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Observation of optical solitons in PT-symmetric
lattices
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Controlling light transport in nonlinear active environments is a topic of considerable interest

in the field of optics. In such complex arrangements, of particular importance is to devise

strategies to subdue chaotic behaviour even in the presence of gain/loss and nonlinearity,

which often assume adversarial roles. Quite recently, notions of parity-time (PT) symmetry

have been suggested in photonic settings as a means to enforce stable energy flow in

platforms that simultaneously employ both amplification and attenuation. Here we report

the experimental observation of optical solitons in PT-symmetric lattices. Unlike other

non-conservative nonlinear arrangements where self-trapped states appear as fixed points in

the parameter space of the governing equations, discrete PT solitons form a continuous

parametric family of solutions. The possibility of synthesizing PT-symmetric saturable

absorbers, where a nonlinear wave finds a lossless path through an otherwise absorptive

system is also demonstrated.
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T
he interplay between energy dissipation and nonlinearity
plays a crucial role in many and diverse areas of science
ranging from biology and chemistry to thermodynamics1.

Yet, apart from a few well-studied cases, the interaction of these
two processes still remains poorly understood. In optics, for
example, such nonlinear gain/loss systems are routinely
encountered in laser configurations or in nonlinear active
cavities and optical fibres, which are typically described by
Ginzburg–Landau-type equations2,3. Part of the difficulty in
analysing such arrangements lies with the fact that the linear
eigenvalues of the associated non-Hermitian system are generally
positioned in the complex domain. As a result, some of the
eigenstates tend to grow uncontrollably and in conjunction with
the nonlinearity they force the ensuing dynamics into a chaotic
motion. One way to avoid these complications is to ensure that
the linear spectrum is completely real, even though the
underlying problem itself is non-Hermitian.

An answer to this interesting possibility was given few years
ago by Bender and Boettcher when they indicated that a wide
class of non-Hermitian Hamiltonians can indeed display
altogether real spectra, provided they respect parity-time (PT)
symmetry4. A necessary condition for establishing this quasi-
energy-conserving behaviour is that the associated complex
potentials satisfy V*(� x)¼V(x). In other words, the real part
of the potential must be an even function of position while the
imaginary must be antisymmetric4–7. For a given real component
of the potential, the eigenvalues of the Hamiltonian remain real,
as long as its imaginary counterpart is below a certain critical
value, the so-called PT-symmetry-breaking threshold5. Above this
particular threshold, the spectrum ceases to be entirely real and
the respective modes grow instead exponentially.

In photonics, PT-symmetric complex potentials can be readily
implemented by symmetrically intermixing gain/loss regions in
conjunction with refractive index modulation8–12. As shown in
several studies, PT-symmetric optical arrangements can exhibit
several interesting and counterintuitive properties, which are
otherwise unattainable in standard configurations8–22. These
include for example, power unfolding and breaking of the left-
right symmetry8, abrupt phase transitions9–12, non-Hermitian
Bloch oscillations14, simultaneous lasing-absorbing16 and
selective mode lasing in microring resonator systems23,24.
Moreover, unidirectional invisibility11,25,26 and defect states27

with unconventional properties have been also demonstrated.
Finally, PT-symmetric concepts have also been used in
plasmonics and optical metamaterials28. Lately, it has been
shown that operating close to the exceptional point of a
PT-symmetric coupled microring arrangement can significantly
affect thermal nonlinearities and Raman lasing29. Clearly of
interest would be to investigate the role of nonlinearity within the
framework of PT-symmetric periodic structures and lattices.

Recently non-reciprocal light propagation and diode behaviour
was observed in two coupled PT-symmetric whispering-gallery
microcavities with a saturable nonlinearity, thus enabling new
possibilities for on chip signal processing30,31. Yet, the nonlinear
response of extended PT-symmetric systems can greatly benefit
from the stability offered by a special class of self-localized
solutions—the so-called solitons32–34. Solitons are thought to be
the natural building blocks of any nonlinear system. Apart from
preserving their shape during propagation, they exhibit
remarkable robustness against external perturbations and they
tend to collide with each other in a particle-like manner33. While
optical solitons have been previously identified in dissipative
Ginzburg–Landau settings35, their observation in PT-symmetric
environments36 still remains a challenge in spite of numerous
theoretical predictions36–49. This is partly due to the difficulty of
introducing gain/loss and nonlinearity in perfect synergy.

Interestingly, this problem can be efficiently circumvented in
coupled fibre loop arrangements that happen to be isomorphic to
mesh lattices in the time domain11. The inherent discreteness of
this configuration further adds simplicity50–52, and also
establishes a link to other non-optical systems like Bose
condensates in lattices or electronic excitations along molecular
chains.

In this Article, we show that PT-symmetric solitons can be
systematically investigated in coupled fibre loop platforms. These
non-conservative nonlinear mesh lattices can be utilized to
directly study the interplay between nonlinearity and a balanced
gain/loss profile. Along these lines, we observe stable soliton
entities in lattices with local PT symmetry that fully conform to
theoretical predictions. In addition, the existence of similar self-
trapped states is also demonstrated in mesh periodic structures
with global PT symmetry. In all cases, these solitons are found to
belong to a continuous family of solutions37,39—which is not
typically the case for dissipative solitary waves35,53–57. Finally, we
show that this class of discrete solitons34,58–61 can evade
instabilities. In this case, a loss in the system tends to suppress
low power signals, while it is overpowered by nonlinearity, thus
leading to a saturable absorber action.

Results
Experimental setup and theoretical model. Our experimental
platform consists of two coupled fibre loops having slightly
different lengths11,50–52 (see Supplementary Fig. 1 and
Supplementary Methods). Like in time multiplexing, subsequent
passes through the short and the long loop cause a pulse to spread
on a time mesh lattice with discrete arrival times being equivalent
to positions in the spatial domain (see Fig. 1). As group velocity
dispersion is negligible in our setup, each pulse is completely
characterized by a single complex amplitude that is denoted by
um

n andvm
n for the short and the long loop, respectively. Here m

stands for the time interval as measured in round trips and n
denotes the position of a single pulse during one cycle. When a
pulse travels through the longer loop, it will not only step in time
from m to mþ 1, but will also be slightly delayed thus hopping
from position n to nþ 1. Conversely, the propagation in the short
loop is equivalent to shifting the pulse to the descendent position
at n� 1. In what follows, we discuss the ensuing optical evolution
in a co-moving reference frame.

During each passage through a loop, pulses accumulate
nonlinear phase shifts G um

n

�� ��2 and G vm
n

�� ��2, respectively, where G
represents the effective nonlinearity of the system32. All
unwanted losses are compensated by using erbium-doped fibre
amplifiers. Fine tuning of amplitude modulations is obtained by
acousto-optic modulators (AOM) resulting in an effective loss or
gain factor of Gu,v for the short and the long loop. A phase
modulator (PM) inserted in the short loop also controls the
phases of the pulses by inducing an arbitrary phase potential11,27

jn. The overall dynamics of this system are described by52:

umþ 1
n ¼

ffiffiffiffi
Gu
p ffiffi

2
p um

nþ 1þ ivm
nþ 1

� �
� e

iG um
nþ 1

þ ivm
nþ 1j j2

� �
2 � eijn ;

vmþ 1
n ¼

ffiffiffiffi
Gv
p ffiffi

2
p vm

n� 1þ ium
n� 1

� �
� e

iG vm
n� 1

þ ium
n� 1j j2

� �
2 ;

ð1Þ

where the respective amplitudes are determined right behind the
50% coupler that connects both loops (see Supplementary Note 1
and Supplementary Fig. 2). Equation (1) are used to model our
system in all forthcoming simulations. As it will be shown later,
by rearranging the parameters in this versatile-loop system, one
can synthesize three general types of the mesh lattices:
conservative Hermitian lattices (Fig. 1b), lattices with local PT
symmetry (Fig. 1c) and globally PT-symmetric lattices (Fig. 1d).
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In what follows, we investigate soliton dynamics in all these three
cases.

Soliton formation in Hermitian mesh lattices. Before investi-
gating solitons in PT-symmetric lattices, it is beneficial to explore
this possibility in the corresponding conservative environment.
In general, the properties of lattice solitary waves critically
depend on the band structure of the associated linear system
(see Supplementary Fig. 3 and Supplementary Note 2). In the
absence of any gain/loss and phase modulation (Gu,v¼ 1, jn¼ 0,
G¼ 0), a substitution of a Floquet–Bloch ansatz

um
n

vm
n

� 	
¼ U0

V0

� 	
eiQneiym ð2Þ

in equation (1) leads to the dispersion relation.

y ¼ � arcos
1ffiffiffi
2
p cos Q

� 	
: ð3Þ

Here y and Q stand for the longitudinal propagation constant and
the transverse Bloch momentum respectively. The band structure
depicted in Fig. 2a consists of two bands, which are separated by a
gap of p/2. Due to different dispersion characteristics, the Kerr
nonlinearity32 of the fibre has a focusing effect on the field
distribution populating the upper band, and a defocusing one on
pulses in the lower band52,62. By injecting a single low-intensity
pulse at one lattice site, all states of the band structure are excited
simultaneously (see Fig. 2b,e). In this linear regime, the field
spreads ballistically34 between two intensity lobes formed by
waves having zero group velocity dispersion (Fig. 2a). As we will
show, this so-called classical light walk is considerably modified
in the presence of nonlinearity.

By increasing the pulse power, for an initial excitation of the
long/short loop, energy accumulates in the slow/fast branch,
which then loses mobility. As a result, the dominant part of this
energy distribution bends towards the center and repels
remaining pulses (see Fig. 2c,f). For higher input powers, a
quasi-stationary soliton state forms. It consists of a strong pulse
that alternates between both loops, thus staying at rest in the
co-moving frame of reference (see Fig. 2d,g). This strong pulse is

accompanied by other much weaker ones, which also switch
between the two loops in a countercyclical manner with respect to
the strong pulse. Despite this unusual dynamics, the observed
double-discrete soliton still represents a stationary nonlinear state
that resides primarily within an elementary cell of this mesh
lattice. Numerical results corroborating this observed behaviour
are provided in Fig. 2e–g and in Supplementary Fig. 4.

To theoretically analyse this double-discrete soliton, we assume
a stationary profile (see Supplementary Fig. 5 and Supplementary
Note 3)

um
n

vm
n

� 	
¼ Un

Vn

� 	
� eiym; ð4Þ

and use a nonlinear mode solver to determine the respective
amplitudes Un and Vn as a function of the propagation constant
y. A particular (Un,Vn)T soliton solution along with its associated
phase profile is depicted in Fig. 2h,i. Here we display a highly
localized wave, similar to the one observed in the experiment.

The variation of the soliton propagation constant (eigenvalue y),
as a function of its total energy E¼

P
n(|Un|2þ |Vn|2) is depicted

in Fig. 2j. Similarly Fig. 2k depicts the eigenvalue–soliton width
curve, which is determined by the centred second moment of the
field distribution. According to these figures, as the power
increases, the soliton eigenvalue separates from the top of the
band and enters the band gap. The soliton contracts to less than
one lattice spacing in the center of the band gap, but due to
enhanced coupling to linear modes the width of the soliton
diverges close to both band edges. Although the soliton represents
a stationary state, its internal dynamics are characterized by two
coupled, but counteracting energy flows in the two loops
corresponding to the two opposite phase gradients in the soliton
profile (see Fig. 2i). By further increasing the power, the soliton
eigenvalue increases until reaching the upper band where this
localized state disappears again.

Solitons in lattices with local PT symmetry. We next consider
soliton formation in dissipative mesh lattices. We first introduce
losses in only one loop Gu¼ 1/G, and gain Gv¼G in the other
thus resulting in the lattice depicted in Fig. 1c. In general, a
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Figure 1 | Experimental realization of the discrete mesh lattice. Two coupled fibre loops (a) of different length are used to implement the mesh lattices

displayed in (b–d). Four kilometres of dispersion compensating fibres (DCF) are inserted into the loops to amplify the nonlinear phase shift. The phase and

amplitude of the signals are controlled by a phase modulator (PM) and acousto-optical modulators (AOM). Losses are compensated by fibre amplifiers

(EDFA). The temporal pulse evolution in the loops can be mapped onto 1þ 1D mesh-lattices spanned by the discrete time m and position n. In contrast to

the passive lattice (b) a constant gain (red) in the long loop and loss (blue) in the short loop are equivalent to amplified and attenuated diagonal paths

through the lattice (c). (d) By alternating gain and loss on every other round trip (purple) and by inserting an appropriate phase modulation a PT-symmetric

system can be generated, which consists of amplifying and lossy waveguides.
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discrete mesh lattice satisfies PT symmetry provided that it
remains invariant under n-� n, m-�m and after complex
conjugation (exchanging gain with loss, see Supplementary
Fig. 6). In this respect, the lattice is Fig. 1c is not a genuine
PT-symmetric one. Instead, this lattice is locally PT-symmetric,
meaning that only along any cross section m¼m0 the resulting
lattice is invariant under n-� n and after gain and loss reversal.
Therefore, this system, hereby defined as locally PT-symmetric
fulfills the conditions for P and T symmetry only at every time
step.

By adopting the same ansatz used in equation (2), it follows
that the band structure of the corresponding linear system (for an
infinite lattice) is given by the modified dispersion relation (see
Supplementary Note 2 and Supplementary Fig. 3):

y ¼ � arccos
1ffiffiffi
2
p cos Q� i

2
ln G

� 	
 �
: ð5Þ

Note, that the eigenvalue y is now complex over nearly the entire
range of the Bloch momentum Q (Fig. 3a). However, numerical
analysis show, that for a finite configuration, the eigenvalues
remain real below a certain critical value of gain, as it is usually
the case for PT-symmetric systems. Due to experimental
restrictions, we investigate a large but finite system.

To ensure that the power is always bounded in the system, the
lattice must be finite with respect to n. In our experiment, such
boundary condition is imposed by having the acousto-optic
modulators inducing high attenuation at the outermost positions
n±N, thus causing the pulse amplitudes to vanish at the edges
(um
�N ¼ 0 and vm

�N ¼ 0).

Quite interestingly, in this locally PT-symmetric environment,
stable discrete solitons exist (see Supplementary Note 4 and
Supplementary Figs. 7–9). If the initial distribution does not
match the soliton profile, the pulse travels towards higher n and is
amplified during its propagation until it becomes locked to a
single position due to nonlinearly induced self-localization. Once
the newly formed discrete soliton stays on one lattice site, the
pulse permanently alternates between both loops and is on
average neither amplified nor attenuated (see Fig. 3d–f and
Supplementary Fig. 10). This process happens to be independent
of the lattice size and thus stable solitons even exist on the infinite
and unstable lattice. Due to the high symmetry of the mesh lattice
involved, the only difference between injecting the initial
distribution in the long or short loop is a negligible initial
amplification or attenuation.

In general, dissipative solitons appear in many areas of
optics35,53–57. As opposed to conservative ones, which manifest
themselves as a continuous parametric family32, dissipative
solitons are completely determined by the parameters of the
system and hence exist as fixed point solutions35. Surprisingly, in
our case, the locally PT-symmetric lattices allow again these
dissipative discrete solitons to form a continuous branch (see
Fig. 3b,c), very much like their conservative counterparts. The
existence of a continuous branch of solutions in PT-symmetric
arrangements can be intuitively understood on the basis that both
systems exhibit entire real spectra in their linear regime. This
close relationship between these two configurations leads in both
cases to the presence of a parametric family of soliton waves. It is,
however, worth mentioning that these solitons behave like
attractors and hence a broad Gaussian distribution tends to
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Figure 2 | Formation of the double-discrete soliton on a passive lattice. (a) The band structure is split into two bands, separated by a gap of width p/2.

The excitation of a single-lattice site in the long loop initiates a light walk for linear power levels PE13 mW (b,e). If the input power is increased PE65 mW

(c,f), one of the two branches bends towards the center and repels the remaining light. At high powers PE130 mW (d,g) a soliton is formed, which is

dominated by a single pulse, which switches between loops. The insets at PE130 mW show the temporal dynamics over five time steps around m¼ 25.

Only pulses propagating in the short loop are shown. (h) Comparison between a numerically (bars) and an experimentally (markers) determined soliton

profile in the longer (v, cross) and in the shorter (u, circle) loop. (i), numerically determined phase distribution along the exact soliton profile. The values for

the propagation constant of the soliton are lying inside the band gap. From the lower to the upper edge of the band gap the total energy E monotonically

increases (j). At the edge of the band gap the width w of the soliton tends to infinity, while at the center of the gap the soliton has a minimum width o1

position (k). (j,k) are based on numerically determined soliton solutions.
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form narrow fundamental self-trapped states—a process observed
in our experiments (see the Supplementary Fig. 9).

PT-symmetric lattice solitons. In this section we report the
observation of optical self-localized nonlinear states in globally
PT-symmetric lattices. While a number of PT-symmetric
arrangements have already been theoretically investigated in both
the linear and nonlinear regime, their nonlinear soliton response
still remains experimentally unexplored. In optics, the respective
potential is defined by the complex refractive index distribution
and has to satisfy the PT-symmetric conditions to allow for real
eigenvalues8,63–65. Again, while the real part of the potential has
to be symmetric, the imaginary part must be antisymmetric with
respect to the spatial coordinate (see Supplementary Fig. 6). As
indicated above, this condition is necessary but not sufficient8.
For example, the potential of the periodic system introduced in
the previous section has an antisymmetric imaginary part and a
vanishing real component (see Fig. 3), but still has no real
eigenvalues for Ga1, if the system size tends to infinity
(equation 5). On the other hand, this potential can be readily
modified to establish a PT-symmetric periodic environment with
a finite threshold. This can be achieved by exchanging the
amplifying and lossy paths after every two round trips (Fig. 1d)
and by imposing a phase potential according to

jn ¼
þj0;mod nþ 3; 4ð Þo2
�j0; otherwise:

�
ð6Þ

In this case, the allowed bands and gaps can be obtained by using
a Floquet–Bloch ansatz um

n ; vm
n

� �
¼ Um

n ;Vm
n

� �
eiQneiym where

Um
n ;Vm

n represent periodic discrete Bloch wave functions with
periodicities of n0¼ 4 and m0¼ 2 in n and m repesctively. The
band structure of this PT-symmetric lattice is given by (see
Supplementary Note 2 and Supplementary Fig. 3f):

cos 4Qð Þ ¼8cos2ð2yÞþ 8coshðlnðGÞÞcosðj0Þcosð2yÞ
þ coshð2lnðGÞÞþ 4cos2 j0ð Þ� 4:

ð7Þ

Figure 4a,b depict this dispersion relation for two different values
of (j0,G). Evidently, in this configuration, the eigenvalues y are
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completely real in certain regions of the parameter map spanned
by j0 and G (below PT threshold), and become complex above
the PT-symmetry-breaking threshold11,51 (see Supplementary
Fig. 11).

Before exploring soliton evolution in this PT array, we first
consider its linear response (see Supplementary Fig. 12). If
G¼ 1.4 and j0¼ 0, the system is in the broken PT symmetry
regime (see band structure of Fig. 4a) and as a result the energy
not only disperses but also grows exponentially with distance
(Fig. 4c,e). Due to the saturation of our detectors and erbium-
doped amplifiers, the exponential behaviour in the PT-broken
case can only be observed in good agreement with simulations for
the first 30 time steps while the saturation effects dominate
afterwards (see Supplementary Fig. 13) On the other hand, if
G¼ 1.4 and j0¼ 0.4p, then PT symmetry is restored and the
bands become entirely real (Fig. 4b). In this case the energy
remains bounded while at the same time a PT light walk47 takes
place leading to broadening effects (Fig. 4d,f).

Once the power of the single initial pulse is raised, nonlinear
processes come into play and hence discrete solitons can in
principle form in this PT configuration. In general, the strong
phase potential slightly decouples the adjacent lattice sites of the
mesh structure which in turn hinders the spreading of the initial
distribution. As a result, nonlinear effects can be observed at much
lower peak powers (see Supplementary Fig. 14). When the
associated linear lattice is operated above the critical threshold
the system becomes unstable and the nonlinearity is unable to
establish a solitary wave (Fig. 5a,c). This exponential increase in

energy is shown in Fig. 5e. Conversely, when the band structure is
real (below PT threshold), an optical soliton is observed as depicted
in Fig. 5b,d. As the PT lattice has a four-side spatial periodicity a
single-site excitation does not result in a stationary profile but
instead excites strong internal oscillations around the PT soliton. In
all cases the soliton remains almost invariant during propagation
without any appreciable increase in its energy (Fig. 5f).

To launch wider solitons, a broad Gaussian distribution with a
flat phase front is used to excite the system. In this case, because
of nonlinearity, Schrödinger-like solitons29 form in the PT lattice
(see Fig. 6 and Supplementary Figs 15 and 16), which are similar
in shape and behaviour to solitons arising from the nonlinear
Schrödinger equation. Note that, if the above mentioned phase
potential (equation 6) is generated without any amplification or
attenuation, the system behaves like a bi-periodic waveguide array
where transport is considerably suppressed. In the nonlinear
regime, discrete solitons are formed that happen to be quite
immobile in a way similar to those found in waveguide arrays31

(see Supplementary Fig. 16). In the presence of PT-symmetric
gain/loss, the intensity profile of the soliton is close to that of a
conservative self-trapped wave and is critically determined by the
phase potential. As in the previous case, these PT lattice solitons
belong to a continuous parametric family of solutions. As
numerical simulations indicate, mainly its phase profile
adapts to gain and loss, while their interaction is still similar to
that of conservative solitons (see Supplementary Fig. 17 and
Supplementary Note 5). Although the observed PT solitons are
stable for the complete experimental range of 100 round trips,
simulations suggest that an extremely weak intrinsic instability is
present due to a small imaginary part (because of nonlinearity) in
the propagation constant. This instability is caused by the
physical separation between amplification/attenuation and
nonlinear propagation in our setup. In a sense, our mesh lattice
platform can be viewed as an experimental implementation of the
numerical split-step method when solving the nonlinear
Schrödinger equation where errors arise due to discretization.
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PT-symmetric saturable absorber. Finally, we discuss the
possibility of using such PT synthetic nonlinear lattices as
a new class of saturable absorbers63. This is achieved by adding a
global loss to an otherwise PT-symmetric nonlinear mesh
lattice. When a low-intensity pulse is injected into this system,
it spreads linearly while all modes decay due to the added
loss (Fig. 7a,d). As a result after several round-trips the total
energy of the system vanishes. On the other hand, by increasing
the power of the injected pulse, a self-trapped wavepacket
forms which experiences much lower losses compared with a
linearly diffracting wave (Fig. 7b,e). By further increasing the
power of the input pulse, this localized wave can even amplify
itself (Fig. 7c,f). Such a behaviour of nonlinear waves64–66

is strongly related to saturable absorbers that are widely used
in Q-switched laser cavities and in ultra-short optical pulse
arrangements67–69.

Discussion
In conclusion, we have experimentally demonstrated stable
optical discrete solitons in PT-symmetric mesh lattices. We have
shown that this class of self-trapped states is possible in either
locally or globally PT-symmetric systems. The existence curves of
this continuous parametric family of local PT-symmetric soliton
solutions were determined and their stability properties were also
investigated. The possibility of realizing a new class of saturable
absorbers based on such arrangements was considered. Our
experimental platform can provide a versatile test bed to explore a
wide range of phenomena and processes in nonlinear and non-
Hermitian environments.

Methods
Numerical soliton solver. To theoretically analyse solitons in complex lattices a
nonlinear mode solver was used based on Newton’s method. For a propagation
constant y¼ � 0.2p, an initial Gaussian distribution with a width of five positions
and an amplitude of 0.2 was assumed. While the propagation constant was kept
fixed, the real and imaginary parts of the spatial distribution were varied until a
solution was obtained. After each iteration, the residual error was estimated and
used as a measure of convergence. Distributions with a residual error below or
equal to 10� 16 were assumed to be a stationary solution of the evolution equations.
Starting from a solution close to the band gap at y¼ � 0.2p, all other soliton
solutions were pursued by assuming the last solution as the starting point. On
lattices with gain and loss, the solver was initiated with conservative solutions.

Signal processing and reproducibility. The electronic signals of the photodiodes
were first amplified and afterwards recorded by an oscilloscope. An internal
averaging function of the oscilloscope was used to estimate the mean value out of
about 40 realizations. While all experiments feature a high reproducibility, the
polarization and the gain of the erbium-doped fibre amplifiers has to be readjusted
about every 10 min to compensate for long term drifts. For a high fidelity of
the acquired data, the setup was not altered during a sweep over different initial
powers or between the measurement of the conservative system and the global
PT-symmetric system. Therefore, a direct comparison between the cases with and
without amplification or attenuation was made possible.

A detailed description of the experimental methods is provided in the
Supplementary Methods section.
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