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Background: Gonadotoxic treatment of malignant diseases as well as some non-
malignant conditions such as cryptorchidism in young boys may result in infertility and
failure to father children later in life. As a fertility preserving strategy, several centers
collect testicular biopsies to cryopreserve spermatogonial stem cells (SSCs) world-
wide. One of the most promising therapeutic strategies is to transplant SSCs back into
the seminiferous tubules to initiate endogenous spermatogenesis. However, to obtain
sufficient numbers of SSC to warrant transplantation, in vitro propagation of cells is
needed together with proper validation of their stem cell identity.

Materials and Methods: A minute amount of testicular biopsies (between 5 mg and
10 mg) were processed by mechanical and enzymatic digestion. SSCs were enriched
by differential plating method in StemPro-34 medium supplemented with several growth
factors. SSC-like cell clusters (SSCLCs) were passaged five times. SSCLCs were
identified by immunohistochemical and immunofluorescence staining, using protein
expression patterns in testis biopsies as reference. Quantitative polymerase chain
reaction analysis of SSC markers LIN-28 homolog A (LIN28A), G antigen 1 (GAGE1),
promyelocytic leukemia zinc finger protein (PLZF), integrin alpha 6 (ITGA6), ubiquitin
carboxy-terminal hydrolase L1 (UCHL1) and integrin beta 1 (ITGB1) were also used to
validate the SSC-like cell identity.

Results: Proliferation of SSCLCs was achieved. The presence of SSCs in SSCLCs was
confirmed by positive immunostaining of LIN28, UCHL1 and quantitative polymerase
chain reaction for LIN28A, UCHL1, PLZF, ITGA6, and ITGB1, respectively.

Conclusion: This study has demonstrated that SSCs from infant boys possess the
capacity for in vitro proliferation and advance a fertility preservation strategy for pre-
pubertal boys who may otherwise lose their fertility.
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INTRODUCTION

Cryptorchidism occurs with a frequency of around 3% in full-
term pregnancies and in 30% of boys born prematurely. During
the first year of life, the testes may spontaneously descend
to the scrotum, but in total 1–3% of boys in the western
world will undergo surgery to get their testes positioned in
scrotum (Barthold and Gonzalez, 2003). Around one third of
boys with cryptorchidism, especially bilateral cryptorchidism,
suffer from infertility in adult life despite the presence of
spermatogonial stem cells (SSCs) in the majority of testes biopsies
(Hadziselimovic and Herzog, 2001). Another group of young
boys in need of fertility preservation is those suffering from
childhood cancer. Gonadotoxic treatments frequently destroy the
entire population of SSCs and leave the boy infertile, however,
the survival rates of cancer survival are above 80% with the
evolution of toxic treatments (Chow et al., 2016). Therefore, prior
to chemotherapeutic treatment this group of patients may benefit
from having a biopsy excised and frozen from which SSCs can
be isolated and, in theory, auto-transplanted after remission. Due
to this potential, reproductive centers worldwide currently freeze
testis biopsies to preserve SSCs and the germ cell niche.

Spermatogonial stem cells – a sub-population of
undifferentiated spermatogonia – are required to sustain
spermatogenesis by balancing self-renewal and differentiation in
adults (Kanatsu-Shinohara and Shinohara, 2013). In primates,
undifferentiated spermatogonia consist of type A dark (Ad) and
pale (Ap) spermatogonia distinguished by hematoxylin staining.
Ad spermatogonia contain a non-staining rarefaction-zone in
nucleus, which is stained darkly. In contrast, Ap spermatogonia
nuclei stain lightly and evenly. As there was no significant
proliferation activity of Ad spermatogonia, Clermont and
co-workers proposed that Ad and Ap spermatogonia are the
reserve and the active stem cells, respectively (Clermont, 1969).
Besides, the Ad spermatogonia are considered as true stem
cells that generate Ap spermatogonia slowly (Ehmcke et al.,
2006). A longitudinal study on cryptorchid boys indicates that
the Ad spermatogonia are the key elements in establishing
spermatogenesis (Hadziselimovic and Herzog, 2001). The
authors compared the histological patterns of cryptorchid
testes biopsied from boys younger than 2 years old boys with
their counterpart sperm samples in adulthood. When Ad
spermatogonia were present in the juvenile testis, 94% of the
men had a normal sperm count. In contrast, in the absence
of Ad spermatogonia, only 8% of patients had normal sperm
count despite successful early surgery. Kraft et al. (2012) also
reported a significant association between an abnormal Ad
spermatogonia count at the time of orchiopexy and decreased
sperm density in adulthood.

In 1994, the first report showing that murine SSCs
transplantation restore spermatogenesis and generate functional
sperm that give rise to normal offspring (Brinster and Avarbock,
1994; Brinster and Zimmermann, 1994). Subsequently, SSC
transplantation has been successful in a variety of species such as
pig, bovine and monkey (Honaramooz et al., 2002; Schlatt et al.,
2002; Izadyar et al., 2003). In addition, transplanted SSCs from
humans or other species can migrate onto the basal membrane

of seminiferous tubules in recipient mice (Hermann et al., 2007;
Izadyar et al., 2011; Zohni et al., 2012; Dovey et al., 2013).
Critically, there is currently no data from transplanting SSCs to
humans. Several obstacles need to be solved in order to approach
clinical trials including the generation of a sufficient number of
SSCs to warrant transplantation whilst avoiding transmission of
potentially malignant cells from the cryopreserved tissue. Due to
the small testis biopsies, it is necessary to develop propagation
protocols while maintaining SSC identity.

In this report, we have derived and propagated SSC-like cells
in vitro from a minute amount of testicular tissue obtained
in infant boys, who underwent surgery for cryptorchidism.
We observed the formation of spermatogonial stem cell-like
cell clusters (SSCLCs), which could be passaged five times.
We analyzed colonies by immunostaining and quantitative
polymerase chain reaction (qPCR) using different SSC markers
to demonstrate the potential expansion of Ad spermatogonia
that retain expression of SSC markers, such as Lin-28
homolog A (LIN28), Ubiquitin carboxy-terminal hydrolase L1
(UCHL1) in the culture.

MATERIALS AND METHODS

Human Testis Materials
Testis samples were obtained from five patients undergoing
orchidopexy for unilateral and bilateral cryptorchidism. None
of these boys had received chemotherapy, radiotherapy or
hormonal treatment. Testicular biopsies around 5 mm3

were cryopreserved in 1.5 M ethylene glycol, 100 mM
sucrose, 10 mg/ml human serum albumin (CSL Behring,
Germany) in PBS buffer and stored at – 196◦C (Kvist et al.,
2006). Our center is certified by the Danish authorities
to perform this treatment according to the European
Union tissue directive. The frozen-thawed materials as
well as fresh materials were used for SSC culture. For
qPCR analysis, adult testis biopsies were obtained from
healthy fathers who underwent vasectomy and one testis
biopsy from a patient with Klinefelter syndrome. One
additional unilateral undescended infant testis biopsy was
examined using qPCR.

Testicular Cell Isolation, Culture, and
Cryopreservation
Fresh or thawed testicular biopsies weighing 5–10 mg were
enzymatically digested using 450 U/mL collagenase type I
(Worthington), 450 U/mL Hyaluronidase type II (Sigma),
and 500 U/mL Trypsine TRL3 (Worthington) to prepare
a cell suspension, as described previously (van Pelt et al.,
1996). Testicular cells were collected and cultured overnight
in uncoated dishes in supplemented alpha-modified MEM
media, 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), penicillin (100 IU/mL)-streptomycin (100 µg/mL)
containing 10% FCS at 37◦C and 5% CO2. After overnight
incubation, floating cells were collected by centrifuging the
media and the cell pellet was resuspended and cultured in
uncoated dishes with supplemented StemPro-34 (composition
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see Supplementary Table 1). The cells were cultured in Nunclon
Delta surface plates (Thermo Fisher Scientific) at 37◦C in a
humidified atmosphere with 5% CO2. The SSCLCs were passaged
with Accutase (Invitrogen) every 2–4 weeks to one new dish.
Some SSCLCs were cryopreserved at – 196◦C using vitrification
methods. In principle, 2 – 5 cell clusters were collected
and transferred through the vitrification medium-1 containing
10% DMSO (Sigma), 10% ethylene glycol (Merck), and 80%
completed Stempro-34 culturing media to the vitrification
medium-2 containing 20% DMSO, 20% ethylene glycol, 5 M
sucrose and 60% completed Stempro-34 culturing media. The cell
clusters were loaded into an open pulled straw (Minitube) and
submerged into liquid nitrogen.

Tissue Preparation and Staining and
Germ Cell Number Counting
Testis tissue samples were fixed in Stieve’s solution for 24 h at
room temperature, embedded in paraffin, and sectioned at 2-
µm. The histological sections were stained with hematoxylin

and eosin (HE), D2-40 (1:25, M3619, Dako) and placental-like-
alkaline phosphatase (1:200, PL8-F6, Biogenex). The number
of germ cells per tubular transverse section (G/T) and the
number of Ad spermatogonia per tubular transverse section
were measured based on in PAS stained sections as well as
immunohistochemical staining of CD99, D2-40, C-KIT, OCT4,
and PLAP (Dong et al., 2019). For each patient, at least 100
cross-sectional tubules were examined.

Cell Cluster Preparation and
Immunostaining
Freshly collected cell clusters from different passages were
embedded by alginate followed by 4% agarose, then fixed
in 4% paraformaldehyde for 4 h to overnight, embedded
in paraffin, and cut into 5 µm sections. The sections were
placed on slides and dried on heating plate setting at 37◦C
for 1 h. The sections were stored at room temperature
till analysis. The sections were deparaffinized, subjected to
antigen retrieval treatment using TEG buffer (10 mM Tris,

FIGURE 1 | Testicular biopsies analysis for culture. (A,B) The age and weight of biopsies, error bars represent standard deviations. (C,D) Germ cell (G/T) number
and Ad spermatogonia (Ad/T) number per tubular transverse section in five cryptorchid boys. Mean and standard deviations are shown. (E–I) Histological profile of
testicular biopsies from five individual samples. Scale bar: 50 µm. White arrows indicate germ cells. (J), higher magnification from I demonstrates the rarefaction
zone in nuclear indicating Ad spermatogonia. Arrow heads indicate Ad spermatogonia.
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0.5 mM EGTA, pH 9), and blocked for 0.5 h at room
temperature in 1% BSA in TBS buffer (50 mM Tris, 150 mM
NaCl, pH 7.6) before the primary antibodies were applied.
The following antibodies diluted in the blocking buffer (1%
BSA in TBS buffer) were used: a polyclonal rabbit anti-
LIN28 antibody (diluted 1:200; Ab46020, Abcam), a mouse
monoclonal anti-UCHL1 (diluted 1:100, sc-271639, Santa Cruz,
CA, United States), a mouse monoclonal anti-Vimentin (diluted
1:100, sc-6260, Santa Cruz, CA, United States), a polyclonal
rabbit anti-SOX9 antibody (diluted 1:200, AB5535, Millipore)
and a polyclonal rabbit anti-ACTA2 antibody (diluted 1:100,
ab5694, Abcam). The slides were washed with TNT buffer
(100 mM Tris, 150 mM NaCl, pH 7.6, 0.5% Tween 20) three
times (10 min per time). For immunefluorescence staining,
the sections were stained with a FITC-conjugated donkey
anti-mouse IgG antibody (diluted 1:500 in blocking buffer;
Jackson ImmunoResearch) or Alexa Fluor 594 donkey anti-
rabbit IgG antibody (diluted 1:500 in blocking buffer; Jackson
ImmunoResearch) for 1 h at room temperature. The DNA
was visualized using DAPI staining before mounting slides
with ProLong Gold Antifade Mountant (Life Technology). For
immunohistochemical staining, sections were submerged in 1.5%
H2O2 in TBS buffer to quench endogenous peroxidase before
applying blocking buffer. Signals were visualized on sections

by incubation with the secondary antibodies, either rabbit
anti-mouse-HRP or donkey anti-rabbit-HRP (Dako, Glostrup,
Denmark, 1:100 in blocking buffer) for 10 min at room
temperature and visualized by peroxidase reaction with 3,3′-
diaminobenzidine tetrahydrochloride (Dako) for 1–2 min. The
slides were mounted with Pertex R© Histolab. Microscopic slides
were evaluated on a Zeiss Axiophot microscope mounted with a
Leica DFC420C digital microscope camera, and images processed
in LAS software V4.9.

Gene Expression Analysis
Total RNA from the testicular tissues and single cell cluster
derived from different patients were extracted with the
RNeasy Kit (Qiagen) or Absolutely RNA Nanoprep Kit
(Agilent Technologies) according to the manufacturer’s
instructions, respectively. cDNA synthesis was performed
with High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems) according to the manufacturer’s instructions. The
gene expression was detected on the LightCycler 480 Instrument
II (Roche Diagnostics). The reaction mix consisted of 2 µL
of template cDNA, 5 µL of TaqMan universal PCR master
mix (Applied Biosystems), 0.5 µL of TaqMan primer assays
(Supplementary Table 2) and 2.5 µL of H2O to a final volume
of 10 µL. A 96-well plate was used, and each sample was run

FIGURE 2 | Immunofluorescence staining analysis of germ cells in the undescended testis. (A), DAPI. (B), LIN28. (C), Merge (DAPI in green and LIN28+ in magenta).
LIN28 positive signals are present in germ cells with rarefaction zone in the nuclei. Dash lines represent seminiferous tubules. Arrows showing the rarefaction zone in
the germ cell nuclei. (D), DAPI. (E), UCHL1, (F), Merge (DAPI in green and UCHL1+ in magenta). Dash lines represent seminiferous tubules. Arrows showing the
rarefaction zone in the germ cell nuclei. Scale bar: 50 µm; (G), Quantification of the percentage of LIN28 positive Ad spermatogonia (Ad s.) in total Ad

spermatogonia. (H), The percentage of Ad spermatogonia in total LIN28 positive germ cells in the undescended testis.
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in duplicate. The PCR cycling conditions were one initiation
cycle at 95◦C for 10 min, followed by 45 cycles of 95◦C for 10 s,
60◦C for 15 s, 70◦C for 10 s, and finally, one cycle at 95◦C for
1 min. The raw Ct value was reported from the Roche RCR
software. The relative gene changes were calculated referring
to healthy adult testis using GAPDH as an internal control.
P-values were calculated by non-parametric One-way ANOVA
using GraphPad Prism 7.0.

Whole Mount Immunofluorescence
Assay
Each single cluster was dissociated by incubation in 100 µl
ready-to-use accutase for 10 min at 37◦C, then seeded on
2% human serum albumin coated microscope glass cover slips
(Propper) in a 24 well plate. New clusters formed after around
3 weeks. Clusters were washed three times with PBS and fixed
with 100% cold methanol (–20◦C pre-chilled) for 30 min, and
then washed three times in PBS and stored at 4◦C for several
weeks or analyzed immediately. The clusters were blocked in
0.1% Triton-X100, 1% BSA TBS for 2 h at room temperature
before the primary antibodies were applied. A polyclonal goat

anti-human VASA antibody (diluted 1:100; AF2030, Novus
Biologicals) was used. The following day each cluster was washed
six times with TBS and incubated in TBS with an Alexa Fluor
594 donkey anti-goat IgG antibody (diluted 1:500; Jackson
Immunoresearch) at 4◦C overnight. The DNA was visualized
using DAPI staining before mounting slides with ProLong Gold
Antifade Mountant (Life Technology). Samples were analyzed
with a Leica Microsystems. A Leica digital camera was used for
analysis and image capture.

RESULTS

Characterization of Germ Cells in the
Undescended Testis From Infant Boys
The mean age of boys having a biopsy was 1 year (range
0.7–1.5 years old) and the weight of the biopsy was on
average 7 mg (range 5–10 mg) (Figures 1A,B). All the testis
biopsies contained germ cells and Ad spermatogonia with
an average number of 1.3 and 0.07 per tubular transverse
section, respectively (Figures 1C,D). The histological profiles

FIGURE 3 | Derivation and propagation of human spermatogonial stem cell like cell clusters (SSCLCs) from infant boys. (A), Methodology of deriving SSCLCs from
testicular biopsies. One square is 1 mm2. (B), SSCLCs forming from primary cell culture. (C), First passage. (D), Third passage. (E), Fifth passage. Scale bar
100 µm. (F), Cluster forming time after passaging (mean and standard deviations). (G), Estimated SSCLC numbers (mean and standard deviations).
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are represented in Figures 1E–I and the Ad spermatogonia are
presented in Figure 1J.

SSCs Express LIN28 and UCHL1 in the
Infant Testis
To investigate the molecular nature of the SSCs, we
stained the infant testis with LIN28 and UCHL1 (PGP
9.5). LIN28 and UCHL1 were expressed in gonocytes
and spermatogonia, including spermatogonia with
rarefaction-zone in their nuclei (Figures 2A–F). Further
quantification of LIN28 positive cells and Ad spermatogonia
demonstrated that LIN28 was expressed around 60% of Ad
spermatogonia and 5% of LIN28 positive germ cells were Ad
spermatogonia (Figures 2G,H).

Derivation and Propagation of Human
SSC-Like Cells From Infant Boys
To propagate SSC in vitro, SSCs were the first enriched using a
differential plating method from digested single-cell suspension
(Figure 3A). After 2–3 weeks, cell clusters formed (Figure 3B).
Four to 16 clusters formed in primary cell culture and clusters
with a grape-like morphology were passaged. The maximum size
of cell clusters was around 100–200 µm in diameter. During
passaging, the clusters became less compact and large round cells
became visible (Figures 3C–E). Low magnification picture of cell
culture from different passages were shown in Supplementary
Figure 1. The new clusters formed after around 2 weeks in new
dishes, and the clusters were passaged five times in our setup
(Figure 3F). Every passage was derived from 4 to 6 clusters after
the first passage. The number of clusters was estimated to be more
than five thousand from 4 passages (Figure 3G).

Human SSC-Like Cells Express LIN28
and UCHL1
To investigate whether the cell clusters contained SSCs, colonies
were immuno-stained with LIN28 and UCHL1. LIN28 was
expressed in the primary clusters (Figures 4A–C). In addition,
cells containing a rarefaction-zone in the nuclei were also visible
by hematoxylin counterstaining, indicating the possible presence
of Ad spermatogonia in the clusters (Figure 4B). UCHL1 was
also expressed in SSCLCs (Figures 4D–F). The proportion
of UCHL1 positive cells in SSC clusters was heterogeneous
(Figures 4G,H). Rarefaction-zone in SSCLC was also shown
by PAS staining (Figure 4I). Immunohistochemistry analysis
of UCHL1 in adult testis as well as SSCLCs were shown
in Supplementary Figure 2. These data suggest that SSCLCs
contain cells which resemble the molecular and morphological
characteristics of endogenous SSCs.

qPCR Analysis of SSCLCs
To investigate whether SSCLCs express other adult SSC
markers, we collected the SSCLCs for qPCR analysis. Along
with analysis of LIN28A and UCHL1, we evaluated the other
SSC expression gene markers, PLZF (ZBTB16), G antigen 1
(GAGE1), integrin subunit alpha 6 (ITGA6) and integrin subunit
beta 1 (ITGB1) (Sadri-Ardekani et al., 2009). The level of

FIGURE 4 | SSCLC containing LIN28 + and UCHL1 + cells with rarefaction
zones. Immunostaining of cross sections of primary SSCLCs by (A),
anti-LIN28 in brown and hematoxylin staining shown in blue. Scale bar:
50 µm. (B), higher magnification (100 × in microscope) of A illustrating
rarefaction zones in nucleus. Arrows showing the rarefaction zones in the
nuclei. (C), negative control for IHC. Scale bar: 50 µm. (D), UCHL1, Scale
bar: 50 µm. (E), UCHL1, and DAPI merged. Scale bar: 50 µm. (F), Negative
control for immunofluorescence staining of UCHL1. Scale bar: 50 µm. (G),
UCHL1 and DAPI merged cluster of passage 3. Green is UCHL1, blue is
DAPI. Arrows showing the UCHL1 positive cells in SSCLCs. Scale bar:
50 µm. (H), immunochemical staining of SSCLC against UCHL1. Arrows
showing UCHL1 positive cells in the SSCLC of passage 3. Scale bar: 50 µm.
(I), PAS staining of SSCLC showing cells with rarefaction zones in passage 3.
Scale bar: 10 µm. Arrows showing the rarefaction zones in the nuclei.

mRNA of LIN28A, UCHL1, GAGE1, PLZF, ITGA6, and ITGB1
relative to the house keeping gene glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) in primary SSCLCs was presented in
Figures 5A–C. UCHL1, PLZF and ITGB1 were highly expressed
in SSCLCs compared to ITGA6, LIN28A, and GAGE1. To
trace the gene expression dynamics during passaging relative to
adult endogenous testicular expression level, the SSCLCs were
collected and analyzed from five passages. LIN28A, UCHL1,
GAGE1, PLZF, and ITGA6 expression level did not change
significantly during passaging. The expression level of ITGB1
showed a statistically significant reduction (Figure 5D). Testis
tissue from a Klinefelter patient without germ cells showed
lower LIN28A, GAGE, PLZF, ITGA6, and ITGB1 gene expression
compared with normal adult testis tissue, indicating these
markers are enriched in germ cells (Supplementary Figure 3).

SSCLCs Maintain SSC-Like Identity After
Vitrification and Long-Term Culture
To preserve the in vitro propagated SSCLCs for clinical
applications, vitrification method was used to cryopreserve
SSCLCs. Warmed SSCLCs resumed proliferation and new
SSCLCs formed after 35 days in culture (Figures 6A,B). To
investigate the germ cell identity in the long-term culture,
SSCLCs were passaged on coated glass cover slides, and new
clusters formed after around 3 weeks in passage 5 (Figure 6C).
The germ cell marker, VASA, positive immunofluorescence was
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FIGURE 5 | Germ cell marker expression analysis of SSCLCs. A-C, qPCR analysis showing the expression of germ cell markers LIN28A, UCHL1, GAGE1, ITGA6,
ITGB1 relative expression level to GAPDH in primary SSCLCs. The bars show standard deviations. (D), The relative expression levels of LIN28, GAGE, PLZF, ITGA6
and ITGB1 to adult testis and error bars in the SSCLCs of passage 1–5. P-values are showing the statistics analysis using one-way ANOVA.

detected in the clusters (Figures 6D–F). Negative control is
shown in the Supplementary Figure 4. The VASA specificity
was validated using adult health testis by co-staining of Sertoli
cell marker SOX9 (Supplementary Figure 5). These data show
that SSCLCs can be vitrified and warmed without significantly
affecting their capacity for in vitro proliferation.

SSCLCs Contains Somatic Cell Like Cells
The SSC niche consists of other cell types, including
mesenchymal cells. Since the SSCLCs were clearly not
homogenous for SSC-like cells, we addressed whether our
clusters contained somatic-cells such as mesenchymal cells
using immunostaining against Vimentin, SOX9, and ACTA2
(Zheng et al., 2014). Vimentin was expressed in sub-population
of SSCLCs, however, SOX9 and ACTA2 expressions were
not detected in SSCLCs (Figures 7A–C). The positive
controls for Vimentin, and ACTA2 staining are shown in
Supplementary Figure 6. We also performed qPCR to detect

the transcripts encoding Anti-Mullerian Hormone (AMH),
which is expressed in Sertoli cells, Insulin-like 3 (INSL3) as a
Leydig cell marker and fibroblast-specific protein 1 (FSP1) as
a fibroblast cell marker. Whilst we detected amplified signal
of FSP1 (Supplementary Figure 7), AMH and INSL3 were
undetectable (data not shown). These findings suggest that in
addition to SSCs the SSCLCs may contain mesenchymal cells as
well as fibroblasts, consistent with the natural stem cell niche.

DISCUSSION

The present study demonstrates for the first time the
establishment of human SSCLCs that can be propagated
from small testis biopsies obtained in infant boys undergoing
surgery for cryptorchidism. This is an important step forward in
the development of a future fertility preserving strategy for very
young boys at risk of losing capacity for fertility in adulthood.
We managed to propagate numerous SSCLCs from as little as
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FIGURE 6 | SSCLCs maintain their SSC-like identity after vitrification and long-term propagation (A), Frozen cluster. (B), Culture for 35 days of growth post warming.
(C) Bright-field image of new clusters (passage 5), scale bar: 400 µm. (D–F) whole mount immunostaining of SSCLCs at passage 5, D, DAPI; E, VASA; F, Merge.
Scale bar: 100 µm.

5 mg testicular tissue. This quantity is 20 times lower than that
used in previous studies, which used adult testis tissue (Sadri-
Ardekani et al., 2009; Gat et al., 2017). Since transplantation
of a suspension of cells from neonatal testis resulted in a high
efficiency in mice (Shinohara et al., 2001), the propagation of
SSCLCs from such small amounts of neonate testis tissue may be
due to an enrichment of SSCs or a higher proliferation capacity of
SSCs and its SSC precursors, gonocytes and pre-spermatogonia
in infant boys. Our data indicate that the proliferative potential
of SSCs from young boys may be greater than those obtained
from adults and possess a hitherto undiscovered potential for
proliferation in vitro.

The SSCLC identity was confirmed by expression of several
SSC specific markers. We found SSCLCs contained cells, which
displayed a nucleus with a rarefaction-zone, one of the unique
features of Ad spermatogonia and considered to be the true SSC
(Boitani et al., 2016). We also observed that some cells have two
rarefaction-zones, which we did not observe in our testicular
samples. However, two or three rarefaction zones in human
Ad spermatogonia was also reported (von Kopylow et al., 2012).
To our knowledge this is the first study to show that in vitro

propagated cells contain a rarefaction-zone in the nucleus,
the majority of which (60%) expressed LIN28. LIN28 has
recently been demonstrated to be expressed in undifferentiated
spermatogonia in several mammals including human (Zheng
et al., 2009; Aeckerle et al., 2012; Lee et al., 2016; Ma et al.,
2016). The SSCLCs also contain cells that express UCHL1, which
is also expressed in spermatogonia of primates (Devi et al.,
2015; von Kopylow and Spiess, 2017). The detection of mRNA
encoding other SSC markers such as PLZF, ITGA6 and ITGB1
further confirmed the stem-like properties of the SSCLCs (Sadri-
Ardekani et al., 2009; Sadri-Ardekani et al., 2011; von Kopylow
and Spiess, 2017). These markers were consistently expressed
in each passage, indicating the maintenance of the SSC-like
cell identity in a long-term in vitro culture. The expression
level of LIN28A is very low based on the qPCR analysis,
although immunocytochemistry of LIN28 indicating the high
expression level in SSCLCs. The reason is probably due to
our antibody can recognize LIN28A and LIN28B, however, the
qPCR results only indicated the expression level of LIN28A.
Wu et al. (2009) identified that LIN28B is the main isoform of
LIN28 in human SSC.
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FIGURE 7 | Mesenchymal cell markers in SSCLCs Immunohistochemical
analysis of Vimentin (A), ACTA2 (B), SOX9 (C) and negative control (D). Scale
bar 50 µm. Stars represent Vimentin negative area or cells in SSCLC.

Although UCHL1, PLZF, and ITGA6 were considered specific
to SSCs in testis, two recent papers have demonstrated that
other testicular cells also show expression of those markers
(Eildermann et al., 2012; Kossack et al., 2013). We have been able
to confirm these results by showing qPCR expression in testis
tissue from a Klinefelter patient. However, the expression level
of the aforementioned genes was lower in the adult Klinefelter
patient than normal adult testis tissue, suggesting those markers
were expressed in SSCs.

Recently, human spermatogonia were intensively investigated
by single cell RNA sequencing and revealed the high
heterogeneity in neonatal as well as adult human testis (Guo et al.,
2017, 2018; Wang et al., 2018; Sohni et al., 2019). It was previously
understood that undifferentiated spermatogonia consisted of two
cell types in the adult testis, Ad and Ap spermatogonia. Single
cell RNA sequencing and bioinformatic analyses have revealed
four type of undifferentiated spermatogonia in adult testis and
three germ cell subsets in neonatal testis. UCHL1, PLZF and
LIN28 are expressed both undifferentiated and differentiated
spermatogonia (Sohni et al., 2019; Tan and Wilkinson, 2019).
Because these transcripts are not specific for any subpopulation
of undifferentiated spermatogonia, it is not possible to determine
which subtype of spermatogonia is proliferating in vitro. The
single cell sequencing needs to be performed from cultured
cells to align the database of neonatal and adult testis and to
characterize the proliferated SSCLC and its origins.

There have been several studies focused on propagation of
human SSCs from adult testes. Sadri-Ardekani et al. (2009) were
the first to report successful propagation of human SSC and
showed germline stem cell-like cell colonies formation. Several
groups subsequently have described the derivation of embryonic
stem cell-like cells (Golestaneh et al., 2009; Kossack et al., 2009;

Mizrak et al., 2010), clusters of human testicular fibroblast cells
(Ko et al., 2010), or clusters of mesenchymal progenitors from
primary cultures of human adult testis (Chikhovskaya et al.,
2014). The morphology of the SSC-like clusters obtained in our
study were grape-like cell aggregates, which contrast to those
previously published articles where colonies showed more sharp-
edged and compact embryonic stem cell-like colonies (Mizrak
et al., 2010). Our approach to enrich SSCs by collecting floating
cells may have allowed successful propagation of SSCLC, while
other two other studies used the cells attached to the bottom
of the culture dish for propagation, which formed testis like
organoids or testis-cord like structures (Mincheva et al., 2018;
von Kopylow et al., 2018). Indeed, floating cells have been also
cultured in other two studies, however, the SSCs did not show
long term survival in their culture systems and the predominant
cells in the dishes were mesenchymal (stem) cells (Chikhovskaya
et al., 2014; Zheng et al., 2014). Chikhovskaya’s culture media
did not include human glial cell line-derived neurotrophic factor
(GDNF) which is believed a central regulator for determination
of undifferentiated spermatogonia. It was shown that gene-
targeted mice with one GDNF-null allele showed depletion of
stem cell reserves, whereas mice overexpressing GDNF showed
accumulation of undifferentiated spermatogonia (Meng et al.,
2000). The main differences of our culture system with Zheng’s
system was that we subpassaged SSCLCs instead of passaging
all cells from dish, based on the outcomes suggested by a
primate study which showed the separation of somatic and germ
cells is required to establish primate spermatogonial culture
(Langenstroth et al., 2014).

In the present study, we estimated there was a 1000-fold
increase in SSCLC number after three passages. It is currently
unknown whether this will provide sufficient numbers of SSCs to
warrant transplantation. However, we did not observe apparent
signs of a reduced proliferative capacity of SSCLCs during
passaging suggesting that further passaging is possible. This
may be particularly important, since cultures of human SSC
beyond three passages may diminish the potential contamination
from cancer cells, due to the elimination of acute lymphoblastic
leukemia cells from human testicular cell cultures after 14 days
culture (Sadri-Ardekani et al., 2014).

There are several limitations of our study and some questions
remain unanswered. The SSCs could not be obtained purely
as there are some somatic-like cells including fibroblasts. Since
we did not quantify the population of SSCs in SSCLCs during
passaging and the fact that SSCLCs contain mesenchymal cells,
the proliferation rate of SSCs could not be calculated precisely.
In addition, we did not compare the freshly collected or
thawed biopsy samples in terms of their profile of molecular
characteristics. Furthermore, the functionality of the propagated
SSCs was not tested. The xenotransplantation of dissociated
cells from SSCLCs into nude mice should be performed to
demonstrate the new colony formation in the mouse SSC niche.

In conclusion, we succeeded in long-term culture of human
SSCLCs starting with small pieces of testicular tissue from
infant boys. The presence of specific markers of early germ cells
confirmed the presence of SSC-like cells which were sustained
in culture for five passages. The results are encouraging for
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a continued research effort to develop a clinically acceptable
solution for maintaining fertility in young boys in need of
preserving fertility.
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