
https://doi.org/10.1177/11779322211013350

Bioinformatics and Biology Insights
Volume 15: 1–13
© The Author(s) 2021
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/11779322211013350

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Plasmodium is a parasite that has proven to be difficult to eradi-
cate. Plasmodium vivax is 1 of the 5 species of the parasite 
group Plasmodium that infects humans.1 P. vivax has the ability 
to confer virulence to humans and survive in human hosts and 
has been categorized as a benign infection. At present, P. vivax 
malaria is recognized as a cause of severe morbidity and mor-
tality.2 Approximately, 14.3 million cases of P. vivax infection 
are recorded annually.3 Although the global incidence of P. 
vivax malaria infection has decreased by 42% since 2000, the 
disease burden has increased in the Middle East and South 
America since 2013.4 In addition, P. vivax is able to evolve its 
strategy to interact with the host, which has led to the develop-
ment of drug-resistant parasites. The first-line treatment drug 
for P. vivax is chloroquine to treat blood-stage parasitemia 
together with primaquine to eradicate persistent liver-stage 
infection.3 However, P. vivax parasites resistant to their respec-
tive first-line therapies have been found in Southeast Asia.5 
Recently, tafenoquine, a promising new drug, has been high-
lighted as a radical cure for P. vivax infection. Results have 
shown that it resulted in a significantly lower risk of P. vivax 
recurrence than placebo in patients with normal glucose-
6-phosphate dehydrogenase (G6PD) activity.6 However, 

tafenoquine causes hemolysis in patients with G6PD defi-
ciency. Therefore, there is a need for testing G6PD activity 
before prescription of tafenoquine.7-9 The Plasmodium parasite 
has the ability to evade the human immune system, recruit host 
responses to regulate its life cycle, and adapt to the host envi-
ronment.10 Specifically, P. vivax invades erythrocytes during 
blood-stage growth in humans. Duffy antigen receptor for 
chemokines (DARC), which is a host receptor, is recognized by 
a critical invasion ligand, P. vivax Duffy Binding Proteins 
(DBP), for the invasion of immature red blood cells.11 
Therefore, DBP has been highlighted as a leading vaccine can-
didate against P. vivax malaria.12 To control this parasite, we 
require a better understanding of host-parasite interactions 
which is crucial in the development and design of therapeutic 
approaches for this infectious disease.

Although recent technological advances in high-through-
put techniques have enabled the characterization of proteins 
that may be involved in the parasitic invasion of target cells, 
maintaining a continuous in vitro culture for P. vivax is still 
very difficult to standardize.13 This is the main obstacle to the 
development of a new effective vaccine. However, computa-
tional methods can be employed to solve this problem. One of 
the most widely used methods is a network-based approach 
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that focuses on protein-protein interaction (PPI) networks. 
The analysis of a PPI network has been widely studied in sev-
eral organisms.14-17 In Plasmodium, several studies have investi-
gated the PPI networks with the aim of revealing many 
important aspects of protein interactions.10,18-24 Most studies 
of PPI networks have applied the calculation of degree and 
centralities, focusing on a single organism in their analyses. In 
addition, PPI networks have also been used to study the asso-
ciations between proteins and diseases14,25-27 and host-parasite 
protein associations.10,18,19,24,28 Saha et  al24 investigated the 
characteristics of a host-pathogen protein interaction network 
based on interconnectivity and centrality properties. They ana-
lyzed the significance of central, peripheral, hub and non-hub 
protein nodes in the infection process of malaria. They also 
found few topologically unimportant but biologically signifi-
cant proteins between humans and malaria. Notably, most such 
studies have been performed for Plasmodium falciparum. Several 
studies have used ortholog-based methods to predict the asso-
ciation of proteins across species.29-33 Specifically, Cuesta-
Astroz et  al34 developed a method based on orthologous 
proteins to identify a transferred interaction between host and 
parasite proteins. They identified common and specific mecha-
nisms of parasitic infection and survival in 15 human parasites. 
They also intensively analyzed the human-Schistosoma mansoni 
protein interaction network and revealed biological processes, 
pathways, and tissue-specific interactions that may be essential 
in the life cycle of the parasites. Lee et  al29 predicted PPIs 
between P. falciparum calmodulin and H. sapiens proteins based 
on orthologous pairs. From the associations between host and 
parasite, they found that P. falciparum may use calcium-modu-
lating proteins in the host cell to maintain the Ca2+ levels. 
Recently, a heterogeneous network has been developed to 
propagate interaction information from the human PPI net-
work and the P. vivax PPI network to infer new associations 
between human and P. vivax proteins.19 This method was 
based on protein interactions that were considered to globally 
represent of these 2 networks. The study used protein similari-
ties between human and parasite proteins to establish their 
associations; the idea behind this is that a malaria protein that 
is homologous to a human protein may interact or work 
together with human proteins to maintain their lives in the 
host and be related to the same set of cooperative proteins in 
humans. Thus, the study of the relationship between similar 
proteins in humans and malarial parasites is of great interest to 
investigate their network topology in PPI networks. Similar 
proteins may also have the same level of importance in the PPI, 
as the centrality measures reflect the essentiality of a protein in 
terms of the network topology and connections under a spe-
cific aspect of the measure. For example, the betweenness cen-
trality provides an insight into a node that may be involved 
with the paths of communication of any pairs of nodes in the 
network.17,35,36 Therefore, the integration of these network 
topologies for the recognition of human-parasite protein 

associations via machine learning has the potential to provide 
important insights and reveal new associations and protein tar-
gets in human hosts.

In this study, alternative properties based on local network 
topology features and machine-learning techniques were used 
to elucidate new associations between human and P. vivax pro-
teins. The associations presented in this study indicate the 
existence of functional interactions between human and P. 
vivax proteins, implying that these proteins cooperate to per-
form a task in the underlying mechanisms. A ranking tech-
nique was also developed to predict potential protein targets in 
humans which may be important for the treatment of P. vivax 
malaria. Clustering analysis was performed using information 
from the heterogeneous network analysis to identify groups of 
related proteins and functional proteins. Finally, a list of human 
proteins that are crucial for the cellular mechanisms of P. vivax 
was reported and validated via a literature search. This list may 
be useful in further studies that wish to develop drugs for the 
treatment of P. vivax.

Materials and Methods
Overview of the analysis framework

The analysis framework was initiated with the network recon-
struction process as shown in Figure 1. First, PPI networks for 
humans and malarial parasites were constructed based on the 
interaction information obtained from the STRING data-
base.37 Each protein node in each network was then extracted 
for its network topological features such as the degree and the 
betweenness centrality. Subsequently, both networks were 
linked together to form a heterogeneous network based on 
their protein sequence similarity. Then, the topological features 
of a pair of human and malaria proteins were compared and 
evaluated to obtain the strength of the differences and to build 
a similarity profile of the human-parasite protein pairs. The 
protein sequence similarities obtained from BlastP searches 
(E-value ⩽ 1e−05) were then used as an initial class label of a 
pair of human and P. vivax proteins. The complete profile was 
then applied to various machine-learning techniques (naïve 
Bayes, neural network, random forest, and support vector 
machine). Cross-validations were performed for each tech-
nique, and the performances were measured using the receiver 
operator characteristic (ROC) curve. The top classifiers from 
the best technique were selected as models to predict new 
potential associations. Finally, the human proteins in the list of 
predicted associations were ranked to identify potential protein 
targets for malaria invasion in the human host.

Network construction and topology features

Our analysis was performed on PPI networks of human pro-
teins and P. vivax proteins. The networks were obtained from 
the STRING database (version 11.0).37 To ensure that only 
reliable interactions were obtained, interactions with a high 
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Figure 1. Analytical framework. An overview of the identification processes to infer human protein targets from human-parasite protein associations 

obtained using machine-learning methods with network topology features.
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confidence score (>900) were retained. A total of 12 038 
human proteins with 313 359 interactions and 1787 P. vivax 
proteins with 11 477 interactions were obtained. Subsequently, 
a heterogeneous network was constructed by connecting 
human-human protein interactions and P. vivax-P. vivax pro-
tein interactions with the human-P. vivax protein 
associations.

The network topology features of all proteins were extracted 
based on centrality measurements. Several studies have shown 
that a relationship exists between gene essentiality and network 
centrality in PPI networks.38-40 Thus, we further investigated 5 
topological features: betweenness centrality, closeness central-
ity, degree, eccentricity, and Kleinberg’s hub centrality. Each of 
these features explained different aspects of the measurement. 
Betweenness centrality reflects an important node in term of 
overloading paths passing through it in the communication of 
the network.35,36 Closeness centrality measures how close a 
given node is to the other nodes in the network.35,36 The degree 
represents the level of the local connections of a given node.35,36 
Eccentricity calculates the local density of the connections 
among neighboring nodes of a given node. The Kleinberg’s 
hub measures the importance of a given node connecting the 
other important nodes.36

Defining the human-P. vivax protein associations

To define the initial associations between human and P. vivax 
proteins, we used the information obtained from a sequence 
similarity search. When 2 protein sequences shared significant 
similarity with the BlastP expectation value (E-value) less 
than 1e−05, they were inferred to be homologous. This means 
that they did not arise independently, but rather shared a com-
mon ancestor.41 Therefore, we could define an association 
between 2 sequences when they share more similarity than 
that would be expected by chance. However, when no statisti-
cally significant match was found between the 2 protein 
sequences, we could not ensure that no homologs were pre-
sent. Thus, the machine-learning method may be able to reveal 
hidden homologs. The P. vivax protein sequences were 
retrieved from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database42,43 using the Rcpi package44 and then 
searched against all human protein sequences from the NCBI 
database. We defined that 2 protein sequences were homolo-
gous when BlastP (https://blast.ncbi.nlm.nih.gov) gave rise an 
E-value less than 1e−05. Then the pair of these 2 proteins was 
labeled to be associated.

In addition, the relationship between network topologies 
and functions has been revealed in several studies with the 
assumption that for each function, the wiring patterns of the 
proteins are similar.45 Different standard network topologies 
can be used to understand the information contained in the 
wiring of a protein in the PPI.45,46 Therefore, we integrated 
initial associations from the protein sequence similarity search 
and the similarities from network topological features and fed 

them into machine-learning algorithms to predict new associa-
tions using both types of similarity information. It is worth 
noting that our method is a homology-based method that 
relies on sequence similarity, similar to previous studies.29-34 
Protein associations were predicted based on the initial associa-
tions from sequence similarity. Moreover, homology-based 
methods have been used to infer functionally interacting pro-
teins in previous studies.29-34

Features of topological differences for machine 
learning

Based on the 5 network topology features, we established a vec-
tor R
��

, that is a similarity profile, representing a relationship 
between the topological values of a human protein ( )hi  and a 
P. vivax protein ( )p j , as follows

 R h p ri j ij
k

��
,( ) = ( )  (1)

where r f fij
k

h
k

p
k

i j
= −| | , i = 1, 2,. . ., m and j = 1, 2,. . ., n. m 

and n are the number of human and P. vivax proteins, respec-
tively. k is the index for each topological feature, ranging from 
1 to 5. f h

k
i
 represents the kth centrality value of a human pro-

tein hi  and f p
k

j
 represents the kth centrality value of a P. vivax 

protein, p j . Therefore, rij
k  denotes the topological similarity 

between the kth centrality values of human protein i and P. 
vivax protein j. A low value of rij

k  indicates a high similarity 
between the topological features k of these 2 different types of 
proteins.

Training and validating of the association 
classif iers and calculating association scores

We investigated all possible pairs of proteins to identify 
human-parasite protein associations. To this end, we employed 
machine-learning techniques to classify defined and undefined 
associations. Four classification algorithms, namely naïve 
Bayes, neural network, random forest, and support vector 
machine algorithms, were employed. Each of these classifiers is 
a well-known algorithm for recognizing and creating classifiers 
in different ways. The naïve Bayes’ approach uses the statistics 
and likelihoods to make a final decision. A neural network cal-
culates a set of optimal weights for a weighted network struc-
ture to separate different classes based on the features. Random 
forest creates complex and hierarchical rules along the features 
to provide a predicted class. The support vector machine builds 
a hyperplane to identify an optimal classifier with maximum 
margin. With the different calculation methods to search for 
the best solution for the classifier, all 4 classifiers were applied 
to search for the best classifier. Different parameters of each 
algorithm were optimized to determine the optimal models of 
each algorithm.

For the naïve bayes classification, we tuned 3 hyperparam-
eters. The first parameter was to allow to use a kernel density 

https://blast.ncbi.nlm.nih.gov
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estimation or a Gaussian density estimation. The second 
parameter was used to adjust the bandwidth of the kernel 
density when using kernel density estimation. Using this 
parameter, we optimized it from 0 to 5. The third parameter 
was the parameter for the Laplace smoother, which we tuned 
from 0 to 5.

For neural networks, we optimized the number of units in 
the hidden layers (H) and weight decay to avoid overfitting (d) 
by employing a grid search with H = 1, 2, 3,. . ., 10 and d = 
0.5, 0.1, 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, and 1e−7. The maximum 
iterations were set to 1000.

For the random forest algorithm, we varied the number of 
variables randomly sampled at each split time with a value of 
2n for n ∈ {0, 1, 2, 3, 4, 5}.

For the support vector machine, we used a radial basis ker-
nel, and optimized the cost of false classification (C) and kernel 
width (γ) by employing a grid search with C = {0.75, 1.0, 1.25} 
and γ = {0.01, 0.015, 0.2}.

Ten 10-fold cross-validations were performed to evaluate 
the performance of the classifiers. At each time, the undefined 
association set was randomly selected with an equal size to the 
defined set. A total of 80% of these data were used to optimize 
the parameters using the cross-validation technique. At each 
time of the cross-validation, the defined and undefined associ-
ations were randomly split into 10 equal sizes. Nine parts were 
concatenated and used to train and optimize the parameters. 
Testing was performed with the remaining part and the perfor-
mance was measured by comparing the predictions and the 
true class labels. This experiment was repeated with a randomly 
undefined set 10 times. Several cutoffs on the probabilities of 
positive class predictions were calculated, yielding an ROC 
curve, which is a plot of the true-positive rate (TPR) against 
the false-positive rate (FPR) at the different cutoffs. Using the 
ROC curve, a broader view of the performance over various 
cutoffs could be measured by calculating the area under the 
curve (AUC). An AUC of 1 indicated the best performance of 
the classifier in which it can recognize and classify the samples, 
whereas an AUC of 0.5 indicated that the performace could 
achieve the same as random prediction by chance.

Subsequently, the AUCs of the aforementioned 4 classifica-
tion algorithms were compared. The algorithm with the high-
est AUC was used as the prediction model. Ten classifiers from 
the final model were employed as the ensemble classifiers. Each 
classifier provided the probabilities of positive prediction for a 
human-parasite protein pair. The voting score (S) was calcu-
lated from the average probabilities of the 10 classifiers. 
Therefore, the score was computed as follows

 S h p R h pi j M i j
M

, ( , )( ) = ( )
=
∑110

1

10

Prob
��

 (2)

where ProbM  is the probability of a positive prediction derived 
from the output of the Mth machine. The score was applied to 
all defined and undefined associations in this study.

Ranking score calculation for each human protein

Using machine-learning algorithms to perform the classifica-
tions, we obtained a promising list of human-parasite protein 
associations. It would be interesting to use these associations to 
identify human proteins crucial for the P. vivax malaria mecha-
nism. It is worth noting that one human protein could be asso-
ciated with more than 1 P. vivax protein. To identify the impact 
of a human protein on the list, we applied a ranking method for 
all human proteins in the list. The probability of a positive pre-
diction for a pair of human and P. vivax proteins was used to 
rank the protein pairs. The pair with the highest probability 
value was ranked first. Notably, several pairs can have the same 
probability value. In this case, they were assigned the same 
rank. The ranking score of a human protein hi  was calculated 
as follows

 ranking score h
rank h pi

i j

_ max
,

( ) = ( )
1

 (3)

where rank h pi j( , )  is the rank of a pair of a human protein hi  
and P. vivax protein p j , for all possible p j , according to the 
prediction probability score of the association.

Gene ontology enrichment analysis

To infer gene functions from the human candidate sets, we 
employed Gene Ontology (GO) enrichment analysis to deter-
mine which GO terms were overrepresented in our candidate 
proteins. To this end, the Cytoscape 3.7.247 plugin ClueGO 
v2.5.648 was used. ClueGO constructed a gene network based 
on GO terms by employing all differentially expressed genes. A 
2-sided hypergeometric test with Benjamin-Hochberg correc-
tions was performed to calculate the significant GO terms. 
Only GO terms with adjusted p-values less than 0.05 were 
considered.

Results
Network structures and node properties of human 
and P. vivax networks

In this study, we constructed 2 PPI networks of human and P. 
vivax from the information of the STRING database.37 The 
reconstructed human PPI network consisted of 12 038 pro-
teins and 313 359 edges, while the malaria PPI network com-
prised 1787 proteins and 11 477 edges. The structures of the 
human PPI network and malaria PPI network followed the 
power-law distribution (Figure 2A and B, respectively), indi-
cating that there are small numbers of high-degree nodes and 
large numbers of low-degree nodes in the networks. The topo-
logical network features of each protein were calculated based 
on node properties in the networks, namely betweenness cen-
trality, closeness centrality, degree, eccentricity, and Kleinberg’s 
hub. The deviations of these features are shown as boxplots in 
Figure 3. Interestingly, both networks had similar average 
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betweenness centrality, degree and eccentricity, but large dif-
ferences in closeness centrality and a small difference in 
Kleinberg’s hub. A node with a high betweenness score was 
indicative of a node with overloading paths passing through it, 
that is, the node may act as a bridge between 2 or more com-
munities. The boxplot of betweenness centrality scores showed 
that both human and parasite networks had a similar mean 
overload for each node in the entire network. Evidently, there 
were the similar mean of degrees and eccentricities for both 
networks.

Closeness centrality provides a good measure of a given 
node located in the middle location, such that it can reach the 
other nodes in the shortest way. The human network showed 
lower values of closeness scores than those of the parasite net-
work. This may be due to the fact that, in the human network, 
there were several proteins, and several protein interactions 
caused a protein complex, compared to that in the parasite 
network. Kleinberg’s hub represents the protein nodes that 
may connect to other important nodes in the network. The 
boxplot shows that, on average, human proteins are slightly 
more likely to connect with other important nodes than that 
are parasite proteins. Although the boxplots show the overall 
distributions of each node property in the entire network, 
they do not represent all single differences of each protein in 
both networks. In addition, these differences may provide a 
good view of how human and parasite proteins relate to each 
other in terms of the cooperative community in the network. 
Thus, the similarity profiles of these topological node proper-
ties for each pair of human and Plasmodium proteins were 
determined. This profile was used as a feature to train the 
machine-learning classifiers.

We calculated the topological similarity of each feature for 
each pair of human and Plasmodium proteins. All possible com-
binations of these 2 types of proteins resulted in 225 675 478 
human-Plasmodium protein pairs. Next, the similarity features 
based on the node properties were calculated (see Materials 
and Methods) for each pair of human-Plasmodium proteins. 
Initially, we defined 19 939 pairs as positive association pairs 
based on protein sequence similarities. The remaining pairs, 
namely 225 655 539 pairs, were defined as an undefined set. 
These data sets were prepared to be fed into the established 
classification processes. Before the classification process, it was 
interesting to analyze the topology features to determine the 
relationship between proteins in the positive pairs. We then 
calculated an uncentered correlation of each node property 
between human and parasite proteins in the positive set, as 
shown in Table 1. This uncentered correlation provides the 
value of the relationship, ranging from 0 to 1. As expected, we 
found a high correlation of closeness centrality between the 
human and parasite proteins, with a correlation coefficient of 
0.9805. In addition, a moderate correlation of eccentricity 
between the human and parasite proteins with a correlation 
coefficient of 0.6827 in the positive set was observed. A low 
correlation of degree and betweenness centrality between 
human and parasite proteins was observed, with correlation 
coefficients of 0.3507 and 0.1316, respectively. With Kleinberg’s 
hub, no correlation was observed, with correlation coefficient of 
0.0556 between human and parasite proteins. The characteri-
zation of the topological features of human and parasite pro-
tein interaction networks may help to identify underlying 
proteins that cooperate with host cell recognition and invasion 
by parasite proteins.

Figure 2. Degree distributions of 2 networks: the degree distributions of (A) human protein-protein interaction network and (B) malaria protein-protein 

interaction network.
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Performance of the classif ications used to recognize 
human-parasite protein associations
Four classification algorithms, naïve Bayes, neural network, 
random forest, and support vector machine, were used to rec-
ognize human-parasite protein associations. Their perfor-
mances were compared to select the best classifier for the 
recognition of human-parasite protein similarities, based on 
topological features. Ten 10-fold cross-validations were applied 
for each algorithm, which yielded the performance in terms of 

an ROC curve with an AUC, as shown in Figure 4. The ran-
dom forest algorithm provided the best classifier, with an AUC 
of 0.85. The neural network algorithm yielded a slightly lower 
performance, with an AUC of 0.79. Similarly, the support vec-
tor machine achieved an AUC of 0.77. The naïve Bayes classi-
fier yielded a slightly lower performance compared with that of 
the neural network and support vector machine with an AUC 
of 0.74. Notably, the random forest algorithm provided the best 
performance, with an AUC that was relatively far from that of 

Figure 3. Boxplots for the properties of each node.

Table 1. Correlation coefficient values of each topological feature between human and parasite proteins in the positive set.

DEGREE ClOSEnESS BETwEEnnESS ECCEnTRICITy KlEInBERG’S HUB

0.3507 0.9805 0.1316 0.6827 0.0556
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the other algorithms. This is of great interest because the results 
obtained for this algorithm indicate its potential in identifying 
new human-parasite protein associations and, furthermore, in 
selection of key human proteins for the parasite.

The classifier showed a better performance than that did 
random selection, which may result in 50% correct predictions. 
Moreover, we attempted to demonstrate the reliability of the 
relationship between sequence similarity and network topolo-
gies by performing several random experiments. These experi-
ments could be performed by randomly shuffling class labels 
and retraining the random forest classifiers. Ten 10-fold cross-
validations were performed in the same procedures. An AUC 
of 0.5 was obtained for these random experiments. This was 
also a good indication that the network topologies of protein 
nodes in the PPI networks could be used to infer the relation-
ship between human and parasite proteins in terms of sequence 
similarity, reflecting the homologs and similar cooperation in 
the network community.

Based on the best performance and the results of the ran-
dom forest classifiers, we defined a voting score for a pair of 
human and parasite proteins. Ten probability values of the 
positive prediction for a pair of human and parasite proteins 
were obtained. The average of these probability values was cal-
culated and defined as a voting score for a pair of human and 
parasite proteins (see Materials and Methods). This score was 
used to define the stringency of predicting human-parasite 
protein associations. Initially, we identified 12 038 human pro-
teins in the human PPI network and 1787 parasite proteins in 
the parasite PPI network. This resulted in a total of 225 675 
478 human-parasite protein pairs. A total of 19 939 pairs were 
initially defined as positive association pairs based on protein 
sequence similarities. After performing the random forest clas-
sification, the average voting score was calculated for each pair. 

It is worth noting that these scores indicated associations based 
on the network topological profiles of the human-parasite pro-
tein pairs using machine learning. It was also interesting to 
combine these scores with the other association scores from 
other aspects such as the heterogeneous network study.19 With 
the heterogeneous network model, the network propagation 
algorithm with a decay factor of 0.1 was performed on the net-
work to prioritize human-parasite protein associations.19 A 
total of 21 511 906 overlap pairs from both machine-learning 
and network propagation techniques with scores greater than 0 
were obtained and used for the further analysis and selection of 
key human proteins. Of these pairs, 831 had the highest voting 
scores of the predictions according to our machine-learning 
analysis (Supplementary Table S1).

Identifying promising key human proteins from 
predicted associations

All human proteins among the 21 511 906 pairs were ranked to 
calculate their ranking scores under the assumption that human 
proteins in association with high ranking scores may be impor-
tant for parasite mechanisms. The final ranking score for each 
human protein was obtained by the production of the ranking 
score (see section “Ranking score calculation for each human 
protein”) calculated from the ranked pairs obtained using the 
machine-learning method and the ranking score calculated 
from the ranked pairs using the network propagation methods. 
The histogram of the logarithmic transformation of the final 
ranking scores of all 12 038 human proteins is shown in Figure 
5. Notably, most of the ranking scores were less than 0.0001, 
while the top best-ranking score was 1 (the logarithm of 1 is 0). 
Using this top-ranking score, we obtained 411 human proteins. 
These human proteins were defined as the first list of promis-
ing target proteins in human hosts. A complete list of these 411 

Figure 4. Receiver operating characteristic (ROC) curves for the 

predictions of human-parasite protein associations of each machine-

learning algorithm.
AUC indicates area under the curve; ROC, receiver operating characteristic.

Figure 5. Histogram showing the frequency of ranking scores in 

logarithm scale for human proteins in the predicted human-parasite 

associations.
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human proteins is provided in Supplementary Table S2. The 
bar plot representing the number of highest-score associations 
for these 411 proteins is shown in Figure 6. Note that only 
proteins found in more than 2 association pairs are presented in 
the figure. Overall, we identified Ras-related proteins, kinesin 
family members, and proteasome 20 S subunit alpha and beta 
in the list.

Clusters of human protein candidates associated to 
malaria

As mentioned in section “Identifying promising key human 
proteins from predicted associations,” we integrated the asso-
ciation scores from our machine-learning techniques and the 
heterogeneous network model. First, the association scores of 
candidate human-parasite protein pairs from the heterogene-
ous network method were ranked to calculate their ranking 
scores for each protein in the same manner as in our study (see 
Materials and Methods). Next, we combined the ranking 
scores of these 2 methods as the attributes to cluster the human 
proteins using hierarchical clustering. The aim was to group 
human proteins with similar levels of importance in both 
aspects. Figure 7 shows the hierarchical clustering of these pro-
teins. By selecting the cut height of the dendrogram tree as 8, 
we obtained 7 groups of proteins consisting of 2 groups of Ras-
related proteins, a single group of histone H2B proteins, kine-
sin family members, ubiquitin specific peptidase 17 like family 
members, zinc finger proteins, and a remaining group of mixed 
types of proteins. Figure S1 shows the high-resolution circular 
dendrogram of the clustering analysis. The complete list of 
these proteins in each cluster is provided in Supplementary 

Table S3. Ras proteins are members of a superfamily of small 
GTPases that are involved in many processes of cell growth 
control. Ubiquitin-specific peptidase 17 like family members 
regulate different cellular processes, such as cell proliferation, 
cell migration, progression through the cell cycle, apoptosis, 
and cellular response to viral infection.49-51

Functional characteristics of annotated human 
proteins

Interpreting the functions of these 411 annotated human 
proteins may reveal the related mechanisms of the human 

Figure 6. Bar plot illustrating the number of the highest-score associations of each human protein. Only proteins associated with more than 2 pairs were 

presented.

Figure 7. Circular dendrogram of the hierarchical clustering analysis.
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host and parasite. We investigated these human proteins 
using functional enrichment analyses. Gene ontology annota-
tions were performed to obtain an overview of the biological 
processes. The analysis was performed using Cytoscape 
plugins, ClueGO. Gene ontology associations based on bio-
logical processes were selected using intermediate detail in 
the panel setting of ClueGO. This covered 3 to 8 levels of 
GO terminology. Based on the PPI of STRING, a second 
enrichment analysis was performed with a group of genes 
that were connected in the GO network using CluePedia 
(version 1.5.6). This analysis revealed 9 functional groups of 
GO terms, as shown in Table 2 and Figure 8. The complete 

list of these overrepresented GO terms in the biological pro-
cess category is provided in Supplementary Table S4. 
Interestingly, we found the term of regulation of transcrip-
tion, DNA-templated (GO:0006355), with the most signifi-
cant term. In addition, Rab protein signal transduction 
(GO:0032482) and regulation of vesicle size (GO:0097494) 
were found in a high proportion of our candidate proteins. 
Rab proteins are a subfamily of the Ras protein family52 and 
commonly possess a GTPase fold. These Rab GTPases regu-
late the processes of membrane trafficking, vesicle formation, 
and membrane fusion.52-54 Most of our candidate proteins are 
involved in the regulation of membrane and vesicle forma-
tion. These proteins may assist parasite transports in the host 
and could be potential targets for the treatment of malaria. 
Figure 8 presents the network of the main enriched GO terms 
of the 9 clusters, denoted as 9 different colors. Each cluster 
contained associated GO terms and was named with its prin-
cipal GO term.

Protein complexes to potential protein targets

To identify sets of these 411 proteins that interact with each 
other and play essential roles in regulatory processes, cellular 
functions, and signaling cascades, we performed enrichment 
analysis in protein complexes. Enrichment analysis of these 
proteins was performed on the CORUM protein complex 
database (version 3.0).55 Four protein complexes were found 
using Bonferroni-adjusted P values for the enrichment tests 
<0.05. These 4 protein complexes consisted of the 20S protea-
some, 26S proteasome, PA28gamma-20S proteasome, and 
PA28-20S proteasome. Most of the proteins overrepresented 
in these protein complexes were PSMA4, PSMB2, PSMB4, 
PSMB5, PSMB6, and PSMB7. Only the 26S proteasome 

Table 2. nine functional groups based on principal gene ontology (GO) terms.

ClUSTER 
nUMBER

GO ID PRInCIPlE GO TERM ADJUSTED P 
VAlUE*

PERCEnTAGE OF 
ASSOCIATED PROTEInS

1 GO:0006355 Regulation of transcription, DnA-templated 8.52E−112 7.29

2 GO:0003700 DnA-binding transcription factor activity 6.50E−27 6.80

3 GO:0032482 Rab protein signal transduction 9.87E−20 30.26

4 GO:0070647 Protein modification by small protein 
conjugation or removal

9.98E−20 6.85

5 GO:0006511 Ubiquitin-dependent protein catabolic process 8.17E−12 7.23

6 GO:0090382 Phagosome maturation 5.41E−03 11.11

7 GO:0097494 Regulation of vesicle size 5.67E−03 21.43

8 GO:0001217 DnA-binding transcription repressor activity 1.43E−02 4.53

9 GO:0006904 Vesicle docking involved in exocytosis 2.67E−02 8.33

Abbreviation: GO, gene ontology.
*P values were adjusted according to Benjamini-Hochberg correction method.

Figure 8. Representative network of gene ontology (GO) terms of our 

candidate human proteins using ClueGO.
GO indicates gene ontology.
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contained 1 more protein (PSMC1) in the list. Thus, these 
proteins may be interesting targets in future studies. Table 3 
presents a list of the overrepresented protein complexes.

Furthermore, to examine the importance of the proposed 
human proteins, these proteins were searched for in the 
Drugbank database.56 Interestingly, Proteasome 20S Subunit 
Beta 2 (PSMB2) and Proteasome 20S Subunit Beta 5 (PSMB5) 
were identified, which are known to be drug targets, in the 
Drugbank database. PSMB2 and PSMB5 play several roles. 
They were found to be enriched in the principal GO terms of 
regulation of transcription, DNA-templated, protein modifica-
tion by small protein conjugation or removal, and ubiquitin-
dependent protein catabolic process. Interestingly, PSMB2 was 
found to be a drug target of carfilzomib (DB08889), while 
PSMB5 is a drug target of carfilzomib and bortezomib 
(DB00188). Carfilzomib is a synthetic proteasome inhibitor. It 
is an analogue of the natural product epoxomicin, which effec-
tively kills parasites. Bortezomib is the first therapeutic protea-
some inhibitor to be tested in humans, which induces cell cycle 
arrest and apoptosis. Bortezomib interrupts the degradation of 
proapoptotic proteins in cancerous cells. It is currently used for 
the treatment of relapsed multiple myeloma and mantle cell 
lymphoma. Both carfilzomib and bortezomib have been 
reported to be related to malaria treatment.57 Carfilzomib has 
been reported to potently block P. falciparum replication at 
effective concentrations as well as killing asexual blood-stage P. 
falciparum.58 Bortezomib exhibits antiplasmodial activities and 
has been examined for efficacy against P. falciparum.59 PSMB2 
and PSMB5 were found in all our resulting protein complexes 
(Table 3). Thus, these complexes may be a valuable starting 
point for further studies aiming to design and develop drugs 
against malaria. In addition, PSMB2 and PSMB5 were 
observed in mixed types of protein group of 62 proteins in our 
clustering results (see section “Clusters of human protein can-
didates associated to malaria” and Supplementary Table S3). 
Therefore, the remaining 60 proteins in the same cluster of 
these proteins may be promising therapeutic targets for P. vivax 
malaria. A list of these proteins is provided in Supplementary 
Table S5. In addition, the relationship of these 411 human pro-
teins and P. vivax malaria was evaluated to determine ortholo-
gous proteins of P. vivax and the 411 human proteins from 
EggNOG database (version 5.0).60 The results are presented in 
Supplementary Table S6.

Discussion
Our understanding of the invasion mechanism of P. vivax 
remains deficient due to the lack of a robust in vitro culture 
system for this parasite. In an attempt to resolve this, the host-
parasite interactions were studied, including direct interactions 
at the protein level inside the cell. In this study, we initially 
reconstructed the human and parasite PPI networks, and com-
pared their network structures. In principle, both networks fol-
low the power distribution, and the analysis of network 
topologies between these 2 networks revealed a correlation of 
the connections within their own network between human and 
parasite proteins in the positive set. The high correlation of 
closeness centrality between these proteins indicated that most 
of the similar proteins between human and parasite responded 
to minimum paths that connect the other proteins. These pro-
teins also formed a similar local community around them, as 
the high correlation was observed in terms of eccentricity. 
Although the degree, betweenness centrality, and Kleinberg’s 
hub did not show significant correlations among these pro-
teins, the machine-learning approaches applied here may help 
reveal several more human and parasite protein associations in 
future studies.

A ranking score calculation for the human proteins was 
developed based on the rank of the associations according to 
their voting scores. A total of 411 human proteins with the 
best-ranking score were selected as promising target candi-
dates. Based on the histogram shown in Figure 5, the second-
best score had a gap jumping from the top best, while the rest 
of the scores were far away from the best one. The majority of 
these proteins had a ranking score of approximately 0.00001, 
which was very low in terms of the probability of being a reli-
able association. Thus, these 411 proteins were selected for fur-
ther analysis together with heterogeneous network prioritization 
and qualified in terms of clusters, functions, and protein 
complexes.

The results showed that Ras-related proteins, a single group 
of histone H2B proteins, kinesin family members, ubiquitin-
specific peptidase 17 like family members, and zinc finger pro-
teins were the most prominent in our candidate list. These 
proteins are involved in several processes of cell growth control 
and regulation of membrane and vesicle formation. Several pro-
teins related to proteasome 20S subunits have been previously 
reported as promising multistage targets for malaria therapy.59 

Table 3. The list of protein complexes enriched in 411 promising candidate proteins.

PROTEIn COMPlEx ADJUSTED P VAlUE ASSOCIATED PROTEInS

20S proteasome 8.34E−03 PSMA4, PSMB2, PSMB4, PSMB5, PSMB6, PSMB7

26S proteasome 1.29E−02 PSMA4, PSMB2, PSMB4, PSMB5, PSMB6, PSMB7, PSMC1

PA28gamma-20S proteasome 1.35E−02 PSMA4, PSMB2, PSMB4, PSMB5, PSMB6, PSMB7

PA28-20S proteasome 2.10E−02 PSMA4, PSMB2, PSMB4, PSMB5, PSMB6, PSMB7
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These proteins may be used for the invasion of parasites to the 
host cell and have been identified as potential drug targets in 
the human host.

Conclusion
In this study, we established an analysis framework that uses 
machine-learning approach based on a heterogeneous net-
work structure. We used the network topology features of 
proteins in the human PPI network and the P. vivax PPI 
network and integrated protein sequence similarities to the 
framework to predict human-parasite protein associations. 
We also developed a ranking score calculation to identify 
promising protein targets in humans for the treatment of 
malaria infections. The candidate human proteins that were 
selected as promising targets were then qualified by cluster-
ing analysis together with the information on the existing 
targets from the heterogeneous network prioritization, as 
well as by functional and protein complex enrichment analy-
ses. We found that proteins in the cluster of PSMB2 and 
PSMB5 (known drug targets), human proteins involved in 
the regulation of membrane and vesicle formation, and com-
plexes such as the 20S proteasome, 26S proteasome, and 
PA28gamma/-20S proteasomes are potential targets for the 
design and development of drugs for the treatment of 
malaria.

In conclusion, the integration of data related to network 
topologies and sequence similarity provides us with an oppor-
tunity to define associations between human and P. vivax pro-
teins. Human protein candidates extracted from these 
associations were used to compile a list of promising targets in 
humans for further validation in wet-laboratory experiments in 
future studies. An enhanced understanding of potential host 
proteins at the molecular level will provide insights to support 
malaria control efforts and the production of novel antimalarial 
drugs.
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