess bacterial viability in biofilms sub-
jected to PDT or to the photosensitizers or light alone and it
confirmed our AFM results. With the double-staining method,
we were able to distinguish between bacteria with intact (green)
and damaged (red/orange) membranes [24]. CLSM images of
the untreated biofilm showed that most of the bacteria stained
green, indicating their viability (Fig. 4a), whereas the large
proportion of red-staining bacteria in the PDT-treated biofilms
confirmed the efficacy of this form of treatment (Fig. 4b, c).

Similar results were obtained in previous studies in which
the PDT-induced damage to microbial surfaces was assessed.
Sahu et al. (2009) [41] used AFM to visualize the topographical
alterations produced by TBO-mediated PDT in Staphylococcus
aureus and Escherichia coli. They observed perturbations to
the bacterial wall, bleb formations suggestive of damage to
membrane components, and an increase in cell surface rough-
ness. Cheng et al. (2012) [8] evaluated the bactericidal effect of
several different laser irradiation methods and PDTs in root
canals experimentally infected with E. faecalis, using scanning
electron microscopy (SEM) to examine the morphology of
bacterial cells before and after treatment. SEM revealed the
shrunken, rough, and fractured appearance of the bacterial cells
that remained after PDT. Melo et al. (2013) [47] used AFM to
examine the PDT-induced changes in the shape and size of
Streptococcus mutans cells. The combination of TBO and
LED resulted in a decrease in the diameter of the bacterial cells.
Garcez et al. (2013) [48] also demonstrated the effect of PDT to
disrupt Pseudomonas aeruginosa and E. faecalis biofilms in
prepared root canals. SEM analysis showed a significant reduc-
tion of biofilm after treatment with MB and a diode laser.

The severe perturbations of E. faecalis biofilms produced by
PDT recommend its use in the eradication of bacterial biofilms.
Nevertheless, further studies that include supplemental measur-
ing techniques are needed to explore the effect of PDT on the
integrity of microbial biofilms. In addition, whether PDT is

equally effective when used on biofilms formed by other mi-
crobial species or complex microbial communities remains to
be determined. Rates of bacterial dead reported in the literature
are highly diverse as experimental conditions are too. Our data
are higher than those reported by Soukos and Goodson [2]
when they describe that photodynamic therapy killed approxi-
mately 63 % of bacteria present in suspension, whereas in
biofilms, photodynamic therapy had much less effect reaching
32 % maximal killing. It should be noted that in this work, we
have used higher energy fluence and power density. Moreover,
it has been shown that PDT efficacy is strain dependent [24].
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