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Finding the common principal component (CPC) for ultra-high dimensional data is a
multivariate technique used to discover the latent structure of covariance matrices of
shared variables measured in two or more k conditions. Common eigenvectors are
assumed for the covariance matrix of all conditions, only the eigenvalues being specific
to each condition. Stepwise CPC computes a limited number of these CPCs, as
the name indicates, sequentially and is, therefore, less time-consuming. This method
becomes unfeasible when the number of variables p is ultra-high since storing k
covariance matrices requires O(kp2) memory. Many dimensionality reduction algorithms
have been improved to avoid explicit covariance calculation and storage (covariance-
free). Here we propose a covariance-free stepwise CPC, which only requires O(kn)
memory, where n is the total number of examples. Thus for n << p, the new algorithm
shows apparent advantages. It computes components quickly, with low consumption
of machine resources. We validate our method CFCPC with the classical Iris data. We
then show that CFCPC allows extracting the shared anatomical structure of EEG and
MEG source spectra across a frequency range of 0.01–40 Hz.

Keywords: Ultra-high Dimensional Data, Covariance-free, Neuroimaging, EEG, MEG, common principal
component (CPC)

INTRODUCTION

With exceptional advancements in data acquisition capabilities in recent years, there has been a rise
in conducting large-scale neuroscience studies. Increased processing power with the availability of
High-Power Computing (HPC) setups gives the neuroscience community ability to compute high-
resolution spatial and temporal source imaging and source activity localization, especially in EEG
and MEG data. These datasets are gathered with lots of different parameters. These parameters
can be different due to age, gender, ethnicity, geographical location, capturing modality, and
machine parameters.

Analyzing ultra-high-dimensional neuroimaging data has been time-consuming and
challenging. There are many solutions, e.g., Principal Component Analysis (PCA), Independent
Component Analysis (ICA), Incremental Principal Component Analysis (IPCA), and sparse
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incremental Principal Component Analysis (sIPCA) (Yao et al.,
2012; Balsubramani et al., 2013; Tang and Allen, 2018; Tabachnick
and Fidell, n.d.) developed to overcome high dimensionality.
However, only a small number of principal components can
explain almost all the variance of a multivariate data and
that is where stepwise computation of Principal Components
comes. Stepwise PC only a compute a limited number of PCs
sequentially. Power method is used to first compute the most
dominant PC and then deflation parameter extracts the estimated
variance from data (MacKey, 2009; Golub and Van Loan, 1996).
Later, the dominant PC is again computed from the remaining
data using same procedure, details are in methodology.

However, there are some scenarios when k different
populations or groups, also known as conditions, are being
compared or cross analyzed, and a common latent covariance
structure is required. This phenomenon is also known
as obtaining common principal components (CPCs). The
conventional CPC algorithm was first introduced and studied
by Flury (1984). CPC is one of many possible generalizations
of standard PCA of several covariance matrices (Jolliffe,
2005). The initial motivation for introducing CPC was to
study discrimination problems, where the covariance matrices
for different conditions are not equal as required by linear
discriminant analysis but more generally share a latent joint
principal axis (Flury, 1984; Krzanowski, 1984). The CPC
model was mainly criticized because it is essentially a method
for simultaneous diagonalization of several positive definite
matrices. Rather than a dimensionality reduction method, which
is usually the main goal in data analysis (Schott, 1989).

To remedy this (Krzanowski, 1984), proposed a simple,
intuitive procedure to estimate an approximation of the CPCs
based on the PCA of the pooled sample covariance matrix and
the total sample covariance matrix, followed by the comparison of
their eigenvectors (Schott, 1989, 1999) proposed an improvement
where the latent covariance structure spanned by the first m
principal components (PC) and their sum is identical for any
k conditions. This is called Common Subspace Analysis (CSA).
These improvements try to achieve the aim of dimensionality
reduction. However, CSA still used the inherited concept of
finding a common subspace of all groups simultaneously, making
it time-consuming and computationally expensive. To remedy
this, stepwise CPC was proposed by Trendafilov (2010), which
sequentially performs the CPCs functionalities. Stepwise CPC
computes fewer latent components, making it computationally
less expensive and achieving dimensionality reduction.

The motivation of this study comes from a problem we
faced while conducting a previous study where we were trying
to decompose the source spectra of EEG and MEG. This
decomposition aims to remove pre-identified differences between
the two spectra and to develop a transfer function. Estimating
common topography between EEG and MEG spectra is one of the
elements required for this decomposition process. However, both
spectra are ultra-high dimensional, i.e., the number of variables
p is much larger than the number of observations n (Hu, 2020;
Riaz, 2021a). To compute a common latent subspace via stepwise
CPC, we need the covariance matrix for all k conditions, i.e.,
covariances for EEG and MEG. Since computing covariance

requires O(p2) memory which can be time-consuming and even
impossible when p is large. Thus, conventional stepwise CPC
cannot be applied here, as it will require O(kp2) memory space.
A covariance-free CPC is required to compute a common latent
subspace for ultra-high-dimensional data, which do not compute
and save covariance matrix. Some covariance-free methods
have been previously proposed to improve other dimensionality
reduction methods. For example, IPCA was proposed by Weng
et al. (2003) and Yousefi et al. (2017), iterative Kernal PCA
proposed by Liao et al. (2010), incremental PCALDA by Dagher
(2010), covariance free partial least squares by Jordao et al. (2021).
Instead of working with covariance matrices, all these methods
achieve dimensionality reduction without computing and saving
covariance matrix, which decreases required memory to O(n).

This article proposes a novel method we call stepwise
Covariance-Free CPC (stepwise CFCPC) by merging “covariance
free” and common latent subspace concepts. The following
sections of the article are a methodology for CFCP then the
description of the datasets we are using to test and validate
our method. Later we present the results and compare stepwise
CPC and stepwise CFCPC for accuracy, computation time, and
memory consumption. Furthermore, we lay down the concluding
remarks and suggest applications of this improvement.

METHODOLOGY AND MATERIALS

Principal Components Principal
Components
PCA is a dimensionality reduction technique that computes
Principal Components (PCs) to represent data by linear
combination of a significantly less number of vectors. These
vectors represent the maximum variance of data that a single
vector can represent in a given direction. Other PCs that are
orthogonal to their previous PC are computed, and every next
PC represents a lesser amount of variance from the previous.
Principal components are obtained from the covariance matrix
of the data, then eigenvalues and eigenvectors of that covariance
matrix are computed for dimensionality reduction (Tabachnick
and Fidell, n.d.). For a given data generally, the PCs equal to the
number of variables is computed. However, only a small number
of PCs represent almost all the data variance, which is why only a
few PCs are required. This phenomenon gives birth to the idea of
stepwise Principal Components.

Stepwise Principal Component
Stepwise principal components compute a limited number of
PCs and compute them sequentially, which is explicitly required
when matrices are of larger sizes. The stepwise PC is obtained
by first using the power method to compute the most dominant
eigenvalue by normalizing the given matrix, computing the most
dominant eigen value, and applying the deflation to extract
the variance that has been estimated by λ. It works on a
diagonalizable square matrix, which in our case is a covariance
matrix Si. The power method iteration algorithm for a given
covariance matrix Si works as shown below. Here µ is the
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normalized covariance matrix Si, λ is the estimated eigenvector,
and lmax are the total number of iteration for convergence.
The Power Method Iteration Algorithm defined above gives the
largest eigenvalue. The deflation method (MacKey, 2009) omits
the estimated covariance to obtain new Si which is eventually
used to compute the next λ. Stepwise-PC repeats this process
iteratively for the given number of eigenvalues.

Power Method Iteration

for i = 1, ..., lmax

µ← Siµ

λ← µTµ

µ← µ
/ √

λ

end

Deflation

Si ← Si − λµ
Tµ

Conventional Common Principal
Component
Conventional CPC is one of the generalizations of PCA for k
conditions and their covariance matrices, as mentioned in Flury
(1984). In CPC, it is assumed that all k conditions have the same
mean, and their covariance matrices Si are all positive definite and
diagonalizable.

HCPC : QTSiQ = D2
i , i = 1, 2, . . . , k (1)

Here Q is the common orthogonal matrix for all conditions and
D2

i is the positive orthogonal matrix for each condition. CPC
estimations find the common eigenvectors and eigenvalues for
covariance matrices Si for all k conditions and ni(> p) degrees
of freedom or number of observations such that:

Si ≈ QD2
i QT (2)

CPC computes the latent components all at once by computing
maximum likelihood components of parameters Q and
D2

i , i = 1, 2, . . . , k using the following optimization problem
of minimizing negative log-likelihood as mentioned in Flury
(1984).

Minimize
k∑

i=1

ni[log(det(QD2
i QT))+ trace(QD2

i QT)−1Si]

=

k∑
i=1

ni[log(det(textbfD2
i ))+ trace(D−2

i � (Q
TSiQ))] (3)

Subject to (Q,D1,D2, . . . . ,Dk) ∈ ϑ(p)× D(p)k, (4)

Where � is the Hadmard product, the Lie group of
all p× p orthogonal matrices is denoted by ϑ(p) and
D(p)k = D(p)× . . .× D(p)︸ ︷︷ ︸

k

. Here D(p) is the linear subspace

of all p× p diagonal matrices. However, to satisfy the first-
order optimality condition for a stationary point of CPC
objective function,

∑k
i=1 niQTSiQD−2

i is symmetric and
diag(QTSiQ) = D2

i for all k+ 1 conditions simultaneously.
After submitting these values in Equation (3), we can define CPC
estimation as the following likelihood problem.

Minimize
k∑

i=1

ni log(det(diag(QTSiQ))) (5)

Subject to Q ∈ ϑ(p) (6)

Here Q is the set of all orthogonal matrices that contain all the
CPCs, which are computed simultaneously. This is a basically
FG diagonalization solution replacing the original problem
mentioned in Equations (3) and (4). CPC works efficiently for
covariance matrices Si that are positive definite and positive
semi-definite as well.

Stepwise Common Principal Component
Stepwise CPC is performed by imitating the standard PCA
to achieve dimensionality reduction, i.e., finding the latent
components one after another (Trendafilov, 2010). It does not
compute all the CPCs at once, and instead, it computes only a
desired number of CPCs sequentially. First, it transforms the CPC
problem into a vectorize form and then solves the p identical
problems expressed in Equations (7) and (8) sequentially.

Minimize
k∑

i=1

ni log(qTSiq) (7)

Subject to qTq = 1 (8)

Here q are the common PCs computed sequentially. Stepwise
CPC is done by finding the first CPC which will be qp which will
give a minimum of Equation (7) in the unit sphere in Rp, then the
next CPC is found that will be qp−1 which will give a minimum
of Equation (7) in the unit sphere in Rp and it will be orthogonal
to qp. So, each minimum found using this idea will be greater
than the previous one as it is found in the orthogonal domain
of the previous minimization domain. Since the quantities qTSiq
are bounded by the smallest and largest eigenvalues of Si, the
objective function in Equation (7) will be bounded on a unit
sphere Rp. However, for the purpose of dimensionality reduction,
it is more feasible to obtain the CPCs in reverse order, i.e.,
representing all CPCs by a variational eigenvalues definition
represented in Hord and Johnson (2012) as Qp = [q1, q2, . . . , qp]

which p× p orthogonal matrix containing the CPCs obtained
from Equation (7) and (8). So the jth CPC can be shown by the
optimization problem shown in Equations (9) and (10).

Minimize
k∑

i=1

ni log(qTSiq) (9)

Subject to qTq = 1 and qTQj−1 = 0T
j−1 (10)
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Where Qj−1 = [q1, q1, . . . , qj−1] and the jth CPC can be
obtained by solving j problems similar to the ones shown in
Equations (9) and (10). This eventual solution will be similar to
the one computed in the original CPC shown in Equations (5)
and (6) but has the feature that it can be stopped at any point
that is 1 ≤ j ≤ p. To compute the next eigenvector, one can
use an already computed Qj and do not need to compute all the
eigenvectors from the start. The first-order optimality conditions
for Equations (9) and (10) can be resolved by Theorem 3.1 in
Trendafilov (2010) study. The equation resolves to obtain the
first-order optimality condition is shown in Equation (11).

5j

 k∑
i=1

niSi

qT
j Siqj

 qj = 0p×1 (11)

Where 5j the deflation parameter or projector Ip − BjQT
j and∑k

i=1
niSi

qT
j Siqj

is the gradient of CPC objective function from

Equation (9). The theorem solves the first-order optimality
condition and gives a general case as shown in Equation (13) and
for j = 1 as shown in Equation (12).[(

n1
S1

qT
1 S1q1

+ · · · + nk
Sk

qT
1 Skq1

)
− nIp

]
q1 = 0p×1, (12)

For j = 2, . . . , p[
(Ip −Qj−1QT

j−1)

(
n1

S1

qT
j S1qj

+ · · · + nk
Sk

qT
j Skqj

)
− nIp

]
qj

= 0p×1. (13)

Equations (12) and (13) show that the CPCs can be computed
by solving p symmetric eigenvalues problems. Trendafilov (2010)
solves this problem by using a modified version of the standard
power method to solve the eigenvectors and eigenvalues problem
to compute the CPCs defined by Equations (12) and (13). The
Power Method Iteration algorithm in section “Stepwise Principal
Components” is used to compute the CPCs iteratively. The
modification is that this algorithm updates the covariance matrix
at each step. In particular, this is an algorithm of gradient ascend
category—Algorithm 1 in Appendix where the indices of the
power iteration are given in the parenthesis. The resultant vector
qj, j = 1, 2, . . . p from Algorithm 1 is the CPCs. A small number
of iterations (even less than 3) are required if the eigenvectors
are well separated.

Stepwise Common Principal Component
Implementation
Stepwise, CPC implements (Equations 4–7) by taking the
covariance matrices Si for k conditions, the number of common
latent PCs to be computed is pmax, and lmax is the number
of iterations required for convergence. Refer to the Algorithm
1 in Appendix. The stepwise CPC algorithm computes only a
specific number of CPCs. As output, it gives eigenvectors Qpmax
for common latent sub-space under all k conditions along with
λpmax the eigenvalues for each particular condition. However, the

problem with stepwise CPC arises when the number of variables
p becomes too large.

Stepwise CF-CPC
The idea behind covariance free stepwise CPC is to not compute
the covariance at any step of the algorithm. To achieve this
purpose, we propose that instead of calculating the covariance,
replace it with its mathematical definition of covariance and apply
this concept in the basic Algorithm 1 of stepwise CPC. This
can be done by expanding the covariance formula, as shown in
Equation (14).

Si =
(HiXT

i )(HiXi)

ni
(14)

Here H is the average reference when applied to the will replicate
the subtraction of mean from the data that is used conventionally

to compute covariance, which is by definition Hi = Ii −
1T

i 1i
ni

and Xi is actual data for which the covariance was computed for
stepwise CPC. Equation (14) can also be written as Equation (15).

Si =WT
i Wi (15)

Here Wi can be defined as HiXi√
ni

making Equation (14), as shown
in Equation (15).

Using this technique, we can achieve the same results while
simplifying and changing the computations and formulations
to make it covariance-free, requiring O(kn) memory for k
conditions where n << p. Stepwise-CFCPC is fast, memory
efficient, and will be optimal for ultra-high dimensional data.

Stepwise CF-CPC Implementation
Algorithm 2 (refer to Appendix) explains the flow of how
stepwise CF-CPC works. We are trying to achieve this algorithm
to make it covariance-free and optimize it in terms of
computations and memory usage. The inputs pmax, lmax and n
are the same as for the original stepwise-CPC, i.e., the following
are the steps we have taken for optimization purposes:

• Algorithm 2 takes data Xi as input instead of
the covariances Si, which saves memory and
computation power.
• We perform singular value decomposition (SVD) (Klema

and Laub, 1980) instead of estimating eigenvectors
(Andrew, 1973).

5i = Ip −

j−1∑
a=1

qaqT
a (16)

for j=1,...,pmax
• Furthermore, we replace the deflation parameter5j with its

mathematical definition as Equation (9) (MacKey, 2009).
• We substitute the sum of covariances with a matrix

formed when the definition of covariance is used
from Equation (14).

Initially, the stepwise CPC was implemented for an R-package
named “cpca” (Ziyatdinov et al., 2014). Since our working
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environment is MATLAB 2018b (The MathWorks, n.d.), we
implemented and verified the stepwise CPC in MATLAB and the
same for stepwise CFCPC.

Materials
To test the covariance-free version of stepwise CPC, we used
two datasets. The first data we analyzed (for validation purposes)
was Fisher’s IRIS data (Anderson, 1935; Fisher, 1936), and this
is the same data that was analyzed in the original stepwise
CPC algorithm (Trendafilov, 2010). Secondly, we have analyzed
neuroscience data.

Iris Data
We tested our stepwise CF-CPC algorithm initially on Fisher’s
IRIS data. The purpose is to validate if the covariance-free
stepwise CPC gives the same results as stepwise CPC. Fisher IRIS
data has 150 examples/observations and four variables, making it
a [150× 4] matrix. To transform the data into k = 3 conditions,
we divided that data into chunks of 50 examples with four
variables in each chunk, making three matrices of size [50× 4].
Later we tested both stepwise CPC and stepwise CFCPC on this
data for validation purposes.

MEEG Data
The neuroimaging data we are using comprises source
spectra of two modalities, electroencephalography (EEG)
and magnetoencephalography (MEG), with 45 subjects in
each group. EEG subjects were picked from an extensive
database of the Cuban Human Brain Mapping project (CHBM)
(Valdes-Sosa et al., 2021). MEG data of a similar sample size
of 45 were picked from Human Connectome Project (HCP)
(WU - Minn Consortium Human Connectome Project, 2017).
The EEG data we used was source spectra computed from
a novel inverse solution BC-VARETA (Gonzalez-Moreira
et al., 2018; Paz-Linares et al., 2018). The size of the source
spectra [8002× 80× 45] is [sources× frequency× examples].
Here the first dimension representing the number of brain
sources/generators. The second dimension is the number of
frequency points (in this case, there are 80 frequency points
with a step-size of 0.5 Hz, so the total analyzed source spectra
was 0–40 Hz), and the third dimension represents the number
of subjects involved in the study. MEG source spectra were
computed using the same inverse solution used of EEG data,
and the size of the source spectra matrix was also the same.
Before computing the common principal spectral component,
we scaled data and log-transformed it for visualization. Since we
are analyzing 8002 sources at each of the 80-frequency points,
we rearranged the source spectra to convert them into a 2D
array of size [45× 640160]. There is a total of 640160 variables,
with each group of 8002 variables representing one frequency
point. So, the inputs go into both algorithms of stepwise CPC are
p = 8002× 80 = 640160, [45 45] and k = 2 where p >> n.

Stepwise Common Principal Component
and Stepwise CFCPC Computation
We computed the CPC subspace score along with eigenvalues
for each modality using both algorithms. The same dataset and

machine specifications are used to compare the results in terms
of time consumed to compute the CPC. The specifications are
explained below:

• Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz 2.70 GHz
• 16.0 GB DDR3 RAM

Windows 10–64-bit operating system, x64-based processor
• MATLAB 2018b (The MathWorks, Inc, 1994-2021)

We observed that computing covariance for CPC above
a certain number of variables is impossible on this machine
because of “out of memory” issues. Additionally, there is a limit
for the number of variables on which computing covariance
was successful. However, inside the stepwise CPC algorithm, it
returns the error of running out of memory. So, we tested both
algorithms for a specific number of variables to check two things:

• What is the limit of the number of variables for both
algorithms?
• How much time each algorithm takes to compute a certain

number of variables.

Once we have verified the number of variables for which the
CPCs are successfully computed, we computed the CPCs for
the MEEG data discussed above. These CPCs will be the shared
space eigenvectors for the sources spectra captured using two
different modalities, i.e., EEG and MEG. Once these CPCs are
computed, we applied the eigenvalues on the shared common
subspace to visualize the common space generated for EEG
and MEG, respectively. In the end, we compared the original
EEG and MEG spectra with the respective estimated common
subspace for accuracy.

RESULTS

As mentioned earlier, we need to compute covariance first and
input that to the algorithm for stepwise CPC. For stepwise CF-
CPC, pass the iris data as it is. We computed four CPCs Q and
their scale factor λ for both versions of stepwise CPC. The results
show that values for all four outcomes of both Q and λ for
Algorithm 1 and Algorithm 2 are the same as shown in Figure 1.

Next, we used neuroscience data as explained in materials
sections and applied both algorithms to look for time and
memory consumption results. To compute one CPC with
both methods, we keep the values for pmax = 1, lmax = 1
& n = [45 45] for both algorithms. We recorded computation
time and looked for “out of memory” errors for a series of
variables selected from the EEG and MEG datasets and recorded
the results in the form of Table 1. It is evident in the table that
stepwise CFCPC works smoothly on all different sets of variables
from 100 till 640160, not giving any memory errors, and the
execution time is very nominal. However, stepwise CPC observes
an exponential rise in the execution time when the number
of variables is increased. Additionally, stepwise CPC could not
compute a single CPC beyond 15,000 variables, and covariance
computation was not successful beyond 25,000 variables on the
defined system specifications.
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TABLE 1 | Comparison of stepwise CPC and stepwise CFCPC (execution time and memory consumption comparison). Successful computation of covariance for a
different number of variables. Success or failure in execution of Algorithm 1 and 2 with execution time for the different number of variables.

Method Variables Covariance computation Algorithm execution Time consumed

Stepwise CPC 100 Success Success 0.104310s

500 Success Success 0.588175s

1,000 Success Success 3.158705s

5,000 Success Success 441.268313s

8,002 Success Success 2000.196520s

15,000 Success Success 6607.873001s

25,000 Success Failed NA

50,000 Failed Failed NA

100,000 Failed Failed NA

200,000 Failed Failed NA

400,000 Failed Failed NA

640,160 Failed Failed NA

Stepwise CFCPC 100 Success Success 0.011920s

500 Success Success 0.035195s

1,000 Success Success 0.056952s

5,000 Success Success 0.507487s

8,002 Success Success 0.746992s

15,000 Success Success 1.378456s

25,000 Success Success 2.206656s

50,000 Success Success 4.378850s

100,000 Success Success 8.402318s

200,000 Success Success 16.705613s

400,000 Success Success 34.466983s

640,160 Success Success 65.797402

FIGURE 1 | Stepwise CPC vs. covariance free stepwise CPC.

The trend of execution time for both algorithms can be
visualized as shown in Figure 2. Stepwise CFCPC consumes
less time than stepwise CPC even when the number of
variables is low. This execution time remains stable when
the number of variables is increased from 100s to 1,000s
for stepwise CFCPC. However, stepwise CPC resulted in
an exponential increase in computation time as variables

are increased. It took almost 5,000-folds more time for
the maximum number of variables it could compute CPC
successfully. We visualized the computation of CPC for
EEG and MEG data for its accuracy and interpreting the
source spectra of both modalities. The purpose of computing
CPC for these source spectra is to compute a common
source topography captured by both modalities in different
conditions and find a scale factor or eigenvalue assigned
to each modality’s source spectra to compute its respective
common topography. These common topography and scale
factors will be used as an ingredient in another study to
identify and remove the differences between the source spectra
of EEG and MEG (Riaz, 2020). A visualization of how this
common topography is acquired is shown in Figure 3A. The
common source topography represents common topographical
features of spectra when visualized in the frequency domain.
One of the clear components is the alpha peak visible
in the alpha band (7-12 Hz). The computed CPC for
common topography has the common subspace eigenvectors
and eigenvalues for EEG and MEG spectra. These eigenvalues
applied on the computed common subspace estimate the
common topography scores for EEG and MEG, as shown
in Figure 3B. The solid lines are the original EEG and
MEG spectra, whereas the dotted lines show the latent
estimated common topography for each modality. This estimated
common topography is obtained by applying the scale factor
or eigenvalue λ to the common topography Q shown in
Figure 3A.
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FIGURE 2 | Execution time comparison between stepwise CPC and stepwise
CFCPC. Blue bars represent stepwise CPC, and orange representing
stepwise CFCPC. Execution time is shown on the y-axis and x-axis,
representing the number of variables.

The estimated common topographies shown in dotted lines
depict that CPC has successfully computed the desired common
latent subspace of common topography for each modality.
The difference in the original spectra and estimated common
topography can be explained because we are only estimating
one of the few elements from which the complete source
spectra is composed. This common latent subspace computed
for common topography between EEG and MEG source spectra
is the baseline for the transferal of source spectra between
EEG and MEG, as discussed in Riaz (2020) and Riaz (2021b).
In the mentioned studies, we are trying to create a transfer
function from EEG to MEG source spectra and vice versa. We
decompose each spectra into three components, i.e., Common
Topography with scale values (computed using the algorithm
of this study), Xi-process, and individual differences. These

elements are used to synthetic MEG source spectra from
EEG and vice versa.

DISCUSSION

In this study, we developed stepwise CFCPC for computing
common stepwise subspace in ultra-high dimensional data.
First, we validated results stepwise CPC and CFCPC and
found that the computation of Q and λ with this new
method is similar to stepwise CPC. Once our proposed
improvement is validated, we tested the neuroimaging dataset
(source spectra from two popular databases, i.e., EEG from
CHBM and MEG from HCP) for a single CPC to compare
the efficiency of both algorithms. The common topographical
subspace obtained for EEG and MEG source spectra can
be used as a baseline to analyze the phenomenon that the
captured source spectra with EEG and MEG pose the same
information gathered in different scenarios, conditions, or
settings. However, when we try to compute a single CPC
with conventional stepwise CPC, it turns out to be highly
computationally expensive. The computationally expensive
nature of stepwise CPC is evident in Table 1 as well that
as the number of variables is increased from 100s to 1,000s,
the execution time is increased a lot. However, this is not
the case when we used our proposed CFCPC to compute
a single CPC. An increase in the number of variables did
not affect the computation time too much. In fact, for the
maximum number of variables, 640160 CFCPC took just
beyond a minute to compute a single CPC, which is not the
case for stepwise CPC, which failed to compute CPC beyond
15,000 variables. These results prove our initial assumption that
computing covariance for ultra-high dimensional data can be
computationally expensive and takes a substantial amount of
memory. It is also evident from Table 1 that beyond 15,000
variables, computing covariance took the system to out of

FIGURE 3 | (A) Curve representing common source topography Q computed via stepwise-CFCPC with scale value (λ) 0.0072735 for MEG and 0.19906 for EEG.
Frequency is on the x-axis, and the y-axis represents the power scale. (B) Comparison of actual MEG and EEG source spectra with their CPC-scored versions.
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memory error. In stewpsie CFCPC, we did not encounter
any out-of-memory error, which we are trying to achieve
using this algorithm.

There is a rise in the processing and dimensionality
reduction in high dimensional datasets with exponential data
gathering capabilities. Stepwise CFCPC can be a global solution
when computing one or multiple CPCs, and computing
covariance can be an issue. The issue of computing covariance
for ultra-high dimensional data can occur in other areas
of neuroscience (raw EEG, MEG data, neurogenetics Data
(Genome-Wide Association Study of Parkinson’s Disease:
Genes and Environment, n.d.) and many other fields like
microarrays in genetics, data from an array of sensors to
capture geological or astronomical data, etc. (Bonham-Carter
et al., 1990; Pesenson et al., 2010; Alonso-Betanzos et al.,
2019). In repetitive resampling like bootstrap, where multiple
CPCs are required, we can use stepwise CF-CPC. In this
study, we have analyzed 640160 variables which is ultra-
high dimensional data. Even most variables in genetics are
less than the number of variables handled in this study
which tells us that the application of this covariance-free
stepwise CPC is valid even in genetics and another ultra-high
dimensional datasets.

This version of stepwise CFCPC has its applications in
neuroimaging, where CPCs are used to extract common features
or principal components of multivariate data. Li (2016) in his
study used CPC to perform classification on a multivariate
time series EEG data for different clusters obtained from
the original time series. Similarly, extracting common spatial
patterns (CSP) from multivariate EEG data using CPC is
achieved in many studies involving Brain-Computer Interface
(BCI) (Wei et al., 2005; Wang and Wu, 2008; Meisheri et al.,
2018). Similarly, another study conducted interpretable principal
components analysis on multilevel multivariate functional
data to decompose total variation into subject-level and
replicate-within-subject level (i.e., electrode-level) variation. This
decomposition provides interpretable components that can
be sparse among variates (e.g., frequency bands) and have
localized support over time within each frequency band (Zhang
et al., 2019). All these studies use CPC to compute their
PCs; CSPs from multivariate data with high dimensions and
stepwise CFCPC can help resolve these multivariate problems
in a lesser amount of time which is especially essential in
the case of BCI.

Similarly, in the domain of genetics, where the data is also
multivariate and high dimensional, principal components are
often required for dimensionality reduction in data analysis.
Many studies estimate the time-scale for the evolution of additive
genetic variance-covariance matrices (G-matrices), which is a
crucial issue in evolutionary biology and genetics (Arnold and
Phillips, 1999; Steppan et al., 2002; Conner et al., 2003; Mezey
and Houle, 2003; Cheverud and Marroig, 2007). This comparison
is also essential to see if different populations have the same
genetic structure. This comparison of variances-covariance, i.e.,
G-matrices, is a high-dimensional problem and is often done
using CPCs. Stepwise, CFCPC can help optimize these problems
in terms of time and resources.

CONCLUSION

We propose a covariance free improved version of Stepwise CPC
initially proposed by Trendafilov (2010). Computing covariance
in ultra-high dimensional data causes the failure of the original
algorithm as it consumes too much time and goes out of
memory error for a large number of variables. The motivation
for this study was an analysis of MEEG data where the
traditional approaches fail. In contrast, our proposed stepwise
CFCPC can work efficiently for ultra-high dimensional data
while consuming very minimal memory and taking a small
amount of time. Stepwise-CFCPC can be a global solution for
computing CPCs for datasets in neuroscience (Areshenkoff et al.,
2021), bioinformatics (Foo et al., 2017), gene microarray (Alonso-
Betanzos et al., 2019), and multisensory node systems (Bonham-
Carter et al., 1990; Pesenson et al., 2010). The improvements
in the current algorithm can be finding the optimal number of
CPCs to be computed. Currently, we are giving required CPCs
to be computed as per data requirements. Further improvements
can be made by applying the improvements for CPC analysis
suggested in Fernández-Albert et al. (2014), Duras (2020), and
Bagnato and Punzo (2021). Another direction for future analysis
can be implementing stepwise CFCPC with sparsity conditions.
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APPENDIX

Appendix A1 | Table explaining symbols used in paper and their description.

Symbol Description

Q Set of computed for CPCs

k Number of conditions or groups

Si Covariance matrix

D2
i Diagnosable Orthogonal matrices

p Total number of variables

n Total number of observations

Ip Identity matrix for deflation

λ Number of eigenvalues

pmax Limited number of CPCs computed

lmax Maximum number of iterations for convergence

5 Deflation parameter

q Single common CPC

Xi Dataset captured in k different conditions

Algorithm 1

Input
Sp,p,k, lmax, pmax, n
Algorithm :
5← Ip

S← n1S1+n2S2+nkSk
n

Q← eig(S)
for j = 1, 2, ...., pmax

x(0) ← qj with xT
(0)x(0) = 1

x(0) ← 5 x(0)
for i = 1, ..., k

µi
(0) ← xT

(0) Si x(0)
end

for l = 1, ..., lmax
S← n1S1

µ1
(l−1)
+ ...+ nkSk

µk
(l−1)

y← 5 S x(l−1)

x← y
/√

yTy
for i = 1, ..., k

µi
(l) ← xT

(l) Si x(l)
end

end
qj ← x(lmax)(and λi

j ← µi
(lmax)

)

5← 5− qj q
T
j

end
for j = 1, ..., pmax

for i = 1, ..., k

λi
j ← qT

j Si qj
end

end

Algorithm 2

Input
Xpk, pmax, lmax, n
Algorithm :
for i = 1, 2, ..., k

W i ←
(Xi − µxi)
√

ni
end

W←
[

n1 W1

n
· · ·

nk Wk

n

]T

U S Qt
= svd(W) actuallly econ svd and only Q needed

for j = 1, 2, ...., pmax
x(0) ← qj with xT

(0) x(0) = 1

x(0) ← x(0) −

 j−1∑
r=1

qrq
T
r

 x(0)

for i = 1, ..., k
b(0) ← W i x(0)
µi
(0) ← bT

(0)b(0)
end

for l = 1, ..., lmax

W ←

[
n1 W1

µ1
(l−1)
· · ·

nk Wk

µk
(l−1)

]T

a←W x(l−1)
b←Wt a

y← b −

 j−1∑
r=1

qrq
T
r

 b

x← y
/√

yTy
for i = 1, ..., k

b(l) ← W i x(l)
µi
(l) ← bT

(l)b(l)
end

end
qj ← x(lmax)(and λi

j ← µi
(lmax)

)

end
for j = 1, ..., pmax

for i = 1, ..., k
ci ←W i qj
λi

j ← cT
i ci

end
end
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