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Gender differences in individual immune responses to external stimuli have been elucidated in
many invertebrates. However, it is unclear if gender differences do exist in the Hong Kong
oyster Crassostrea hongkongensis, one of the most valuable marine species cultivated along
the coast of South China. To clarify this, we stimulated post-spawning adult C.
hongkongensis with Vibrio harveyi and lipopolysaccharide (LPS). Gender-based differences
in some essential functional parameters of hemocytes were studied via flow cytometry.
Obvious gender-, subpopulation-, and immune-specific alterations were found in the
hemocyte immune parameters of C. hongkongensis. Three hemocyte subpopulations were
identified: granulocytes, semi-granulocytes, and agranulocytes. Granulocytes, the chief
phagocytes and major producers of esterase, reactive oxygen species, and nitric oxide,
were the main immunocompetent hemocytes. Immune parameter alterations were notable in
the accumulation of granulocyte esterase activities, lysosomal masses, nitric oxide levels, and
granulocyte numbers in male oysters. These results suggest that post-spawning-phase male
oysters possess amore powerful immune response than females. Gender and subpopulation
differences in bivalve immune parameters should be considered in the future analysis of
immune parameters when studying the impact of pathogenic or environmental factors.

Keywords: gender-based difference, cellular immunity, hemocyte subpopulations, Crassostrea hongkongensis,
immune stimulation
INTRODUCTION

Gender-specific differences in hemocyte immuno-competence have been reported in several aquatic
invertebrates (1, 2). For example, in the sea urchin Paracentrotus lividus, females possess more
immunocytes, consisting of phagocytes, uncolored spherulocytes, and the coelomocyte lysate, than
males (3). Studies on the immune system of the clam (Ruditapes philippinarum) showed that, during
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the pre-spawning period, females have more active hemocytes than
males (4). A higher phagocytic index was observed in female
triploids compared with male Pacific oysters (Crassostrea gigas)
(5). In contrast, males of the sea cucumber Apostichopus japonicus
have a stronger antioxidant ability and more effective complement
system than females after spawning (6). These studies suggest that
gender-based differences in immune function and disease
susceptibility are a common feature of aquatic invertebrates.

Many studies of bivalves have reported the impacts of external
factors, such as pathogenic bacteria (7), salinity (8), temperature
(9), and pollutants (10, 11), on hemocyte immune parameters.
However, few reported investigations have examined gender-
related differences in immune parameters in response to
environmental factors. The phagocytic activity of female blue
mussels, Mytilus edulis, showed a higher sensitivity to mercury
than that of the males (12). Female C. corteziensis oysters were
found to be more susceptible than males to thermic, mechanical,
and mechanical-thermic stress conditions (13). Apoptosis,
mortality, and oxidative stress in male New Zealand
Greenshell™ mussels (Perna canaliculus) were observed to
increase after exposure to Vibrio sp. DO1 (1). These studies have
provided evidence of gender-based differences in some immune
parameters of hemocytes toward external factors. However, bivalve
hemocytes are composed of multiple functional heterogeneous cell
types, and the various cell types have different functions (14).
Therefore, gender-related differences in the immune parameters of
hemocyte subpopulations should be investigated.

The hemocytes of bivalves can typically be separated into
several subpopulations based on their morphological and
cytochemical features, such as cell size, granularity, and
nucleus-cytoplasm (N:C) ratio (14). Many studies have led to
the characterization of the hemocyte subpopulations of different
bivalves, such as green-lipped mussel (Perna canaliculus) (15),
horse mussel (Modiolus kurilensis) (16), and pearl oyster (Pteria
hirundo) (17). For example, circulating hemocytes of eastern
oysters (C. virginica) were classified as agranulocytes,
intermediate hemocytes, granulocytes, and small granulocytes
(18) . C. gigas hemocytes were grouped into three
morphologically different subpopulations that included
agranulocytes, semi-granulocytes, and granulocytes (19).
Although different hemocyte populations have been reported
for many bivalves, classifying the hemocyte morphologies in
individual species is necessary, as not all bivalves have the same
types and proportions of hemocytes (20, 21). Additionally,
differences in hemocyte subpopulations may be important
causative factors in the above-mentioned gender-based
differences in the immune parameters of hemocytes. However,
few reports are available on gender-related differences in the
immune responses of subpopulations after immune stimulation.

In the present study, we aimed to investigate gender-specific
differences in the immunological responses of different oyster
hemocyte subpopulations following exposure to lipopolysaccharide
(LPS) andVibrio harveyi. Thehemocyte subpopulations in theHong
Kong oyster C. hongkongensis were separated by flow cytometry
based on their morphological features. Molecular probes were then
used to characterize the cells’ corresponding immune functions.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Oyster and Hemocyte Collection
Healthy post-spawning adults of C. hongkongensis (shell height
11.23 ± 0.06 cm) were collected in July 2020 from a commercial
farm in Taishan, Jiangmen, Guangdong Province, China. The
oysters were maintained in aerated sand-filtered seawater at a
salinity of 20 ± 1 psu and temperature of 23-25°C, and fed twice
daily with Isochrysis galbana and Chaetoceros muelleri for 7 days.

Vibrio harveyi was cultured in 2216 broth at 28°C for 14 h and
harvested by centrifugation (5000 × g, 10 min). After washing
twice with aseptic seawater, V. harveyi was resuspended in
aseptic seawater at a final concentration of approximately 1 ×
107 CFU/mL. LPS (from Escherichia coli O111: B4, Sigma) was
dissolved in aseptic seawater to a concentration of 0.5 mg/mL.
We randomly divided 180 oysters into three groups, and each
received injections of 100 mL LPS solution (LPS group), V.
harveyi suspension (V. harveyi group), or aseptic seawater
(control group) into the adductor muscle. Each group
contained three replicates, with 20 oysters per replicate.

The hemolymph was sampled from the posterior adductor
muscle of C. hongkongensis at 24 h post-injection using a 5-mL
syringe fitted with a 22-G needle and mixed immediately with an
equal volume of modified Alsever’s solution (glucose 20.8 g/L,
sodium chloride 13.5 g/L, sodium citrate 8.0 g/L, EDTA-Na2 4.28
g/L, 600 mOsm/kg, 0.22 mm filtered), then centrifuged at 4°C,
500 × g for 10 min. The hemocytes pellets were resuspended to
1.5-2 × 106 cells/mL in modified L15 medium (Leibovitz’s L15
medium with 4.42 g/L NaCl, 3.9 g/L MgCl2, 1 g/L MgSO4, 0.6 g/L
CaCl2, 0.54 g/L KCl, streptomycin 100 mg/mL, penicillin 100 IU/
mL, 600 mOsm/kg, 0.22 mm filtered) for later analysis. To reduce
individual variation, the hemocytes from three individuals per
group were pooled into one sample, and at least five male and
five female replicates were used in the following assays. Oyster
sex was judged by visually inspecting the males and females
releasing gametes. The hemocyte concentration in the
hemolymph was evaluated using manual counting methods
with a Neubauer chamber.

Subpopulations Analysis of Hemocytes
The histological characterization of hemocytes was performed
under light microscopy following Wright-Giemsa staining (22).
Stained slides were observed using a light microscope (Leica
DM2000, Leica, Heerbrugg, Switzerland), and hemocyte
subpopulations were characterized according to their
morphological features.

Flow cytometric analyses of the hemocytes subpopulations
were conducted with a FACS Arial II flow cytometer (Becton,
Dickinson and Company). Briefly, 200 mL of hemocyte
suspension was stained with SYBR-Green I (10× final
concentration, Invitrogen, Life Technologies) in the dark for
1 h at 25°C. The fluorescence emissions were measured in the
FL1 channel (530 nm). Hemocyte subtypes were distinguished
using the SYBR Green positive cell density-plot according to
their morphological parameters, side scatter (SSC) for internal
granularity, and forward scatter (FSC) for relative size.
March 2021 | Volume 12 | Article 659469
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Measurement of Immune Parameters by
Flow Cytometry
The hemocyte parameters were analyzed using FACS Arial II
flow cytometry. A total of 10,000 events were acquired for each
sample. The data were displayed as cell cryptograms indicating
the relative size, internal granularity, and fluorescence channels
corresponding to the fluorescent markers used. The fluorescence
frequency distribution histogram of each hemocyte
subpopulation was then obtained. The fluorescence recorded
depended on the monitored immunological parameters:
hemocyte late apoptosis or necrosis was measured in the
propidium iodide (PI) channel (610/20 nm), and the others
were evaluated in the FITC channel (530/30 nm). The data were
analyzed using FlowJo v10.3 software (FlowJo LLC, Ashland,
OR). All analyses were completed within 2 hours.

Apoptosis and necrosis in hemocytes were tested with a
commercial detection kit using Annexin V-FITC and PI
according to the optimized manufacturer’s instructions
(Beyotime Biotechnology, China). Briefly, 100·µL of hemocyte
suspension (0.5-1 × 106 cells/mL in annexin V-FITC binding
buffer adjusted with NaCl to be isotonic to the oysters’
environments) was incubated with 5·µL Annexin V and 10·µL
PI solutions. After a 15 min incubation at 25°C in the dark, the
cell solutions were diluted 1:4 with binding buffer. Early
apoptosis-associated fluorescence (FITC) and late apoptosis or
necrosis-associated fluorescence (PI) were measured by flow
cytometry. The bivariate analysis allowed the discrimination of
viable (FITC−/PI−), early apoptotic (FITC+), and late apoptotic
or necrotic hemocytes (FITC+/PI+).

The phagocytic activity was measured using 1-µm diameter
yellow-green fluorescent polystyrene beads (Fluoresbrite,
PolyScience 17154). The hemocytes were incubated in M-L15
in the dark for 1 h at 25°C at a 1:100 hemocyte-bead ratio before
flow cytometry analysis. The phagocytic activity of each
hemocyte subpopulation was expressed as the percentage that
engulfed at least three fluorescent beads.

The mitochondrial mass, lysosomal mass, non-specific
esterase activity, reactive oxygen species (ROS) level, nitric
oxide (NO) level, and intracellular calcium concentration were
measured using commercialized probes and chemical
compounds (Beyotime Biotechnology, China) by following the
manufacturer’s instructions. Briefly, 200 mL of hemocyte
suspension was mixed with the corresponding probes, then
incubated at 25°C in the dark before processing with flow
cytometry. The final concentration and incubation time of the
probes are listed in Table 1. The parameters in each hemocyte
subpopulation were expressed as the mean fluorescence intensity
(MFI) in arbitrary units (A.U.).

Statistical Analysis
The data were first tested for normality using the Shapiro-Wilk’s
test and for homogeneity of variance using Levene’s test.
Percentage data were arcsine-transformed, and other data were
log10 transformed. Principal component analysis (PCA) was
used to characterize the relationships among the immune
function variables. Two-way MANOVA was used to test for
Frontiers in Immunology | www.frontiersin.org 3
the gender, immune stimulation, and interaction effects on all
measured parameters, and Pillai’s trace was used to assess
significance. Two-way ANOVA was then used to test for
gender, immune stimulation, and interaction effects on each
measured parameter. We used Tukey’s multiple comparisons test
for post hoc analysis to compare individual means. Spearman’s
correlation analysis was used to assess the relationship among
the immunological parameters with the corrplot (23) and corrr
(24) packages in R. Data are presented as the mean ± standard
deviation (SD), and p < 0.05 was used to determine significance.
RESULTS

Microscopic and Flow Cytometric
Characteristics of the Hemocytes
The cytological observations outlined in Figure 1A show that
three subtypes of hemocytes, agranulocytes (A), semi-
granulocytes (SG), and granulocytes (G), were identified in the
Hong Kong oyster C. hongkongensis based on size and internal
complexity on Wright-Giemsa staining. The cells were further
classified using the cell density plot, which represents the relative
cell size (FSC-H) and internal complexity (SSC-H) from the flow
cytometry analysis (Figure 1B). Specifically, G, the largest cell
subpopulation, was characterized by cytoplasm with many large
granules and a relatively small N:C ratio; whereas A represented
the smallest and the least complex cells with no granules in the
cytoplasm and the largest N:C ratio. SG were identified as
median types between agranulocytes and granulocytes. No
significant differences were detected between males and
females with regards to the size and complexity of the hemocytes.

Functional Characterization of
Hemocytes Subpopulations
Multivariate Data Analyses of All
Hemocyte Subpopulations
We observed strong immune stimulation, gender, and
interaction effects on all measured parameters (MANOVA,
Pillai’s trace = 4.582, F22,32 = 1.518, p < 0.001; Pillai’s trace =
0.730, F11,15 = 3.692, p = 0.01; and Pillai’s trace = 1.628, F22,32 =
1.980, p < 0.001, respectively). Additionally, PCA was performed
on the immunological parameters to identify intrinsic
immunological trends and the differential immunological
parameters responsible for stimulation. PCA showed that
TABLE 1 | Final concentration and incubation time of probes used in this study.

Immune parameters Fluorescent probe Final
concentration

Incubation
time

Mitochondrial mass Mito-Tracker Green 100 nmol/L 15 min
Lysosomal mass Lyso-Tracker Green

DND-26
75 nmol/L 45 min

Non-specific esterase
activity

Fluorescein diacetate 5 mmol/L 30 min

ROS DCFH-DA 10 mmol/L 20 min
NO DAF-FM DA 5 mmol/L 20 min
Calcium concentration Flou-4 AM 2 mmol/L 20 min
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56.9% of the total variance was explained by two principal
components (Figure 2). PC1 represented 36.8% of the total
variance, indicating a significant separation between males and
females. The characteristics of the hemocyte functions associated
with males were higher NO levels, lysosome mass, and esterase
activities and late apoptotic or necrotic ratios coupled with lower
Frontiers in Immunology | www.frontiersin.org 4
early apoptotic ratios. Moreover, there was a clear separation
between the four stimulation groups on PCA.

Composition Changes in Hemocytes
After Stimulations
The hemocyte concentration in C. hongkongensis under the
control conditions was 1.12 ± 1.1 × 106 cells/mL. The total
hemocyte count (THC) did not vary statistically between the
genders under each fixed condition but was reduced by two
immune stimulations. Additionally, the sizes of three hemocyte
subpopulations were significantly affected by gender, immune
stimulation, and their interactions, at most time points in the
experiment (Table S1). In male oysters, granulocyte and
agranulocyte numbers significantly increased and decreased,
respectively, after the two immune stimulation types
(Figure 3); however, in females, the number of semi-
granulocytes significantly increased, whereas granulocytes and
agranulocytes decreased, after the two immune stimulations
(Figure 3).

Annexin V-FITC/PI Assay
Figure 4A shows representative Annexin V-FITC vs PI scatter
diagrams for the different hemocyte subpopulations, with
quadrant gates showing four populations. Most granulocytes
were viable and non-apoptotic. Data from the four populations
were further plotted in Figures 4B, C, which showed that both
apoptotic and necrotic ratios were significantly higher in semi-
granulocytes and agranulocytes than in granulocytes.

The early apoptotic ratios of total hemocytes, semi-
granulocytes, and agranulocytes were significantly affected by
immune stimulation, gender, and their interactions, at most time
points (Table S1). Immune stimulation had no effect on the early
apoptotic ratios of hemocyte subpopulations in male oysters but
affected female oysters. Challenging the oysters with V. harveyi
significantly increased the early apoptotic ratios of the semi-
granulocytes and agranulocytes. Both LPS and V. harveyi
stimulations significantly increased the late apoptotic or
necrotic ratios of all hemocytes.
A B

FIGURE 1 | Morphological characterization of C. hongkongensis hemocytes. (A) Light micrographs of different hemocyte subpopulations after Wright-Giemsa
staining. (B) Flow cytometric dot plot of size (FSC) against internal complexity (SSC) of hemocyte subpopulations of a representative sample. G, granulocytes; SG,
semi-granulocytes; A, agranulocytes.
FIGURE 2 | PCA biplot showing the relationships among all immunological
parameters and four exposure groups (LPS-infected males, LPS-infected
females, V. harveyi-infected males, and V. harveyi-infected females) for all
hemocyte subpopulations. 1, granulocytes; 2, semi-granulocytes; 3,
agranulocytes. Mito, mitochondrial mass; NO, nitric oxideNO level; Ca,
calcium content, Pha, phagocytic ratio; Est, esterase activity; ROS, ROS level;
Lyso, lysosome mass; Apo, early apoptotic ratio; Nec, late apoptotic or
necrotic ratio.
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Phagocytic Activities of Hemocyte Subpopulations
Flow cytometry and fluorescent microspheres were used to detect
the phagocytic activities of the different subpopulations. Both
granulocytes and semi-granulocytes showed phagocytic capacities,
whereas agranulocytes did not (Figure 5A). The percentage
phagocytosis of granulocytes was significantly higher (p < 0.001)
than that of semi-granulocytes (Figure 5B). The phagocytic ratios of
total hemocytes and granulocytes were significantly affected by
interactions between immune stimulation and gender during the
experiment (Table S1), and the phagocytic indexes of granulocytes
showed a significant increase after LPS stimulation (Figure 5B).

Six Immunological Parameters of
Hemocyte Subpopulations
ROS and NO levels, lysosome and mitochondrial masses,
calcium concentrations, and non-specific esterase activity were
evaluated using the flow cytometer. The relative mean
fluorescence intensities of the granulocytes for the six
immunological parameters were significantly higher compared
with the corresponding semi-granulocyte and agranulocyte
readings under all situations (Figure 6).

After immune stimulation with LPS or V. harveryi, lysosomal
masses in all hemocyte subpopulations were significantly altered
A

B C

FIGURE 4 | Results of the annexin V-FITC and propidium iodide (PI) assay. (A) Representative scatter diagrams of three hemocyte subpopulations from C.
hongkongensis. (B) Early apoptotic hemocyte ratios of different hemocyte subpopulations. (C) Late apoptotic or necrotic hemocyte ratios of different hemocyte
subpopulations. The means denoted by different letters for each fixed hemocyte subpopulation are significantly different among different treatments (p < 0.05).
G, granulocytes; SG, semi-granulocytes; A, agranulocytes.
FIGURE 3 | Number of all hemocyte (ALL), granulocytes (G), semi-
granulocytes (SG), and agranulocytes (A) of female and male oysters after
LPS, V. harveyi, or control stimulation. The means denoted by different letters
at each fixed hemocyte subpopulation are significantly different among
different treatments (p < 0.05).
March 2021 | Volume 12 | Article 659469
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by interactions between immune stimulation and gender
(Table S1). Granulocytes and semi-granulocytes from male
oysters exhibited significantly higher lysosomal masses after
LPS stimulation (Figure 6A).

Mitochondrial masses of total hemocytes, granulocytes, and
semi-granulocytes were significantly affected by immune
stimulation, gender, and their interactions, at most time points
(Table S1). The granulocytes of male and female oysters showed
significantly lower mitochondrial masses under the two
stimulation conditions (Figure 6B).

The esterase activity of each hemocyte subpopulation was
significantly affected by interactions between immune
stimulation and gender (Table S1). Esterase activity values in
all the hemocytes of female oysters were significantly lower than
those of males (Figure 6C). Furthermore, both LPS and V.
harveryi challenge significantly increased the esterase activities
of granulocytes from male oysters, whereas those from females
exhibited no change.

Granulocyte ROS production levels were significantly affected
by immune stimulation and gender (Table S1). As shown in
Figure 6D, immune stimulation did not affect the intracellular
ROS concentration of any hemocyte subpopulation in male
oysters; whereas LPS and infection by V. harveryi significantly
increased the ROS concentration of granulocytes in
female oysters.

Immune stimulation and the interactions between immune
stimulation and gender significantly affected the intracellular
calcium levels of granulocytes (Table 1). As shown in Figure 6E,
all hemocyte subpopulation of female oysters showed no
significant response in calcium levels to immune stimulations.
However, the intracellular calcium levels in male oyster
granulocytes were upregulated after LPS stimulation and
downregulated after V. harveryi challenge.

NO production levels were significantly affected by
interactions between immune stimulation and gender
Frontiers in Immunology | www.frontiersin.org 6
(Table S1). After immune stimulation, NO production levels
of total hemocytes, granulocytes, and semi-granulocytes
significantly increased in both male and female oysters.
However, the rate of increase in females was lower than that
in males.

Correlation Analysis for
Immune Parameters
A correlation heatmap and network diagram were applied to
represent the Spearman’s correlation coefficients among the
immunological parameters of granulocytes, including lysosome
and mitochondrial masses; NO, ROS and calcium levels; and
phagocytic, early apoptotic, and late apoptotic or necrotic ratios
of the total hemocytes. The significant correlations suggest that
the parameters were in equilibrium with each other or the
concentrations of correlated parameters were simultaneously
controlled by the different forms of immune stimulation. As
shown in Figure 7A, granulocyte NO levels were positively
correlated with phagocytic ratio, esterase activities, and
lysosome mass, and negatively associated with mitochondrial
mass. Esterase activities showed a positive correlation with
lysosome mass, late apoptotic or necrotic ratio, and phagocytic
ratio. Moreover, in the Spearman’s analysis, NO levels were
adjacent to the phagocytic ratios, and esterase activities were
close to lysosome masses (Figure 7B), indicating biological
relationships between them.
DISCUSSION

The Hong Kong oyster C. hongkongensis is one of the most
commercially farmed oysters in China. However, the frequent
occurrence of infectious diseases in C. hongkongensis, especially
after spawning, is a major problem in the oyster aquaculture
industry. To prevent mortality and subsequent management in
A B

FIGURE 5 | Phagocytic capability of each hemocyte subpopulation. (A) Histogram of fluorescence representing phagocytic activity recorded in different hemocyte
subpopulations: M1, hemocytes that engulfed three or more fluorospheres. (B) Phagocytic ratios of different subpopulations after stimulation. The means denoted by
different letters for each fixed hemocyte subpopulation are significantly different among the different stimulation types (p < 0.05). G, granulocytes; SG, semi-
granulocytes; A, agranulocytes.
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Hong Kong oyster farms, an understanding of the oyster
immune system is crucial (25). Genetic studies have shown
that mollusk hemocytes are essential immune cells with many
functions, including phagocytosis, hemolymph clotting,
encapsulation, and the production of antimicrobial compounds
(22). Hemocytes in mollusks comprise morphologically and
functionally diverse subpopulations characterized by different
physical properties such as cell size, granularity, and nucleus-
cytoplasm ratio (14). In the present study, we used Wright-
Giemsa staining and flow cytometry to characterize the
hemocyte subpopulations from the Hong Kong oyster C.
hongkongensis, and agranulocytes, semi-granulocytes, and
granulocytes were easily distinguished and separated. Three
hemocyte subpopulations have also been identified in other
Frontiers in Immunology | www.frontiersin.org 7
oyster species: the Pacific oyster C. gigas (19), the Suminoe
oyster C. ariakensis (26), and the European flat oyster Ostrea
edulis (27). Li et al. (25) reported that the circulating hemocytes
of C. hongkongensis could be separated into hyalinocytes and
granulocytes. It is noteworthy that the osmolality of the
anticoagulant used in that study was approximately 1000
mOsm/kg, which is much higher than the normal osmotic
pressure in Hong Kong oysters (< 650 mOsm/kg). The high
osmotic pressure may have caused cell morphology changes, and
thus the hyalinocytes were suspected to be composed of semi-
granulocytes and agranulocytes. Cell sorting combined with the
transcriptome analysis of C. hongkongensis hemocytes also
indicated that the semi-granulocytes and agranulocytes were
two different populations (Lu et al., unpublished).
A B

D

E F

C

FIGURE 6 | Immunological characteristics of all hemocyte subpopulations after stimulation. (A) lysosomal mass, (B) mitochondrial mass, (C) esterase activity,
(D) ROS level, (E) intracellular calcium concentration, (F) NO level. The means denoted by different letters for each fixed hemocyte subpopulation are significantly
different among the different stimulations (p < 0.05). G, granulocytes; SG, semi-granulocytes; A, agranulocytes.
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In the present study, we discovered that lysosome and
mitochondrial masses, NO and ROS levels, and phagocytic and
non-specific esterase activities were mainly concentrated in
granulocytes under all conditions. Granulocytes were reported
to be the main immunocompetent hemocytes in C. gigas (19),
Pila globose, and Lamellidens marginalis (28); therefore, we
speculated that granulocytes are also the principal immune
hemocytes in C. hongkongensis. Many studies have indicated
that the immunological parameters of mollusk hemocytes show
some variations in response to different immune stimulations (2,
4). However, only a few studies have highlighted the influence of
gender on immune functions in marine mollusks; therefore, we
used multivariate statistical methods to evaluate the effects of
immune stimulation and gender on immunological parameters.
Both the MANOVA and PCA results showed that both immune
stimulation and gender affected the hemocyte immune
parameters in C. hongkongensis, and an interaction effect was
also evident. However, almost no differences in the hemocyte
immune parameters of male and female oysters under normal
conditions were found. To our knowledge, this is the first report
describing gender-related differences in the immunological
parameters of the Hong Kong oyster C. hongkongensis after
immune stimulation.

THC is an essential immunological parameter for predicting
the health of mollusks because hemocytes migrate from the
circulatory system to tissues to help resist invading pathogens.
This study showed that the hemolymph of C. hongkongensis had
a hemocyte concentration of 1.12 ± 1.1 × 106 cells/mL, which was
lower than the concentration measured by Li et al. (25) (2.52 ±
1.1 × 106 cells/mL). Previous studies have shown that hemocyte
concentrations can be affected by endogenous (e.g., age, size,
gender, and reproductive period) and exogenous (e.g.,
temperature, salinity, pH, and pollutants) factors (29, 30). It is
likely the differences in the total number of hemocytes seen in the
present study and that by Li et al. (25) were due to size,
reproductive period, or sampling season. In agreement with
previous studies (31, 32), two immune stimulation types led to
Frontiers in Immunology | www.frontiersin.org 8
a decrease in the THC, but no significant difference in the THC
was found between genders. Similarly, Cheng et al. (33) also
reported no significant difference in the THC between genders of
Macrobrachium rosenbergii, and Duchemin et al. (5) observed
that THC did not differ with gender in triploid or diploid C.
gigas. Reportedly, the percentages of the different cell
subpopulations in the hemolymph can vary according to
environmental and pathogenic stimulation (2, 34). We found
no significant differences in the numbers of hemocyte
subpopulations between male and female oysters under normal
conditions in this study. However, two immune stimulations
induced increases in the agranulocyte populations of male
oysters and decreases in those of females. Conversely, a higher
proportion of active granulocytes was observed in female
Ruditapes philippinarum clams (4). This difference may be
attributed to the different reproductive states of the animals, as
Matozzo and Marin (4) sampled clams during the pre-spawning
phase, whereas the population in the present study was collected
after spawning. Because granulocytes were the main
immunocompetent hemocytes, the increased proportion of
granulocytes in males shows that the males had more active
hemocytes than the females under immune-activated situations.
These findings demonstrate that immune stimulation induced
the gender-specific stress responses in hemocyte subpopulations.

Annexin-V assays, which are reliably used to detect apoptotic
and necrotic cells in mammals, were used to quantify the innate
defense mechanism of C. hongkongensis by adjusting the reagent
osmolalities to 600 mOsm/kg. This work demonstrated the high
percentages of late apoptotic or necrotic cells in total hemocytes
from male and female oysters after immune stimulation. A
significant inverse correlation (r = −0.85, p < 0.05) was
observed between the number of total hemocytes and the
percentage of late apoptotic or necrotic cells. Similar to
previous findings (31), the phenomenon revealed that the
disappearance of the hemocytes correlated with cell necrosis
and apoptosis. Moreover, as previously observed in C. gigas (5),
no gender difference in late apoptosis and necrosis of hemocytes
A B

FIGURE 7 | Spearman’s correlation analysis of immune parameters. (A) Heatmap of correlation coefficients, (B) Correlation network diagram. Red to sky-blue
represents positive to negative correlations. Mito, mitochondrial mass; NO, NO level; Ca, calcium content, Pha, phagocytic ratio; Est, esterase activity; ROS, ROS
level; Lyso, lysosome mass; Apo, early apoptotic ratio; Nec, late apoptotic or necrotic ratio.
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was observed in C. hongkongensis. Apoptosis, an orchestrated
physiological process of cellular self-destruction, is essential for
the correct functioning of the molluscan immune system (35).
We observed lower early apoptosis rates for all granulocytes and
higher apoptosis rates for semi-granulocytes in female oysters
compared with males after stimulation by V. harveyi infection,
suggesting that the semi-granulocytes in females were more
susceptible to V. harveyi infection. The release of ROS by
hemocytes is a key internal defense mechanism by which
pathogens are destroyed before their phagocytosis (36). Higher
ROS production was detected in female than male granulocytes,
especially after LPS or V. harveryi stimulation. Gender-
dependent differences were also reported in the abundance of
ROS in the hemocytes of Saccostrea glomerata and Pinctada
fucata (2). As shown in Figure 7, ROS was positively correlated
with early apoptosis. Excess cellular levels of ROS have been
shown to induce apoptosis (37). The higher levels of ROS,
combined with the higher early apoptosis rate, show that V.
harveryi challenge induced the apoptosis of female hemocytes via
ROS generation. These findings indicate that male and female
oysters use different intracellular oxidative metabolic strategies to
resist LPS or V. harveyi infection.

Phagocytosis is an essential and effective defense mechanism
against foreign pathogens. A decrease in the male and female
oyster phagocytic index was witnessed in the present study, from
strong phagocytosis in granulocytes, weak phagocytosis in
semigranulocytes, to no phagocytosis in agranulocytes. Similar
results have been reported for C. gigas (19). The phagocytic ratio
of the total granulocytes was significantly upregulated after LPS
challenge, but no significant difference was detected after V.
harveyi challenge. Jiang et al. (38) reported that LPS, but not
peptidylglycan, significantly increased phagocytic activities in C.
gigas. These results indicated that different stimulants induced
phagocytic activities via different strategies. Furthermore,
statistical analysis revealed that male oysters had slightly
(although not significantly) more phagocytic ratios than
females under all corresponding conditions. Female and male
diploid C. gigas also showed no statistically significant differences
in their phagocytic index (5). NO has many biological functions
related to defense and immune responses in marine invertebrates
(28). In the present study, both LPS and V. harveryi stimulation
induced a noticeable gender-specific increase in NO levels. Thus,
in hemocytes, NO appears to play a pivotal role in the killing of
intracellular pathogens. NO was also shown to be involved in
defense mechanisms in the mollusk Mytilus edulis (39), and it
appeared to be a cellular signal involved in the response to
environmental stress in C. virginica (40). The NO produced by
the immune cells of Wistar rats had a role in intracellular killing
and phagocytic activity (41). Coincidentally, correlation analysis
showed that granulocyte NO levels significantly correlated with
the phagocytic ratios (Figure 7). Therefore, we concluded that
the hemocytes of C. hongkongensis generate NO as a cytokine to
regulate the phagocytic activities protecting the hosts from LPS
or V. harveyi infection. Additionally, the significantly higher NO
levels and the non-significant higher phagocytic ratio of males
oysters after immune stimulation also indicate that males are
Frontiers in Immunology | www.frontiersin.org 9
more immunocompetent than females. Mitochondria,
responsible for the energy production processes necessary for
cell metabolism, vary in their number, activity, and localization
in animal cells in relation to energetic needs (42). A decrease in
mitochondrial function is often accompanied by an increase in
proton leak, inhibition of vital mitochondrial enzymes, and
elevated production of nitric oxide and reactive oxygen species
(43). Notably, the mitochondrial mass showed a negative
correlation with the level of nitric oxide (Figure 7); therefore,
the lower mitochondrial mass observed in both male and female
oysters after immune stimulation might be due to a higher
concentration of NO. However, this needs further research.

Lysosomes, which are important bacteriolytic cellular
organelles, are employed as an index to evaluate the health
status and vitality of the defense system in bivalves (29) and are
generally affected by environmental stress (30). Lysosomal masses
of C. gigas granulocytes were significantly increased after
stimulation with V. splendidus (19). Similar results were found
for the male C. hongkongensis in this study following LPS
stimulation, indicating gender-specific lysosomal responses by
granulocytes to LPS stimulation. The gender-dependent
differences in lysosomal masses were also reported for Ruditapes
philippinarum (4) and Panorpa vulgaris (44); however, it was the
hemocytes of the females of these two species that showed higher
lysosomal masses. Intracellular calcium not only participates in
various biological activities, such as metabolism regulation and
biomineralization, but also acts as a ubiquitous second messenger
to regulate intracellular or intercellular signal transduction (45,
46). The stress of organelles, including the endoplasmic reticulum,
mitochondria, and lysosomes, might lead to the release of calcium
into the cytoplasm (47). The concentrations of intracellular
calcium in male granulocytes increased after LPS treatment,
suggesting that intracellular calcium served as an essential
mediator in the immune response, and much more calcium was
required to maintain the lysosome mass. This speculation is
supported by the higher lysosome mass in male granulocytes
under LPS challenge. Increased intracellular calcium levels and
lysosome masses were also observed in P1 hemocytes of Eriocheir
sinensis (14). The hydrolase enzyme non-specific esterase plays a
pivotal role in intracellular degradation and the stress response in
the hemocytes of mussels (30, 48). In the present study, we
observed gender differences in the esterase activities of male and
female oysters, with lower levels in female oysters compared with
males under all conditions. Higher hydrolytic enzyme activity has
also been observed in male R. philippinarum compared with
females. In C. virginica, non-specific esterase was detected and
inferred to be associated with lysosome-like bodies (49);
interestingly, there were significant positive correlations between
the esterase activity and lysosomal mass. The esterase activity in C.
hongkongensis granulocytes was adjacent to lysosomal mass in the
Spearman’s correlation analysis. Hence, the gender-specific
activity of esterase could be considered a consequence of
gender-specific differences in lysosomal mass. The higher
esterase activities and lysosomal masses in males compared with
females further suggest that gender-specific immune responses
were induced in C. hongkongensis hemocytes.
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Generally, adult females mount stronger innate and adaptive
immune responses than males (50). Many theories, such as the
immunocompetence handicap hypothesis (ICHH) (51),
Bateman’s principle (52), evolutionary-ecology approach (53),
and the sicker sex principle (54), attempt to explain why gender
differences exist. However, in this study, the upregulation of
granulocyte esterase activities, lysosomal masses, nitric oxide
levels, and granulocyte numbers was observed in male C.
hongkongensis. These findings indicate that males have a more
powerful cellular immune response level than females after
spawning. Because Hong Kong Oysters reproduce using
external fertilization, we speculate that females may invest
more reproductive resources and have a weaker immune
system after spawning. This speculation can be proved by the
high mortality of post-spawning-phase female Hong Kong
oysters. In the sea cucumber A. japonicus, the stronger
antioxidant ability is also observed in males than that in
females after spawning (6). In the current study, we have
analyzed the differences in immunity to infections between
male and female oysters based on hemocyte immune
parameters, but humoral immunity systems such as the
phenoloxidase system (55) also play an important role in
molluscan immunity, which is worthy of further study.
CONCLUSION

In this study, gender-related differences in immune responses
to LPS and V. harveyi were reported for the first time in the
Hong Kong oyster C. hongkongensis during the post-spawning
phase. To accurately assess the immune parameters in
hemocytes, three types of hemocyte were identified:
granulocytes, semi-granulocytes, and agranulocytes. Because
granulocytes were identified as the primary phagocytes, with
a dense mass of mitochondria and lysosomes and prominent
esterase, superoxide anion, and nitric oxide activities, we
concluded that granulocytes are the main immunocompetent
hemocytes in C. hongkongensis. Our multivariate statistical
results showed that gender, immune stimulation, and their
interaction, affected the immune-related parameters of
hemocyte subpopulations. Significantly lower THC values
were recorded in both male and female oysters, but
significantly higher percentages of granulocytes were found in
the hemolymph of males after immune stimulation compared
with that of females. Esterase activities and lysosomal masses
were positively correlated, and they significantly increased in
male hemocytes after immune challenge. NO levels were also
upregulated in males and were positively associated with non-
significantly higher phagocytic ratios in males post-immune
infection. These results suggest that, during the post-spawning
stage, male oysters have more effective defense responses
against immune infection than females. Therefore, gender
and subpopulation differences should be included in the
future analysis of bivalve immune parameters when studying
the impact of pathogens, environmental variables, or
multiple variables.
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