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Abstract: Porous graphitic biochar was synthesized by one-step treatment biomass using potassium
ferrate (K2FeO4) as activator for both carbonization and graphitization processes. The modified
biochar (Fe@BC) was applied for the removal of diclofenac sodium (DCF) in an aqueous solution. The
as-prepared material possesses a well-developed micro/mesoporous and graphitic structure, which
can strengthen its adsorption capacity towards DCF. The experimental results indicated that the
maximum adsorption capacity (qmax) of Fe@BC for DCF obtained from Langmuir isotherm simulation
was 123.45 mg·L−1 and it was a remarkable value of DCF adsorption in comparison with that of other
biomass-based adsorbents previously reported. Thermodynamic quality and effect of ionic strength
studies demonstrated that the adsorption was a endothermic process, and higher environmental
temperatures may be more favorable for the uptake of DCF onto Fe@BC surface; however, the
presence of NaCl in the solution slightly obstructed DCF adsorption. Adsorption capacity was found
to be decreased with the increase of solution pH. Additionally, the possible mechanism of the DCF
adsorption process on Fe@BC may involve chemical adsorption with the presence of H-bonding and
π–π interaction. With high adsorption capacity and reusability, Fe@BC was found to be a promising
absorbent for DCF removal from water as well as for water purification applications.

Keywords: porous graphitic biochar; diclofenac sodium; potassium ferrate; water purification

1. Introduction

Water pollution has become a serious environmental challenge globally due to the existence of
various pollutants including pharmaceuticals, pesticides, and organic pollutants. Pharmaceuticals
and pharmaceutically active compounds (PhACs) are considered to be emerging contaminants (ECs)
because of their adverse effects on humans and living organisms [1]. Residual pharmaceuticals are
released into water as a wastewater effluent, which poses serious threats to the environment. Numerous
pharmaceuticals such as antibiotics, birth control pills, pain killers, and many other drugs enter into
water, causing surface water [2], ground water [3], and marine water [4] pollution by daily consumption.
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Among PhACs, non-steroidal anti-inflammatory drugs (NSAIDs) are widely used over the world and
detected in different environmental compartment at various concentrations [5]. Diclofenac (DCF) is
considered the most commonly used NSAID in the world [6]. It was found as a salt of sodium or
potassium in water systems, including surface water, drinking water, wastewater treatment plants
effluent, and groundwater [7]. Large scale consumption of DCF globally increased its presence in
wastewater and causes severe health concerns to living organisms [8]. Even with low concentrations in
water, DCF still has a significant influence on human health [9]. Therefore, it is essential to remove
DCF from water systems.

Effective wastewater treatment techniques are required to meet future discharge requirements.
Numerous studies have investigated pharmaceutical removal from aqueous environments by reverse
osmosis [10], photocatalysis [11], ozonation [12,13], and nanofiltration [14]. Unfortunately, these
techniques require special expensive materials, costly energy, and chemical inputs. Therefore,
an efficient, low-cost, and recyclable material for the removal of DCF from water is needed.
Recently, adsorption has proven to be an efficient treatment technique for the removal of numerous
ECs [15]. Adsorption technique has the advantages of easy operation, low cost, high efficiency, strong
reproducibility and the availability of different adsorbents [16]. Biochar and its activated derivatives, as
an attractive absorbent, have been widely employed in wastewater treatment and soil remediation [17].
It has been reported that biochar could remove toxic contaminants in wastewater such as pathogens [18],
organic pollutants [19], and inorganic pollutants [20]. Biochar is obtained by heating organic biomass
under a limited oxygen environment to obtain a material that has excellent adsorption capacity for
various pollutants in wastewater due to a highly specific surface area and porous structure [21]. There
are several methods for the modification of a biochar surface, including physical or chemical activation,
steam activation, and coating for the contaminants’ removal from wastewater [22]. Among them,
chemical activation has gained significant scientific attention. Activated biochar materials obtained
by activated chemical have numerous advantages, such as having a wide spectrum of functional
groups, highly specific surface area, and porous structure [23]. Those advantageous characteristics
contribute to the increase in adsorption capacity of activated biochar. A variety of chemicals, including
HNO3, ZnCl2, and KOH, were used as activators for converting biomass to activated biochar [24–26].
However, activated biochar has a relatively low electronic separated rate when compared with other
materials such as graphene or carbon nanotubes [27]. Therefore, the magnetic properties of activated
biochar should be improved to enhance its adsorption performance as well as reusability.

Recently, scientists have developed several methods of graphitization carbon biochar such as
sacrificial template methods [28] or catalytic activation of biomass [29]. Potassium ferrate (K2FeO4)
can efficiently oxidize organic compounds due to its strong oxidization [30]. It has been considered as
an environmentally-friendly oxidant in both water and wastewater treatment [31]. However, there are
fewer studies about the application of K2FeO4 in carbonization and graphitization of biochar at the
same time. This work attempted to address this gap. Herein, we propose a one-step modification of
biomass by using K2FeO4 as both activator (KOH) and catalyst (Fe). Pitch pine sawdust was utilized
as the carbon source for the modification process. The obtained composite was known as Fe@BC.
The characteristics of Fe@BC were examined by characterization techniques such as Scanning electron
microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra,
BET surface area measurement, Fourier-transform infrared spectrum (FTIR), X-ray photoelectron
spectroscopy (XPS), and zeta potential. The as-prepared material was used to investigate adsorption
performance toward the emerging contaminant of DCF. Adsorption capacity and mechanisms of
DCF onto Fe@BC were investigated by batch adsorption experiments. The effects of adsorbent
dosage, contact time, DCF initial concentration, and temperature on the adsorption process were also
investigated in this work. In addition, the role of solution pH in the removal of DCF from aqueous
solution by Fe@BC was discussed. Furthermore, absorbent recyclability was also investigated.
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2. Materials and Methods

2.1. Chemical and Reagents

The pitch pine sawdust feedstock was obtained from Changsha (Hunan, China). Diclofenac
sodium (DCF) (C14H10C12NNaO2) was purchased from Shanghai Yien Chemical Technique Co.,
Ltd (Shanghai, China). The chemical structure and examples of ecotoxicological effects of DCF are
presented in Figure S1 and Table S1 (Supplement Materials), respectively. Potassium ferrate (K2FeO4)
was purchased from Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). All other analytical
grade regents were used without purification. The ultra-pure water was prepared and used throughout
the experiments by Millipore Milli-Q water purification system.

2.2. Preparation of Porous Graphitic Biochar

The porous graphitic biochar was prepared from a simple chemical activation process by utilizing
K2FeO4 as a chemical activator. Pitch pine sawdust, in a quantity of 3.0 g, was dispersed in 100 mL
K2FeO4 aqueous solution (0.1 M) with continuous stirring for 8 h; the mixture was then dried overnight
in an oven at 100 ◦C to obtain a solid compound. The mixture was then transferred into a tube furnace
and heated at 900 ◦C for 2 h with a heating rate of 5 ◦C/min in N2 environment. The obtained porous
graphitic biomass was thoroughly washed with 1 M HCl solution and ultra-pure water to remove
any residual impurities. The sample was then dried at 80 ◦C in an oven overnight to obtain a solid
compound, which was denoted as Fe@BC. The preparation process is schematically illustrated in
Figure 1.

Figure 1. One-step synthesis of porous graphitic biochar.

2.3. Characterization

The surface morphology of the Fe@BC was characterized by SEM (S4800, Hitachi, Japan) and the
elemental composition of Fe@BC was observed by energy-dispersive X-ray spectroscopy (EDS) (La
Mirada, CA, USA). The crystallinity of the as-prepared material was tested by XRD on a Bruker AXD
D8 Advance diffractometer with Cu Kα source (acceleration voltage of 40 kV, 2 theta interval 0.02◦,
scan speed 0.1 s/step, λ = 0.15418 nm). Raman spectra were obtained from a LabRAM HR UV Raman
spectrometer. The Brunauer-Emmett-Teller (BET) specific surface area of the samples was characterized
by automatic surface analyzer (Quantachrome, EVO, USA). Magnetic characteristic of the as-prepared
sample was measured with a vibrating sample magnetometer (VSM, Mpms (squid) XL-7, Quantum,
CA, USA). For zeta potential analysis, 25 mg Fe@BC was dispersed in 25 mL ultra-pure water and
the solution pH was adjusted in a range of 2–10 by adding negligible volumes of 0.1 NaOH or HCl.
Zeta potential values were obtained from a zeta potential meter (Zetasizer Nano-ZS90, Malvern, UK).
The XPS measurements were used to examine the binding energies of chemical composition (ESCALAB
250Xi, Thermo Fisher, USA) and FTIR was carried out to determine the surface functional groups of
Fe@BC (IR Tracer-100, Shimadzu, Japan).
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2.4. Adsorption Experiments

For adsorption experiments, the desired concentrations of the solution (20–100 mg·L−1) were
prepared by dilution of stock solution (5 g L−1). Fe@BC was dried overnight at 100 ◦C in a vacuum oven,
then used as adsorbent for the removal of DCF from water. To a 50 mL DCF solution, 50 mg of Fe@BC
was added; then the mixture was shaken in an incubator shaker at constant speed of 160 rpm at room
temperature. To obtain DCF concentration in solution after adsorption process, the mixture solution
was filtered by the syringe filter (polytetrafluoroethylene -PTFE 0.45 µm). The residual concentrations
of DCF were analyzed by UV-Vis spectroscopy (UV-2550, Shimadzu, Japan) at λ = 276 nm. All the
measurements for the adsorption experiments were repeated thrice and average values were used.

The adsorption capacity (mg·g−1) of Fe@BC was obtained from the difference between the initial
and the final concentrations of the DCF in the aqueous solution by the following equations:

qe =

(
Ci −C f

)
V

m
(1)

qt =
(Ci −Ct)V

m
(2)

R =

(
Ci −C f

)
Ci

× 100 (3)

where qe is adsorption capacity at equilibrium point, qt is adsorption capacity at time t (mg·g−1), R is
the DCF removal efficiency rate (%), Ci is the initial concentration of adsorbate (mg·L−1), Cf is the final
concentration after adsorption (mg·L−1), Ct is the concentration of adsorbate solution at time t, V is
the volume of the solution subjected to a single adsorption (L), and m is the mass of adsorbent taken
during single adsorption (g).

2.5. Regeneration Experiments

After using the first-time adsorption DCF in solution (20 mg·L−1), the Fe@BC was rinsed with
25 mL 4 wt% NaOH solution at room temperature. The Fe@BC particles were transferred into a glass
vial containing 50 mL pure acetone. The vial then was sealed by aluminum foil, agitated at 298 K (at
160 rpm speed) for 24 h. After desorption, Fe@BC was separated from the suspension solution by
centrifugation. The whole process was repeated three times to obtain a sample, followed by drying
at 353 K for reuse. In each cycle of adsorption test, 50 mg regenerated Fe@BC was added to 50 mL
(20 mg·L−1) DCF, and the mixed solution was shaken at 298 K for 24 h with pH 6.5. The regenerated
Fe@BC was used again for DCF adsorption under the same experimental conditions to check the
reusability of the material. The whole process of regeneration and reusability was repeated five times.

3. Results

3.1. Material Characterization

The surface morphology and microstructure of as-prepared sample were characterized by SEM
and TEM, respectively. Figure 2a,b show the representative SEM images of Fe@BC in the different
magnification conditions. After modification, the surface of Fe@BC presented an inhomogeneous
structure with high roughness and the occurrence of many lumps with different dimensions. The high
magnification SEM image (Figure 2b) shows that solid particles were allocated on the surface of Fe@BC
and confirmed that Fe particles were loaded onto the Fe@BC surface. Furthermore, TEM image of
Fe@BC (Figure 2c) indicated the presence of graphitic structure. To investigate the composition of
Fe@BC, energy dispersive (EDS) analysis was performed. Notably, the Fe element stands for 72.44%
on total wt% of Fe@BC particles, which confirmed that the as-prepared material was successfully
activated by K2FeO4 (Figure 2d).
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Figure 2. Scanning electron microscopy (SEM) images of (a) Fe@BC low magnification (b) Fe@BC
high magnification (c) Transmission electron microscopy (TEM) image of Fe@BC (d) Energy dispersive
spectra (EDS) of Fe@BC.

For further understanding of the surface morphology as well as the composition of as-prepared
sample after DCF adsorption, SEM image and EDS analysis are presented in Figure S2 (Supplementary
Materials).

XRD and Raman spectra were employed to characterize the graphitization degree of as-prepared
samples. The XRD patterns of Fe@BC in Figure 3a displays four diffraction peaks at 2θ values of
26.4◦ and 44.5◦, which can be indexed to (002) and (001) planes that reflects the graphitic carbon
(JCPDS No. 41-1487) [32]. These strong peaks revealed the crystalline graphitic structure on the
surface of Fe@BC. The two obvious diffraction peaks at 65.1◦ and 82.4◦ indexed to (200) and (211) of Fe
(JCPDS No. 06-0696) [33], respectively, indicate that the form of iron loaded on the Fe@BC surface
was metallic Fe. In addition, Raman spectra was employed to investigate graphitic structure of the
as-prepared sample and the results are presented in Figure 3b. Three prominent peaks were observed,
which corresponded to D, G, and 2D bands, respectively. The D band at 1350 cm−1 corresponds to
disordered and defective sites in carbon atoms; G band at 1570 cm−1 relates to the phonon mode
in-plane vibration of sp2 bonded carbon atoms; and the 2D band at 2690 cm−1 corresponds to two
phonon lattice vibration process, which indicated the typical representation of graphitic carbon [34,35].
Generally, the intensity ratio of D and G bands (ID/IG) was used to determine the order or disorder
degree (crystallization) of carbonaceous materials. The high value (1.07) of ID/IG ratio for the Fe@BC
can be explained by the formation of pores that increased structural disorders during carbonization [36].
Raman spectrum of Fe@BC exhibited narrow D and G bands, accompanied with 2D band, which
confirms the Fe@BC structure was successfully converted from an amorphous carbon structure into
a graphitic carbon structure. In general, XRD and Raman results confirmed that carbonization and
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graphitization simultaneously took place when the activating process was conducted. After activation,
the as-prepared sample possessed a high graphitization degree, which may improve its ability to
remove organic pollutants in an aqueous solution.

Figure 3. (a) X-ray diffraction (XRD) patterns and (b) Raman spectra of Fe@BC.

The infra-red (FTIR) spectra was employed to identify the nature of functional groups on the
surface of Fe@BC and the result is illustrated in Figure 4a. The spectra of Fe@BC showed stretching
vibrations of O–H groups at 3405 cm−1 [37,38]. The peaks at 1390 cm−1 can be assigned to C=O axial
deformation and presence of carboxyl groups [39]. The pronounced peak at 1115 cm−1 can be attributed
to stretching vibrations of C–OH from phenol and hydroxyl groups [40]. Finally, two peaks at 675
and 615 cm−1 can be attributed to the stretching vibration of Fe–O [41]. The results revealed that Fe
particles were deposited onto the surface of Fe@BC.

The magnetization hysteresis curve of Fe@BC was obtained using VSM at room temperature and
the result is displayed in Figure 4b. Specific pertinent data showed the ferromagnetic characteristic
of Fe@BC with saturation magnetization (Ms) value of 80.9375 emu g−1, which confirmed that the
as-prepared sample was magnetic enough to realize solid-liquid separation by using a permanent
magnet. The values of remanence (Mr), coercivity (Hc) and the ratio of remanence and saturation
magnetization (Mr/Ms) were 18.3694, 0.856, and 0.226, respectively. On the basis of the results, it is
possible to conclude that Fe@BC possesses superparamagnetic characteristic because its ratio of Mr/Ms

was found to be less than 25% [42]. This property may enhance the as-prepared sample reusability
because it could be easy to separate it from the treatment solution by magnetization process.

Figure 4. (a) Fourier-transform infrared spectrum (FTIR) spectra and (b) Magnetic hysteresis loop of
Fe@BC and K2FeO4.
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The XPS analysis was employed to investigate chemical composition and crystalline states of
Fe@BC, and results are displayed in Figure 5. The XPS survey spectra results (Figure 5a) further
demonstrated the presence of C, O, and Fe elements on the surface of as-prepared sample. These
results were consistent with EDS analysis. Figure 5b shows the XPS spectrum of O 1 s for Fe@BC,
where three peaks cantering at 531.4 eV, 532.5 eV, and 533.3 eV were clearly observed. The peak at
531.4 eV was attributed to signal of Fe–O (presence of lattice oxide oxygen in the oxides) [43], the peak
at 532.5 eV suggested the presence of C=O, C–OH, or C–O–C groups [44], and the peak at 533.3 eV was
attributed to oxygen in water molecules [45]. As shown in Figure 5c, C 1 s spectrum of the as-prepared
sample shows five peaks, where the main sharp peak at 284.7 eV corresponded to C–C bonds with sp3

hybridization [46], and other four peaks centered at 285.5, 287.7, 293.7, and 296.5 eV were attributed to
C=N, C–O, C=O, O=C–O bonds, respectively [47,48]. Furthermore, Fe 2p spectrum shows three peaks
cantered at 712.0, 716.6, and 725.5 eV (Figure 5d). The peak at 712.0 eV was attributed to Fe 2p3/2 while
the peak at 716.6 eV was attributed to Fe 2p1/2, which suggested that Fe3+ species presented on the
surface of Fe@BC [49], and the peak centered at 725.5 eV was ascribed to Fe0 and Fe2+ [50].

Figure 5. X-ray photoelectron spectroscopy (XPS) spectra of Fe@BC (a) XPS survey of, (b) O 1 s, (c) C 1 s,
and (d) Fe 2p.

The N2 adsorption/desorption isotherms and mesoporous size distribution of Fe@BC are presented
in Figure 6. The obtained N2 adsorption/desorption isotherm of as-prepared sample was identified
as type IV with a hysteresis loop based on classification of International Union of Pure and Applied
Chemistry (IUPAC) [51], which demonstrated the existence of mesoporous structure of adsorbent [52].
The specific surface area for the Fe@BC was approximately 175.8 m2 g−1. The Barrett-Joyner-Halenda
(BJH) pore-size distribution plot is presented in Figure 6b. As can be seen, the pore-size distribution of
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Fe@BC appeared in a wide range (1.2–137.3 nm) with a value of 0.141 cm3 g−1 of total pore volume,
and the average pore diameter was around 3.214 nm. The presence of mesopores on the Fe@BC
would be beneficial for adsorption purposes in terms of accessibility of the adsorbent to the active sites
for adsorption reactions. Additionally, N2 adsorption/desorption isotherms and mesoporous-sized
distribution of as-prepared sample after DCF adsorption are illustrated as Figure S3 (Supplementary
Materials).

The above material characterization results and discussions confirmed the pitch pine sawdust
biomass was successfully converted to the porous graphitic structure. Fe@BC was synthesized by
one-step activated using K2FeO4 as activator.

Figure 6. (a) N2 adsorption-desorption isotherms of Fe@BC and (b) Barrett-Joyner-Halenda (BJH)
curve (inset pore-size distribution).

3.2. Diclofenac Sodium (DCF) Adsorption and Ambient Condition Influences

3.2.1. The Effect of Absorbent Dosage

The effect of adsorbent amount was determined by set of experiments, with a different adsorbent
amount (0.05, 0.1, 0.2, 0.3, and 0.4 g L−1) and the experiment conditions were pH 6.5, DCF initial
concentration 20 mg·L−1, temperature 298 K, contact time 24 h. The changes in adsorption efficiency
and capacity of Fe@BC as a function of adsorbent amount are presented in Figure 7. It was observed
that the removal efficiency was considerably enhanced by the increase of adsorbent dose. With a
dosage of 0.05 g L−1, Fe@BC achieved a removal efficiency of 20.3%, and it increased from 45.2% to
87.8% with a dosage varying from 0.1 to 0.4 g L−1. However, the adsorption capacity decreased with
the increase of adsorption dose. This observation can be attributed to the partial aggregation of biochar
at higher concentrations, which might decrease the active sites on the surface of biochar and resulted
to adsorption capacity decrease [53]. The removal efficiency increased with the increase of adsorption
dose and achieved highest removal efficiency at the value of 0.4 g L−1 of adsorbent mass. The more the
adsorbent dosage increased, the more active binding sites were promoted. These promoted active sites
may participate in the DCF adsorption process.
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Figure 7. Effects of adsorbent dosage on the uptake of DCF onto Fe@BC.

Furthermore, the effect of contact time on the adsorption capacity of Fe@BC was determined.
The experiments were performed at constant parameters (pH 6.5, adsorbent dosage 50 mg, DCF initial
concentration 20 mg·L−1, temperature 298 K, contact time 24 h) at different time intervals. The effect of
contact time is displayed in Figure 8. As can be observed, the adsorption capacity of DCF increased
with the increase in contact time; the first 12 h adsorption was fast, then continued to increase slowly
until it reached an equilibrium state at 24 h. The results indicated an increase in adsorption capacity
and a decline in adsorption rate with time.

Figure 8. Effect of the adsorption time on the uptake of diclofenac sodium (DCF) onto Fe@BC.

3.2.2. Equilibrium Study and Kinetic Models

Adsorption equilibrium study is a useful tool for understanding adsorption efficiency as well as
adsorption mechanisms. It determines the equilibrium time of adsorbent microparticles. Adsorption
kinetic models can predict potential rate limiting steps, chemical reactions, and the particle diffusion
mechanism of DCF onto absorbent microparticles. However, biochar is known as an adsorbent that
is not homogenous due to chemical reactions involved and because transport phenomena are often
experimentally inseparable [54]. Thus, only applying elementary kinetic models (such as Pseudo
first-order, Pseudo second-order) may not fully investigate the adsorption system of biochar. In this
study, we employed Pseudo first-order, Pseudo second-order, and Elovich models to simulate the
equilibrium experimental data. The model equations are given in Supplementary Materials Table S2.
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Figure 9 and Table 1 show the kinetic experimental results of different models for DCF adsorption onto
Fe@BC and simulated parameters, respectively. From the applied kinetic models, linear regression
coefficient (R2) is the basis for the accuracy of adsorption capacity prediction. As can be observed
from Figure 9b and Table 1, the R2 values of 0.977, 0.997, and 0.994 were obtained from Pseudo
first-order, Pseudo second-order, and Elovich kinetic models, respectively. Among them, a higher
value correlation coefficient was obtained from the Pseudo second-order model and it is in good
agreement with experimental data: the calculated value of qe (92.5 mg·g−1) was near to experimental
value (90.35 mg·g−1). Thus, fitting results suggested that adsorption rate of DCF correlated with
chemical reaction/chemisorption [55]. In addition, Pseudo second-order proposed that the rate of
adsorption for Fe@BC was affected by the availability of the sorption sites rather than the DCF
solution concentration [56]. The Elovich model (Figure 9c) also presented a good fit for simulation
of experimental data with a R2 value of 0.994, which confirmed the chemisorption was a dominant
process during adsorption [57].

Figure 9. Kinetics study (a) Pseudo first-order model, (b) Pseudo second-order model, (c) Elovich
model, (d) Intra-particle diffusion model.

Table 1. Fitted parameters of different kinetic models for DCF adsorption on Fe@BC.

Pseudo First-Order Pseudo Second-Order Elovich

k1 (min−1) qe,cal
(mg·g−1)

R2 k2
(g·mg−1 min−1)

qe,cal
(mg·g−1)

R2 α

(mg·g−1 min−1)
β

(g·mg−1)
R2

0.212 59.34 0.977 0.011 92.5 0.997 473.89 0.0731 0.994

Experimental conditions: pH = 6.5, adsorbent dose = 50 mg, DCF initial concentration = 20 mg·L−1, V = 50 mL.

The intra-particle diffusion model was employed to further understand the mass transfer steps in
DCF adsorption (Supplementary Materials Table S2). Multilinearity can be observed when different
mechanisms with different rate constants are involved in sorption. In this situation, applying multiple
linear regression is needed for each linear region [58]. Figure 9d and Table 2 show the simulated results
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of intra-particle diffusion model for DCF adsorption by Fe@BC. As can be seen, the plots of qt versus
t1/2 of Fe@BC were multi-linear, indicating three steps took place in the adsorption process. The first
part (0–2 h), which shows a sharp curve, was attributed to the diffusion of DCF from the solution to the
external surface of the adsorbent or the boundary layer diffusion of solute molecules [59]. The second
part (2–12 h) indicated a gradual adsorption stage and intra-particle diffusion was the rate-limiting
step. Finally, in the third part (12–24 h), qt slightly changed, and the reaction reached an equilibrium
state. Because the DCF particles were adsorbed onto Fe@BC surface, it led to a low DCF concentration
left in the solution, and the intra-particle diffusion slowed down until it reached the saturation state.
The sorption mechanism can be considered as intraparticle diffusion when the plot (qt versus t1/2) is
a straight line passing from the origin. In this case, the removal of DCF from aqueous solution was
a complex process. It may be concluded that the diffusion process involved not only intra-particle
diffusion but also boundary layer diffusion.

Table 2. Intra-particle diffusion model parameters of DCF uptake onto Fe@BC.

First Part Second Part Third Part

Kid1
(mg·g−1

min−1/2)

C1
(mg/g) R2

Kid2
(mg·g−1

min−1/2)

C2
(mg·g−1)

R2
Kid3

(mg·g−1

min−1/2)

C3
(mg·g−1)

R2

35.17 11.72 0.978 11.19 44.78 0.968 4.18 70.31 0.966

Experimental conditions: pH = 6.5, adsorbent dose = 50 mg, DCF initial concentration = 20 mg·L−1, V = 50 mL.

3.2.3. Effect of DCF Initial Concentration

To investigate the initial concentration effect of DCF on the sorption process, adsorption isotherm
experiment was performed with similar experimental conditions of the kinetic study accompanied
with the initial concentrations of DCF varied from 5 to 25 mg·L−1. Figure 10 shows the variation of
adsorption efficiency as a function of initial concentration. As can be observed, adsorption efficiency
decreased with the increase in DCF initial concentration. This result happened because the higher
initial concentration of DCF might cause the saturation of active binding sites on Fe@BC surface.
However, it was observed that as the initial concentration of DCF increased the adsorption capacity
also increased. This can be explained by the high initial concentrations of the DCF: as concentration
gradient between bulk and solid liquid interface increased, this increased interface led to an upturn in
the amount of adsorbed DCF on Fe@BC.

Figure 10. Effect of initial concentration of DCF on the uptake of DCF onto Fe@BC.
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3.2.4. Adsorption Isotherm

Adsorption isotherm was conducted to explore the interactions between DCF and the Fe@BC
microparticles as well as the adsorption mechanism. Equilibrium data were employed to study the
adsorption isotherm models. Langmuir, Freundlich, and Temkin isotherm models were used to
simulate the adsorption reactions. The isotherm model equations are given in Supplementary Materials
Table S3. Figure 11 illustrates the experimental adsorption isotherm of DCF on Fe@BC and the linear
fitting curves of three isotherm models. As can be observed in Figure 11a, the adsorption isotherm of
DCF over Fe@BC belonged to L-type isotherm, confirming the strong interaction between Fe@BC and
DCF species [60].

Figure 11. (a) Adsorption isotherms of DCF onto Fe@BC, (b) Langmuir, (c) Freundlich, and (d) Temkin
plots for DCF adsorption over Fe@BC at 298 K.

Theoretically, different isotherm models can explain various mechanisms of the adsorption process.
The Langmuir isotherm model describes quantitatively the formation of a monolayer adsorbate on
the surface of adsorbent without any adsorbed specie interaction [61]. The Freundlich isotherm is
commonly used to describe multilayer adsorption on the heterogeneous systems and is not restricted
to the formation of the monolaye. The Temkin isotherm exhibits a brief interpretation of the interaction
between adsorbent and adsorbate. It ignores the effect of low and higher values of concentration and
assumes that the heat of adsorption of all the molecules in the layer would decrease linearly instead
of being logarithmic with coverage [62]. The parameters obtained from three isotherm models are
displayed in Table 3. It can be observed that Langmuir isotherm was more suitable when compared
with the Freundlich isotherm and Temkin isotherm. The higher value of R2, which obtained from
Langmuir model describes the homogenous adsorption process (uniform distribution of adsorbed
molecules on the surface of Fe@BC due to monolayer adsorption). Furthermore, essential features of
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Langmuir isotherm to find out its suitability for adsorption process can be expressed as equilibrium
parameter RL (separation factor) [63]. The RL is dimensionless constant and expressed in Equation (4):

RL =
1

1 + (1 + KLCo)
(4)

where Co is the initial concentration in (mg·L−1) and KL is in Langmuir equilibrium constant (L·mg−1).

Table 3. Adsorption isotherms parameters for DCF adsorption on Fe@BC.

Langmuir Isotherm Freundlich Isotherm Temkin Isotherm

KL
(L·mg−1)

qmax
(mg·g−1)

R2 n KF
(mg·g−1)

R2 AT
(L·g−1)

bT
B

(J·mol−1)
R2

0.236 123.45 0.9689 2.366 31.992 0.9681 2.429 92.326 26.835 0.945

Experimental conditions: pH = 6.5, adsorbent dose = 50 mg, DCF initial concentration = 20 mg·L−1, V = 50 mL.

From the Equation (4) above, calculated RL value was 0.17, which was in the range (0–1) of
favorable adsorption; this result further verified the suitability of the Langmuir isotherm model for
intercepting the adsorption of DCF on Fe@BC.

3.2.5. Thermodynamic Parameters

To understand detailed adsorption characteristics of DCF on Fe@BC, thermodynamic analysis
was investigated. The thermodynamic parameters, including standard free-energy change (∆G◦),
standard enthalpy change (∆H◦), and standard entropy change (∆S◦), were calculated from the different
adsorption temperatures via the following equations and tabulated in Table 4.

∆G◦ = −RTlnKo (5)

∆G◦ = ∆H◦ − T∆S◦ (6)

where Ko is the thermodynamic equilibrium constant calculated by plotting ln Kd (Kd = qe/Ce) versus
Ce and extrapolating Ce to zero, R = 8.314 (J mol−1 K−1) is universal gas constant and T (K) is the
solution temperature in Kelvin. A linear plot between ∆G◦ versus T was performed to obtain slope
and intercept, which could be assigned to ∆S◦ and ∆H◦, respectively.

Table 4. Thermodynamic parameters for adsorption of DCF on Fe@BC.

T (K) lnKo ∆G◦ (kJ mol−1) ∆H◦ (kJ mol−1) ∆S◦ (J K−1 mol−1)

298 1.14 −2.83 4.17 0.023
308 1.17 −3.01 - -
318 1.25 −3.30 - -

As seen in Table 4, the values of ∆G◦ were found to be negative at all temperatures, which
indicated that the adsorption involved a favorable and spontaneous process. The adsorption capacity
of 90.35 mg·g−1 at 298 K increased along with an increase in temperature to 99.5 mg·g−1 at 318 K.
This small increase suggested that the effect of temperature on adsorption was insignificant. When
environmental temperature increased, the surface coverage of the adsorbent tended to increase due to
the expansion and creation of new active sites on Fe@BC. This may be the reason for the positive change
of adsorption capacity when temperature increased. Additionally, 4.17 kJ mol−1 of ∆H◦ indicated the
adsorption process was endothermic. The positive value of ∆S◦ suggested that randomness at the
solid-liquid interface increased during the adsorption progress [57].
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3.2.6. Effect of Ionic Strength

Furthermore, to investigate the effect of ionic strength on adsorption of DCF on Fe@BC, different
concentrations of NaCl (0.001 M–0.1 M) were added to the DCF solution, owing to the popular existence
of this ionic compound in wastewater influent. As shown in Figure 12, the uptake of DCF by Fe@BC
decreased with the increase of NaCl concentration. Theoretically, there are attractive electrostatic
forces between the ions of adsorbate and adsorbent surfaces. Therefore, the adsorption capacity
decreased with the increase of ionic strength. However, in a system with the existence of electrostatic
repulsive, the adsorption capacity may show an increasing trend with the increase of ionic strength [64].
In addition, the infiltration of ions into the diffuse double layer surrounding Fe@BC surface may
lead to the elimination of the repulsive interaction between the adsorbent surfaces, which could be
unfavorable for the uptake of DCF onto Fe@BC.

Figure 12. Effect of ionic strength on adsorption of DCF on Fe@BC.

3.2.7. Comparison with Other Adsorbents

The comparison of adsorption performance between different reported carbon-based adsorbents
towards DCF in terms of theoretical maximum adsorption capacity (qmax) is presented in Table 5.
It may be subjective when taking a comparison without considering material synthesis methods as
well as reaction conditions; however, the comparison may support an overview in term of looking for
the efficient adsorbents to remove DCF as well as other organic contaminants from water environment.
As can be observed, Fe@BC presented a higher adsorption capacity for DCF when compared with
other adsorbents. Thus, Fe@BC would be a potential adsorbent for organic contaminants adsorption
due to its advantageous characteristics such as abundant origin materials, easy to synthesis (one-step
activated), high porous graphitic structure, and copious surface functionalities.
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Table 5. DCF adsorption capacity of various adsorbents and Fe@BC.

Adsorbents Adsorption Capacity qmax (mg·g−1) References

Fe@BC 123.5 This study
Coca shell 63.5 [65]

Carbon xerogels 80.0 [66]
Activated carbon (Commercial) 76.0 [67]

Activated hydro chars from orange peels 52.2 [68]
Activated carbon 36.2 [69]

Activated carbon from olive-waste cakes 56.2 [70]
Granular carbon nanotubes 27.0 [71]

Tea waste derived activated carbon 62.5 [72]
Coconut shell activated carbon 103.0 [73]

Activated carbon from potato peel waste 68.5 [74]
Cyclamen persicum (herbaceous plant) 22.2 [75]

3.3. Possible Adsorption Mechanism

Adsorption mechanism is important to understand the basics of adsorption process and surface
area of a porous adsorbent. Therefore, the adsorption mechanism can be predicted by investigating
the dependence of adsorption on pH value. The pH of the solution is a critical factor to understand
the nature of an adsorbent surface and sorbate molecules as well as their mutual interaction [76,77].
Previous studies have reported that adsorption of pharmaceuticals contaminants on the surface
of carbonaceous adsorbents was attributable to electrostatic interactions, H-bond interactions, π-π
interactions, and van der Waals interactions. [78,79]. Furthermore, pH values less than pKa of DCF
showed low solubility of DCF while the adsorption capacity increased inversely with the solution
pH [80].

The impact of pH on the adsorption was investigated by varying the solution pH from 2.0 to 10.0
under experimental conditions, such as a kinetic study, and zeta potential of Fe@BC was measured
at different pH values (Figure 13). Figure 13a shows the effect of pH on the removal process of DCF
by Fe@BC. It was observed that there was not much decline in adsorption capacity with increase in
pH from 2.0 to 6.5. The rapid decrease in adsorption capacity was seen when pH exceeded 6.5 and
it continued to decrease with the increase of pH up to 10. Furthermore, the zeta potential of Fe@BC
(Figure 13b) exhibited that surface charge decreased with the increase of pH of the solution, and point
of zero charge (pHpzc) of Fe@BC was calculated (pHpzc = 6.3). The pHpzc value revealed the surface
charges of as-prepared material (positive at <6.3 and negative at higher values).

Figure 13. (a) Effect of solution pH on DCF adsorption by Fe@BC and (b) zeta potential of Fe@BC at
different pH.

The surface charge of DCF can be controlled by pKa (dissociation constant) value and it was a weak
acid with pKa = 4.2 [57]. When the solution pH is higher than 4.2, it may possess a negative charge due
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to the ionization process. In contrast, when pH was lower than 4.2, DCF mostly presented in neutral
form, and adsorbent surface may carry a positive charge. Therefore, the higher adsorption capacity at
this pH value cannot be explained in terms of electrostatic attraction. Thus, other non-electrostatic
adsorption mechanisms must be considered to explain the adsorption mechanism of DCF.

By considering the DCF molecules and polar functional groups of Fe@BC, hydrogen bonding
(H-bonding) would be a possible mechanism for adsorption of DCF on Fe@BC; this interaction was
widely employed to explain the elimination of emerging pollutants by various porous adsorbents [81,82].
To investigate the adsorption mechanisms, variation of DCF removal capacity as a function of wide
pH range was considered as shown in Figure 13. The removal capacity would decrease drastically at
pH > pKa of DCF by considering DCF to be an H-donor for H-bonding because, in this case, DCF
molecules were deprotonated. Notably, the removal capacity was almost stable to pH ~ 6.5; accordingly,
the DCF cannot be the H-donor. Therefore, Fe@BC would be an H-bond donor from the phenolic (pH
~ 10) and/or carboxylic (pH ~ 4.8) moieties presenting on its surface to the electronegative species in
DCF (O-atoms as H-receptor).

Given the DCF structure (Figure S1), the π–π electron donor–acceptor interaction between
the aromatic rings of DCF (π-electron acceptor) and Fe@BC (π-electron donor) would occur [83].
The presence of chlorine atoms and carboxylic acid group in DCF could cause the π-electron density
to decrease on its phenyl ring and facilitate π–π interactions with Fe@BC surface [71]. Lastly,
hydrophobic interactions may occur by considering the hydrophobic characters of adsorbate surface
and molecules [84]. Therefore, at the values higher than pKa of DCF and lower than pHpzc of Fe@BC
(4.2 < pH < 6.5), the electrostatic force of attraction would play an important role to adsorb DCF anions
on the positive surface of Fe@BC. As can be seen in Figure 13a, DCF removal capacity was decreased
with the increased in pH > 6.5, which can be explained by the electrostatic repulsive interaction between
negatively charged adsorbent surface and the deprotonated carboxylic acid group. Nevertheless, as the
pH increased to 10 or above, Fe@BC exhibited negligible adsorption ability because its surface posed a
negative charge, which repelled DCF anions; accordingly, restricted the operation of H-bonding. It can
be seen that the as-prepared sample showed considerable adsorption capacity (55.77 mg/g) at high pH
values (pH ≥ 10) (Figure 13a), which can be attributed to π–π electron donor–acceptor [78,85]. On the
basis of these results, the possible adsorption mechanisms of DCF onto Fe@BC at different pH values is
shown in Figure 14.

Figure 14. Proposed adsorption mechanism for DCF on Fe@BC at different pH values.

3.4. Reusability and Regeneration

To evaluate the reusability and cost effectiveness of the adsorbent, it is important to examine its
performance through simulated desorption/regeneration cycles [52]. The FTIR analysis of Fe@BC, DCF,
DCF-loaded Fe@BC, and recycled Fe@BC were compared and presented in Figure 15b. Stretching
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bands at 1417, 1232, and 872 cm−1 were observed for both DCF and DCF-loaded Fe@BC, verifying
the adsorption of DCF onto Fe@BC. On the contrary, the vanishing of such bands and similar FTIR
spectra (stretching bands at 3440, 1624, 1379, and 1024 cm−1) with fresh Fe@BC and a regenerated
one suggested the successful removal of the adsorbed DCF, which is in accord with the results of the
recycling tests (shown in Figure 15a). It was observed that DCF was successfully desorbed from the
Fe@BC after 24 h of contact time using acetone as an eluent. As can be seen in Figure 15a, adsorption
ability of DCF onto Fe@BC was 90.35 mg·g−1 at 298 K and pH 6.5 in the first cycle. However, after
being reused in repeated cycles of adsorption/desorption, the adsorption capacity of the Fe@BC was
expected to decrease. The loss of surface function groups during the desorption process may explain the
reduction in the adsorbed amount of DCF by Fe@BC. As can be observed in Figure 15a, the adsorption
ability of DCF onto the recycled FE@BC slightly reduced and remained at 86.94 mg·g−1 after five
adsorption/desorption cycles. This implied that Fe@BC could be a potential and efficient adsorbent for
DCF removal due to its considerable performance after five cycles of repeated usage.

Figure 15. (a) Recyclability of Fe@BC for adsorption of DCF from aqueous solution and (b) FTIR spectra
of Fe@BC, DCF, DCF-loaded Fe@BC, and regenerated Fe@BC.

4. Conclusions

Porous graphitic biomass carbon can be formed using pitch pine sawdust as a carbon source by
one-step carbonization and graphitization process with K2FeO4 as chemical activation. The as-prepared
sample (Fe@BC) was applied to remove diclofenac sodium (DCF) from aqueous solution. The Fe@BC
presented a well-developed micro/mesoporous graphitic structure and Fe nano particles were observed
on its surface. Via a study about the effects of contact time, it was found that adsorption of DCF
by Fe@BC was fitted with Pseudo second-order model. In the adsorption equilibrium experiments,
adsorption of DCF on Fe@BC Langmuir isotherm model was best fitted and suitable for the experiment
data, indicating that the adsorption was a monolayer adsorption process. The Langmuir isotherm
model showed higher adsorption monolayer capacity 123.45 mg·g−1 when compared with other
carbon-based adsorbents. After five times recycling, the adsorption capacity of Fe@BC for DCF
removal was only reduced by approximately 4%, which indicated a high stability and reusability of
Fe@BC. Furthermore, the possible DCF adsorption mechanisms were also proposed. It was suggested
that H-bonding and π–π interaction were possible adsorption mechanisms. Finally, Fe@BC can be
considered as a potentially environmentally friendly adsorbent for the removal of DCF from water
bodies due to its advantageous characteristics, such as facile preparation, high adsorption capacity, as
well as recyclability.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/1/291/s1,
Figure S1: Structure of Diclofenac sodium, Figure S2: FT-IR spectra of Fe@BC, DCF-loaded Fe@BC and
regenerated/recycled Fe@BC, Table S1: Kinetic models applied for the adsorption of DCF onto Fe@BC, Table S2:
Isotherm models (linear form) applied for the adsorption of DCF onto Fe@BC.
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