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Abstract

Increasing the durability of crop resistance to plant pathogens is one of the key goals of virulence management. Despite the
recognition of the importance of demographic and environmental stochasticity on the dynamics of an epidemic, their
effects on the evolution of the pathogen and durability of resistance has not received attention. We formulated a stochastic
epidemiological model, based on the Kramer-Moyal expansion of the Master Equation, to investigate how random
fluctuations affect the dynamics of an epidemic and how these effects feed through to the evolution of the pathogen and
durability of resistance. We focused on two hypotheses: firstly, a previous deterministic model has suggested that the effect
of cropping ratio (the proportion of land area occupied by the resistant crop) on the durability of crop resistance is
negligible. Increasing the cropping ratio increases the area of uninfected host, but the resistance is more rapidly broken;
these two effects counteract each other. We tested the hypothesis that similar counteracting effects would occur when we
take account of demographic stochasticity, but found that the durability does depend on the cropping ratio. Secondly, we
tested whether a superimposed external source of stochasticity (for example due to environmental variation or to
intermittent fungicide application) interacts with the intrinsic demographic fluctuations and how such interaction affects
the durability of resistance. We show that in the pathosystem considered here, in general large stochastic fluctuations in
epidemics enhance extinction of the pathogen. This is more likely to occur at large cropping ratios and for particular
frequencies of the periodic external perturbation (stochastic resonance). The results suggest possible disease control
practises by exploiting the natural sources of stochasticity.
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Introduction

There is increasing social pressure to integrate science, policy

and regulation in order to assess and minimize the risks associated

with agricultural practices. Major risks and uncertainties persist

whereby pests and pathogens rapidly overcome disease control

methods using resistant cultivars and fungicides. Although disease

resistant genes have been successfully used for disease manage-

ment, many crop geneticists and plant breeders view resistance

genes as a limited and potentially non-renewable resource,

whereby once a pathogen has evolved to overcome the resistance,

the resistance genes have permanently lost their value. Thus one of

the key goals of virulence management is to increase the durability

of crop resistance, a concept that has been extensively discussed in

the literature, but which is still difficult to measure and predict [1–

7]. Johnson [2] was perhaps the first to provide a definition of

durable resistance, i.e. a resistance that remains effective over a

prolonged period of widespread use under conditions conducive to

the disease. However, such definition, although conceptually

simple, does not provide an objective procedure for measuring and

predicting the durability of crop resistance (see e.g. the discussion in

[3]). In particular, the beguilingly simple concepts of ‘remaining

effective’, ‘prolonged period’ and ‘widespread use’ are subject to a

range of interpretations. Durability of resistance is also confound-

ed with the inherent variability exemplified by a wide range of

plant pathogens. As pointed out by Leach et al. [3], although many

resistance genes have been identified in plant germplasm,

identifying the factors that render the resistance ‘effective’ is still

a challenging task. One exception is, perhaps, the polygenic vs

monogenic paradigm, according to which resistance due to the

additive action of many genes (also known approximately in the

literature as polygenic, quantitative, horizontal resistance, see e.g.

[8,9]) is expected to be more durable than resistance due to the

action of a single gene (also referred to as monogenic, qualitative,

vertical resistance [1,4–6,10]). However, even this generally

accepted consensus has been challenged by several authors

showing that erosion of polygenic resistance may be important

and relatively rapid [2,11–19] and presenting evidence of durable

resistance due to the action of a single gene [2,18].

This raises the key question why resistance, especially mono-

genic resistance, can be so ephemeral and subjected to the well

known boom-and-bust cycles [20]. The review of Leach et al. [3]
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focuses on this issue and supports the hypothesis that the inherent

quality and durability of a plant resistance gene is a direct function

of the amount of fitness penalty imposed on the pathogen to

overcome that resistance gene. Despite this important clarification,

the mechanism regulating the durability of resistance is expected

to be more complex than the simple molecular changes alone in

pathogen adaptation and any associated fitness cost. The

population sizes of the pathogen and host also matter. McDonald

and Linde [20] provide a conceptual overview of the evolutionary

forces that drive the evolution of plant pathogens (mutation,

genetic drift, gene flow, reproduction/mating system, and

selection) emphasising the role of population size. A large

population is likely to have greater gene diversity than a smaller

population and it can influence the so-called random genetic drift

(i.e. the change in the frequency of alleles in a randomly chosen

subset of a population) that typically occurs when a subset of

population survives a catastrophic event that dramatically reduces

the population size (a bottleneck), or due to external immigration

of a small, random subset of a pathogen into a new host. In

addition, the durability of resistance may be affected by the

landscape composition (i.e. host variety frequencies) [21] and can

be increased by using spatially heterogeneous mixtures of different

cultivars with similar agronomic traits, but differing in resistance

genes [5,17,22]. All these studies suggest that any theoretical

approach to analyse the evolution of pathogen and durability

cannot focus on gene frequency alone (the proportion of the

pathogen population carrying a particular allele of a gene) and the

density of the host and the pathogen ought to be included.

To this end van den Bosch and Gilligan [23] explicitly linked

population dynamics and population genetics to investigate the

durability of resistance. They introduced new concepts to measure

durable crop resistance and analysed these using deterministic

models. They identified three measures, the expected time until a

virulent genotype invades following release of a resistant crop cultivar,

the time until a virulent genotype takes over the pathogen population and

the additional number of uninfected host growth days, TAdd , effected by the

growth of the resistant cultivar (see Figure 1). For each measure

they examined the effect of cropping ratio (the proportion of

resistant cultivar grown in a landscape) on the durability of

resistance. Here we focus on TAdd because of its practical

usefulness in measuring durability of resistance and its applicability

to pesticides, antibiotics and drug resistance (see also [24,25]). To a

first approximation TAdd can be identified with the additional crop

yield gained during the deployment of a resistant gene [26]. Thus

in the light of Johnson’s [2] definition, the resistance is considered

to ‘remain effective’ until its use (deployment period) continues to

produce additional crop yield; as the frequency of the virulent

strain increases, the contribution to the additional crop decreases

to zero. In this case the resistance is considered broken and the

resistant and susceptible cultivars are no longer distinguishable

from each other. Thus any further deployment of the resistance

gene in a resistant cultivar has no effect.

A key message from the work of van den Bosch and Gilligan

[23], also consistent with the predictions of Bonhoeffer [24] for

antibiotic management, is that the durability of resistance is

unaffected by the cropping ratio. van den Bosch and Gilligan [23]

proposed the following explanation: increasing the proportion of

resistant crop initially decreases the total pathogen population, but

increases the selection pressure on the pathogen and consequently

the resistance is more rapidly broken down [20]. The two effects

tend to compensate and the total gain is unaltered, i.e. giving the

same areas for deployment of resistant cultivars under different

cropping ratios as shown in Figure 1. It is unlikely, however that in

the field the solution is truly as simple as analysis of the

deterministic model suggests, not least because the model [23]

ignores important sources of variability, such as environmental

and demographic stochasticity, rendering prediction of limited

value [27].

Despite a growing body of research focused on stochastic

disease dynamics, the role of demographic and environmental

stochasticity on the dynamics of an epidemic is still not fully

Author Summary

We want to understand if, and how, the evolution of a
pathogen can be delayed/accelerated by random fluctu-
ations always occurring in epidemics. We studied a simple
biological system relevant to agriculture: a resistant crop
immune to the disease, and a plant pathogen that defeats
the resistance after a single mutation. Eventually the
population of these more harmful pathogens will take over
and the resistance can no longer protect the crop. As the
availability of such resistant genes is limited in nature, this
is an important problem to ensure food security for future
generations as well as reduction in pesticide usage. We
used a mathematical model to show that in general large
stochastic fluctuations in epidemics enhance extinction of
the pathogen, especially of the emerging mutant strains.
We know that periodically forced epidemics oscillate at
larger amplitude at some frequencies than at others
(resonance), then by adequately perturbing the system
(e.g. by alternating different types of fungicides) we can
cause massive fluctuations in the small pathogen popula-
tion increasing the chances of extinction. If such hypoth-
eses will be experimentally confirmed, we could alleviate
the disease, reduce chemical control, and in general,
mitigate the risk of developing highly harmful pathogens
(e.g. superbugs insensitive to antibiotics).

Figure 1. Illustration of measurement of durability of resistance.
When the resistance is broken the resistant and susceptible cultivars are
no longer distinguishable from each other; the pathosystem approach-
es the same equilibrium state as if the resistant cultivar was never
deployed. The durability of resistance corresponds to the extra amount
of healthy host gained, due to the resistant genes, during this time
interval. This measure corresponds to the area TAdd~

Ð
H tð Þ{ĤH tð Þ
� �

dt; H(t) is the healthy host and ĤH tð Þ the steady state, i.e. when the
system is no longer subjected to temporal variations. Two explicative
cases with different cropping ratios are shown. In the deterministic
model the two areas are expected to be the same.
doi:10.1371/journal.pcbi.1002870.g001

Durable Resistance to Crop Pathogens
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understood. For example, can we quantify the effect of random

noise on the evolutionary forces classified by McDonald and Linde

[20]? Does stochasticity delay/accelerate the evolution of patho-

gens? If so, how? To our knowledge, there is no theoretical

framework available that investigates the effects of demographic

and environmental stochasticity on the evolution of the pathogen and

thus the durability of crop resistance. Here, building on previous work

of van den Bosch and Gilligan [23] we now take account of

variability. More precisely we formulate a stochastic, mathematical

model to test the following hypotheses, that:

i. in contrast with the finding of van den Bosch and Gilligan

[23], the durability of crop resistance depends on the cropping

ratio when we take account of demographic stochasticity.

ii. a superimposed external source of stochasticity (e.g. due to

environmental factors) interacts with the intrinsic demograph-

ic fluctuations and affects the durability of resistance.

We show that, for the pathosystems considered here, large

stochastic fluctuations, particularly at the beginning of epidemics,

enhance extinction of the pathogen, and especially the virulent

strain, so promoting the durability of resistant cultivars. This has

important theoretical consequences as it shows that the evolution

of pathogens is directly affected by demographic and environ-

mental stochasticity. The findings also suggest possible disease

control practises by exploiting natural sources of stochasticity.

Materials and Methods

Our models are motivated for a broad range of crops and plant

pathogens. The target hosts and pathogens are typified by cereal

rusts and mildews but are by no means restricted to these. We used

a SIR epidemic model to study a system comprising two cultivars

(susceptible and qualitatively resistant) and two pathogen strains

(virulent and avirulent). The unit of interest may be a plant but

more usually it will be a unit of susceptible tissue such as a leaf or

part thereof. In this non-spatial model, the populations of

individuals are homogeneously mixed. The pathogen is transmit-

ted from individual to individual when ‘encounters’ occur (e.g. a

spore depositing on healthy tissue) with transition probability

proportional to the number of possible encounters. The transmis-

sion of infection is described by a process like: InfectedIndividual
zHealthyIndividual T?2 InfectedIndividual, where T is the

transmission probability from one category to another. This

system can be seen as a birth-death system with many variables

[28]. By writing down all possible transitions from one category to

another with the adequate transition probabilities we obtain a

Master Equation (ME) [28,29]. High levels of accuracy and

realism are possible by using models based on the solution of the

Master Equation. However, for large populations the mathematics

become intractable. A compromise is represented by approximat-

ing the ME by invoking the Kramer-Moyal expansion [28]. The

approximation leads to a Fokker-Planck equation (FPE) providing

the coefficients for the Langevin equation which can be used to

simulate individual stochastic realisations (see Supporting Infor-

mation):

dHS

zffl}|ffl{Healthy{Susceptible

~ 1{wð Þsdt{vHS tð Þdt{bHS Iv tð ÞzIa tð Þ½ �dt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Deterministic term

z

X6

j~1

c1,j dWj tð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Stochastic term

dHR

zffl}|ffl{Healthy{Resistant

~ wsdt{vHR tð Þdt{bHR 1{ð ÞIv tð Þz Ia tð Þ½ �dt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Deterministic term

z

X6

j~1

c2,j dWi tð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Stochastic term

dIa tð Þ
zfflffl}|fflffl{Infected{Avirulent

~{ mzvð ÞIa tð ÞdtzbHS 1{ð ÞIa tð Þz Iv tð Þ½ �dt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Deterministic term

z

X6

j~1

c3,j dWj tð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Stochastic term

z dA

z}|{Immigration term

dIv tð Þ
zfflffl}|fflffl{Infected{Virulent

~{ mzvð ÞIv tð Þdtzb HS 1{ð ÞIv tð Þz Ia tð Þ½ �zHR 1{ð ÞIv tð Þz Ia tð Þ½ �f gdt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Deterministic term

z
X6

j~1

c4,j dWj tð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Stochastic term

z dV

z}|{Immigration term

dRa

z}|{Removed{Avirulent

~ m{vð ÞRadt
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Deterministic term

z
X6

j~1

c5,jdWj tð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Stochastic term

dRv

z}|{Removed{Virulent

~ m{vð ÞRvdt
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Deterministic term

z
X6

j~1

c6,jdWj tð Þ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Stochastic term

ð1Þ

where b is the transmission rate; HS and HR are the densities of

susceptible (healthy) and resistant hosts; Ia(t) and Iv(t) are the

densities of infected hosts by the virulent and avirulent pathogen; e
the rate of mutations; 1=m the infectious period; Wi(t) is a Wiener

process with mean zero and variance dt [28,29]; the terms ci,j are

the entries of the diffusion matrix in the corresponding FPE, they

depend solely on the state of the system and on parameters used as

model input. We also superimpose that the susceptible and

resistant cultivar increase continuously with rates (1{w)s and ws
respectively, where w is the fraction of resistant crop and s is a

constant planting rate. Both hosts are harvested with rate v. The

pathosystem is illustrated in Figure 2. The model therefore applies

to a system of continuous harvesting and sowing, typified by the

management of continuous cropping systems, common in tropical

regions. We have also chosen this system to enable comparison

with other epidemiological models, where individuals are born

with a constant birth rate s and a proportion of the entire

population dies with rate v, analogous to the systems of

Bonhoeffer and Mclean [24,25] for antibiotics and vaccination

management. The continuous (non-seasonal) formulation of the

pathosystem allows the analysis of periodic disturbance on the

typical frequencies of the system (see below) that are unconfound-

ed by seasonality. It also simplifies the mathematical analysis.

Figure 2. Stochasticity and life-cycle parameters. SIR model for
two cultivars and two strains (avirulent and virulent) of the pathogen.
The model does not explicitly compute the population of the pathogen
but the infected categories Ia and Iv, representing the host populations
(irrespective of being susceptible or resistant), infected by the avirulent
and virulent strains, which generate new pathogens. For visual
purposes the small effect of mutations is not illustrated in the diagram.
doi:10.1371/journal.pcbi.1002870.g002

ð1Þ
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In the current paper planting and harvesting are assumed to be

fully farmer-controlled and therefore not subjected to stochastic

fluctuations. Immigration of avirulent and virulent pathogens from

an external source are also included and modelled as a Poisson

process with mean dA and dV for the avirulent and virulent strains,

respectively. Unless otherwise stated the values of the parameters

are shown in Table 1. As we can see the deterministic term is

formally the same as the deterministic model of Mclean [25] and

compatible with the model of van den Bosch and Gilligan [23]

with mutations. From the system of Langevin equations we can

calculate the additional number of uninfected host growth days:

TAdd~

ð
½HS(t)zHR(t){ĤHS(t){ĤHR(t)�dt ð2Þ

where ĤHS(t)~HS(0) and ĤHR(t)~HR(0) are the steady states for

the susceptible and resistant host (i.e. the solutions of equation 1

when the derivatives on the lhs of equations and the stochastic

terms are set to zero). When both pathogen strains are present, the

system reaches an equilibrium in which the virulent genotype

coexists with the resistant and susceptible cultivars and the

avirulent genotype goes extinct [23]. As shown by [23] TAdd is

interpreted as a measure of the durability of crop resistance. These

methodologies result in many stochastic time-series for the

population of infected and healthy hosts. For each single stochastic

realisation, we calculated the durability TAdd and how this

depends on parameters, such as the cropping ratio. By using the

wavelet analysis [30], a suitable tool for transient regimes like the

current one, we have identified the dominant frequencies of the

system. Then we replaced the fixed life-cycle parameters in the

model with periodically variable parameters. Underlying this

approach is the assumption that external factors such as

seasonality have an immediate effect on the population. Here we

tested hypotheses i) and ii) by:

i. simulating many stochastic realisations according to equation

(1) and calculating the durability of resistance according to

equation (2) for a range of values of the cropping ratio. The

results were compared with the deterministic counterpart

when all the term ci,j in the diffusion matrix are set to zero.

ii. repeating the procedure in i) as well as imposing a periodic

perturbation on the system. This was done by a regular

variation of the value of one of the life-cycle parameters. The

periodic perturbations were always in phase for all random

realisations. This scenario mimics, for instance, a regular

variation of the environmental conditions or a continuous

application of fungicides when the mean dosage is altered in a

periodic fashion. The results were compared with the scenario

when none of the parameters were varied.

Results

Figure 3 shows that epidemics with the same basic reproductive

number, R0, and the same Tadd , but with different pathogen life-

cycle parameters, exhibit markedly different dynamics. The

differences are expressed in the amplitudes of fluctuations,

correlations and excursion times i.e. the time between an up-

crossing (down-crossing) and subsequent down-crossing (up-

crossing) relative to the deterministic profile. (R0 is defined as

the expected number of secondary cases produced by a typical

primary case in an entirely susceptible population, and depends

solely on the life-cycle parameters). The importance of the

Table 1. Parameters.

State Variable and Parameter Symbol and Value (in adequate units)

Healthy, susceptible, host HS(t)

Healthy, resistant, host HR(t)

Host infected by the avirulent strain IA(t)

Host infected by the virulent strain IV (t)

Removed host that was infected by the avirulent strain RA(t)

Removed host that was infected by the virulent strain RV (t)

Initial basic reproductive ratio
R0~

sb

mv
~15 (R0~4:2 Figures 3,4,5)

cropping ratio w 0:1ƒwv1

Planting ratio s~30 t{1 (s~150 t{1 Figures 3,5)

Harvest rate v~0:005 t{1

Transmission rate b~2:5E{4 t{1 (b~0:7E{4 t{1 Figures 3,5)

Deployment time DDepl~5000 t (DDepl~10000 t Figures 5)

Infectious Period 1=m~10: t{1 (1=m~0:2 t{1 Figures 3,5)

Rate of mutations e~4E{9 t{1

Immigration of avirulent pathogens dA~2:10{2 t{1 , (dA~20 t{1 Figure 5)

Immigration of virulent pathogens dV ~5:10{5 t{1 , (dV ~5:10{3 t{1 Figure 5)

Number of stochastic realizations 300

Initial density of susceptible healthy, avirulent and virulent host
Hs(0)~

mzv

b
, Ia(0)~0:95

s

m
{

v

b

� �
, Iv(0)~0:05

s

mzv
{

v

b

� �
L{2

Values of the parameters used in the simulations. The dimensions of the parameters are expressed in terms of time units t (e.g. measured in days) and length units L.
doi:10.1371/journal.pcbi.1002870.t001
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intensity of such fluctuations is shown in Figure 4. Fluctuations

might lead to a critically small infected population and subsequent

stochastic extinction (and thus higher durability) while external

immigration leads to re-invasion. In contrast with the predictions of

[23] for a deterministic model, average durability of crop resistance

Tadd in the stochastic model increases with cropping ratio (Figure 5).

The existence of dominant frequencies from wavelet analysis are

illustrated for the time-series of the population infected by the

virulent strain (Iv(t)) in the online Supporting Information. The

dominant periods for stochastic realizations occur at 030{500
time units with a peak in the average wavelet spectrum in the

range 60{130 time units. The interaction of such dominant

periods with a periodic perturbation, such as the intermittent

application of fungicide control that affects the transmission rates

(b), leads to large fluctuations in the infected population (cf

Figure 6). This occurs in both the deterministic (black line) and

stochastic (red dots) scenarios illustrated in Figure 6. However in

the stochastic case the amplitudes of the fluctuations are, in

general, larger than the corresponding deterministic case. The

increased amplitudes are attributable to resonance with the

natural frequencies of the system. We analyse the effect further

by considering how two key epidemiological variables (maximum

amplitude and number of extinctions) respond to changes in the

periodic perturbation in applying chemical control (Figures 7.A

and 7.B). In each case, the response effected by resonance with the

periodic control dramatically increases in the region of dominant

natural frequencies i.e. in the range 60{130 time units. Our

analyses also show that the effects of resonance with periodic

control can reduce the amount and the proportion of the virulent

form in the population. Figure 7.C shows how the proportion of

Iv(t) (averaged over realisations and time) changes with the period

of control. The major effect corresponds once again with the

dominant natural frequencies. The principal effects are summa-

rised in Figure 8. Here we show that periodic (rather than

constant) application of control increases the durability (TAdd ) for

both the deterministic and stochastic models. The effect is

substantially enhanced however for the stochastic model with a

marked response corresponding to the natural frequencies.

Discussion

Using the stochastic formulation of the deterministic model

proposed by van den Bosch and Gilligan [23] with allowance for

immigration of avirulent and virulent strains, we have identified

important differences in the behaviour of deterministic and

stochastic models. Our results highlight the potential importance

of stochastic fluctuations on the evolution of the pathogen and

Figure 3. Stochasticity and life-cycle parameters. Deterministic
(black lines) and stochastic profiles for the amount of infected host with
dfferent life-cycle parameters. Black dashed line and green dots: results
for a simulated process with parameters as in in Table 1. Black
continuous line and red line: s and m increased by a factor five; in both
cases no mutations and no external immigration of pathogen.
b = 0.7E24 t21.
doi:10.1371/journal.pcbi.1002870.g003

Figure 4. Stochasticity and extinction. Deterministic (black lines)
and two stochastic realizations showing the temporal variation of the
amount of infected host. In one case the uctuations lead to extinction
while external immigration leads to re-invasion. b = 0.7E24 t21.
doi:10.1371/journal.pcbi.1002870.g004

Figure 5. Stochasticity and durability of resistance. Durability of
crop resistance TAdd vs cropping ratio. Stochastic case (red dots);
deterministic case (black line). The black dashed line represents the
largest theoretical TAdd~ s=v{ HS 0ð ÞzHR 0ð Þð Þð ÞDDepl in the absence

of the pathogen. Otherwise TAdd~
1

b
log s= mzvð Þ{v=bð Þ{log Iv 0ð Þð Þð Þ

which coincides with the deterministic case. Data are averaged over 300
stochastic realizations. In the deterministic case the durability is practically
unaffected by the cropping ratio. Larger proportion of the resistant
cultivar enhances more frequent stochastic extinctions of the pathogen
population therefore the durability increases with the cropping ratios
(b = 7E25, s = 150, m = 0.5).
doi:10.1371/journal.pcbi.1002870.g005
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ultimately on the durability of crop resistance. The primary

message is that large fluctuations can lead to a critically small

infected population and subsequent stochastic extinction (see [31]

for examples in the ecology literature). Stochastic extinction as

described here is likely to be particularly important at the start of

an epidemic, for a system with a large supply of healthy host and/

or for diseases with small R0. The results support the view that in

the presence of random migration of pathogens from external

fields, there is an intermittent scenario in which the pathosystem

temporarily flips between three different regimes (‘‘no invasion’’,

‘‘invasion and no persistence’’, ‘‘invasion and persistence’’ [32]).

This has profound consequences for the durability of crop resistance

since the overall measure of durability of crop resistance is

determined by the total contribution of stochastic realisations

comprising these three different regimes. The results support the

two hypotheses posed in the introduction that in contrast to the

finding of van den Bosch and Gilligan [23], the durability of crop

resistance depends on the cropping ratio when we take account of

demographic stochasticity. And a superimposed external source of

stochasticity interacts with the intrinsic demographic fluctuations and

affects the durability of resistance. We discuss each of these below.

Existence of an optimal cropping ratio
The introduction of a resistant cultivar promotes more frequent

stochastic extinctions of the pathogen population resulting in a

higher TAdd for larger cropping ratios (Figure 5). The reason is

attributable to the occurrence of different equilibria depending

upon whether the pathogen is present or absent. For simplicity we

consider the case with no external immigration and no mutations,

but the result still holds in the more general case. Ignoring random

effects, in the absence of the pathogen, the densities of the resistant

and susceptible cultivars approach the steady state given by

ĤHS tð ÞzĤHR tð Þ~s=v, reflecting the planting and harvesting rates.

When the pathogen is present, the system reaches an equilibrium

in which the virulent genotype coexists with the resistant and

susceptible cultivars. The equilibrium is given by

ĤHS tð ÞzĤHR tð Þ~ mzvð Þ= bð Þ subject to s=vw(mzv)=(b) (see

[23]). Thus depending upon whether the pathogen is present or

not the behaviour of the pathosystem switches between these two

states characterized by different equilibria. The larger the

proportion of resistant crop, the smaller the density of infected

hosts, especially at the beginning of an epidemic. When the density

becomes critically low, the probability of extinction of the

pathogen due to random fluctuations increases leading the system

towards the steady state with larger yield, i.e.

ĤHS tð ÞzĤHR tð Þ~s=v. Therefore the stochastic profile for the

durability of resistance (TAdd ) increases with the cropping ratio

(Figure 5). The effect becomes more important when the gap

between the two different equilibria is larger

(s=v{(mzv)=(b)ww1).

Conversely, the effect is negligible when the average density of

infected hosts is larger than the typical size of the fluctuations. This

situation typically occurs for large initial proportions of the virulent

strain or when the resistance is broken. The local minimum in the

stochastic profile for TAdd at low cropping ratio (&0:2) is an effect

of the initial conditions. The latter were chosen as the equilibrium

state in the absence of the resistant cultivar and no external

immigration of the pathogen. At the beginning of the simulated

epidemics, the external immigration of the avirulent pathogen

causes an abrupt increase in the basic reproductive number. This,

in turn, leads to a sharp decrease in the durability of resistance.

The contribution becomes less important for large cropping ratio,

since the resistant cultivar is immune to the avirulent strain.

Allowance for immigration of the virulent strain has a negligible

effect since it is several orders of magnitude smaller than the

immigration of the avirulent strain. This response, suggesting the

Figure 6. Resonance and epidemics. Deterministic (black line) and stochastic (red dots) profiles for the amount of infected host, no immigration.
A) The transmission rate b is constant,i.e. no variable disease control is applied (brown line at the top of the figure). B) Resonance mechanism. Here
we impose a wave-form transmission rate b with the same mean as in Figure 6.A (brown line at the top of the figure). This mimics the case when a
periodic control is applied. When the frequency of the variable control is close to the natural frequencies of the pathosystem, the amplitudes of the
stochastic uctuations dramatically increase.
doi:10.1371/journal.pcbi.1002870.g006
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existence of an optimal cropping ratio (100% resistant), is in

contrast to the predictions of van den Bosch and Gilligan [23].

However, the presence of disease resistance genes might lead to

yield penalties [33]. By including a correction for yield penalty, we

expect that the yield/durability would exhibit a maximum at an

intermediate value of the cropping ratio.

Resonance between environmental fluctuations and the
intrinsic periodicity of the pathosystem

Agricultural systems are often subjected to periodic perturba-

tion. Examples of such perturbations may arise from environmen-

tal forcing, for example temperature-driven changes in life-cycle

parameters, which is particularly important as climate change has

also been associated with variation in human and plant diseases

Figure 7. Effect of resonance on key epidemiological and
evolutionary variables. 7.A Amplitudes of the uctuations for the
infected, virulent population. Blue circles: the maximum values

ofD Iv tð Þ{�IIv tð Þ
� �

D, (�IIv is the deterministic solution of equation (1))
occurring in the 300 simulated time-series vs the period of application
of disease control, i.e. the period in the wave-form transmission rate b
shown in Figure 6.B, compared with the case when constant control is
applied, brown circles. 7.B Number of extinctions occurring in the
simulated time-series Iv vs the period of application of disease control,
blue circles, compared with the case when constant control is applied,
brown circles. Since external immigration is allowed, more than one
extinction can occur in the same time-series. Values are divided by the
number of simulated time-series and expressed in percentage. 7.C
Proportion of average, infected, virulent population. The number of
SIvT= SIvTzSIaTð Þ where SIvT SIaTrepresent the time and ensemble
average of the virulent and avirulent population vs the period of
application of disease control, blue circles, compared with the case
when constant control is applied, brown circles.
doi:10.1371/journal.pcbi.1002870.g007

Figure 8. Resonance and durability of crop resistance. Durability
of crop resistance vs the period of application of disease control
compared with the case when constant control and no control is
applied. Predictions for both stochastic and deterministic model are
shown. This leads to three messages: 1) The durability predicted by the
stochastic models is always larger than that predicted by the
deterministic models 2) The durability is always larger when periodic
control is applied 3) Stochasticity and periodicity lead to resonance with
the natural frequencies of the pathosystem (maximum in the blue-dots
profile) with strong effect on durability. The dashed black line
represents predictions for the deterministic case in absence of control
(<8000), this is 1:5 lower than the deterministic case in the presence of
constant control but it is not shown the current plot as the two profiles
are indistinguishable.
doi:10.1371/journal.pcbi.1002870.g008
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[34,35]. Another important source of periodic perturbations are

temporal variations in disease control practices e.g. due to periodic

changes in the mean dosage of applied fungicides, alternation of

the application of protectant and curative fungicides. To this end

Gubbins and Gilligan [36] developed deterministic and stochastic

models to study fungicide resistance under the application of

constant and periodically varying fungicides. They found the

existence of a threshold for the invasion of the resistant strain that

depended upon the relative fitness of the resistant strain and the

effectiveness of control, which is turn is influenced by the

periodicity of fungicide application [36]. Although it recognizes

the importance of periodicity, the paper by [36] does not

investigate how the periodicity of application interacts with the

typical frequencies of the pathosystem i.e. resonance. Resonance is

well documented in many biological and ecological systems

([31,37–40] and references therein). Epidemics are characterized

by particular frequencies rather than others: for example Grenfell

et al. [41] (see also [42]) investigated synchrony patterns of measles

in the UK and found that the epidemic time-series are dominated

by a 2{year periodic mode. Temporal patterns of epidemics, e.g.

measles, whooping cough and cholera, are also linked with

environmental and human changes (see [42] and references

therein). In particular Rodo et al. [34] showed evidence of a

relationship between El Niño/Southern Oscillation (ENSO) and

cholera prevalence in Bangladesh. This suggests that such special

frequencies might be present in plant disease epidemics too,

although, to the authors’ knowledge, long-term, high resolution

time-series suitable for testing this hypothesis are not yet available

in the literature. The existence of dominant frequencies for any

epidemic described by an SIR-type mechanism is predicted by the

theoretical analyses of closed systems by Alonso et al. [38] and

Rozhnova and Nunes [43]. An important result for those models is

that the frequency at which the power spectrum shows a peak,

depends solely on the parameters underlying the disease dynamics.

From a biological point of view, this suggests that the important

time-scales arising from the fluctuations are expected to be related

to the typical time-scales of the pathosystem (e.g. infectious period,

lifetime of the infected individual). It also appears that the

dominant periods increase with the population of the host, as both

the amplitude and the periods of fluctuations become smaller at

low population densities. An external, periodic, even small

perturbation with the same frequency as the dominant frequency

will resonate with the system resulting in large oscillations

(Figure 7). In general this leads to extinction of the pathogen

and hence to longer durability of crop resistance.

Further challenges
We make a number of simplifying assumptions in our analyses

in order to test the key hypotheses discussed above. Our

conclusions are derived for a system with continuous availability

of healthy hosts. We do this to avoid introducing additional

periodicity into the system in which we are seeking to examine

resonance between a particular external perturbation (periodic

application of chemical control) and the intrinsic periodicity of the

pathosystem. It is reasonable to suppose that seasonal availability

in the supply of the host would affect the distribution of the

dominant frequencies. It is also possible that the combination of

large fluctuations arising from resonance and an upper limit of

available host imposed by a carrying capacity for the crop could

lead to large outbreaks of disease rather than to extinction.

Detailed analyses of these effects are beyond the scope of the

current paper but will be addressed in future work.

We have shown that the effect of stochasticity is important when

the infected population is still low, which occurs at the beginning of

the epidemics. This condition is always satisfied in a seasonal system

at the beginning of each season, thus we can infer that including

stochasticity in epidemic models is particularly important in

seasonally variable crop management. In addition, the periodic

forcing due to seasonality might interact with the dominant

frequency in the absence of seasonality leading to intriguing

dynamics (see e.g. [41,44,45]) which still need to be explored.

We have also neglected explicitly-spatial effects, except for

external immigration. Spatial structure and synchrony are likely to

affect patterns of population fluctuation. In particular, the spatial

arrangements of resistant and susceptible fields in the landscape

are likely to affect extinction and re-invasion, and hence durability.

For example, Park et al. [46] have previously shown that extinction

times for a single pathogen strain show a non-monotonic response

as the size of the sub-population increases. The effect was shown to

depend upon the transit time from arrival to leaving a patch. It is

conceivable that the natural frequencies of the system are affected

by the spatial arrangements and sizes of resistant and susceptible

fields in the landscape and by the type of dispersal of the pathogen

(long and short range rather than uniformly mixed as assumed

here). Future research will seek to understand how the frequencies

of the system depend upon the metapopulation parameters in

order to establish whether or not there is an optimal patch size for

the deployment of resistant cultivars.

Previous theoretical [19] and experimental [47,48] work has

investigated how individual components of the pathogen life-cycle

affect the expression of crop resistance. This is particularly

important for quantitative resistance, in which differing combina-

tions of the components such as the infection efficiency, latent

period, sporulation rate and infectious period, affect the expression

of partial resistance [13,18,49]. We have shown in Figure 3 that

different combinations of the parameters, representing different

life-cycle components, can result in pathosystems characterized by

the same R0 but different amplitudes of fluctuations. Despite the

pioneering work of Alonso et al. [38] and Rozhnova and Nunes,

[43], a complete understanding of the relationship between the

dominant frequencies, life-cycle parameters, and other features of

a pathosystem, such as spatial and temporal heterogeneities in

parameter values, is still lacking. Further work is needed to tease

out the effects of life cycle components on amplitudes of

fluctuations and the importance of the results for plant breeders

and the agrochemical industry to assist decisions over which

specific pathogen life history traits to target in order to maximize

the durability of crop or fungicide resistance.

Experimentation will of course be necessary to confirm or reject

the hypotheses posed in this paper. An empirical test would require

first i) to collect a long and high-resolution time-series of

epidemiological data, perhaps starting with one cultivar only ii) to

detect at which range the dominant frequency occurs [30,42,45] iii)

then to apply a series of periodic perturbations with different periods.

Even if direct measurements of durability is difficult, these kind of

experiments ought to be able to detect variations in the amplitude of

fluctuations (as in Figure 7.A), frequency of extinctions (as in

Figure 7.B) for the different periods of perturbation. It is possible that

such experiments could first be undertaken for experimental

microcosms (cf [50]) to demonstrate a proof of concept.

Supporting Information

Figure S1 Wavelet analysis for the epidemic of infected,
virulent population. Stochastic case. A. Left, wavelet power

spectrum of the root transformed time-series. Low values of the

power spectrum are shown in dark blue, and high values in dark

red. The dotted white lines show the maxima of the undulations of
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the wavelet power spectrum and the dotted-dashed black lines show

the 5% significant levels computed based on 1000 bootstrapped

series. The light blue shaded areas identify the region influenced by

edge. Right Average wavelet power spectrum. Panels B,C and D. As

in A but for different stochastic realisations.

(TIFF)

Figure S2 Wavelet analysis for the epidemic of infected,
virulent population. Deterministic case. Colour scheme as

in Figure S1. In the deterministic case the only relevant

fluctuations occur at the beginning of the epidemic.

(TIFF)

Text S1 Mathematical derivation of the stochastic
model and wavelet analysis of the time-series Iv(t).
(PDF)
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