

### Protocol

Protocol for profiling virus-to-host RNA-RNA interactions in infected cells by RIC-seq



Virus-to-host RNA-RNA interactions directly regulate host mRNA stability and viral replication. However, globally profiling virus-to-host *in situ* RNA-RNA interactions remains challenging. Here, we present an RNA *in situ* conformation sequencing (RIC-seq)-based protocol for mapping high-confidence virus-to-host *in situ* RNA-RNA interactions in infected cells. We detail steps for formaldehyde crosslinking, pCp-biotin labeling, *in situ* proximity ligation, chimeric RNA enrichment, strand-specific library construction, and data analysis. This protocol allows unbiased identification of virus-to-host RNA-RNA interactions for various RNA viruses and is potentially applicable to DNA virus-derived transcripts.

Publisher's note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.

Zhaokui Cai, Hailian Zhao, Yuanchao Xue

caizhaokui@ibp.ac.cn (Z.C.) ycxue@ibp.ac.cn (Y.X.)

### Highlights

RIC-seq for mapping virus-to-host *in situ* RNA-RNA interactions

Step-by-step protocol for constructing RIC-seq libraries

Pipelines of RIC-seq data analysis

Identification of highconfidence virus-tohost RNA-RNA interactions

Cai et al., STAR Protocols 5, 103149 September 20, 2024 © 2024 The Author(s). Published by Elsevier Inc. https://doi.org/10.1016/ j.xpro.2024.103149



### Protocol Protocol for profiling virus-to-host RNA-RNA interactions in infected cells by RIC-seq

Zhaokui Cai,<sup>1,3,4,\*</sup> Hailian Zhao,<sup>1,2,3</sup> and Yuanchao Xue<sup>1,2,5,\*</sup>

<sup>1</sup>Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

<sup>2</sup>University of Chinese Academy of Sciences, Beijing 100049, China

<sup>3</sup>These authors contributed equally

<sup>4</sup>Technical contact

<sup>5</sup>Lead contact

\*Correspondence: caizhaokui@ibp.ac.cn (Z.C.), ycxue@ibp.ac.cn (Y.X.) https://doi.org/10.1016/j.xpro.2024.103149

### **SUMMARY**

Virus-to-host RNA-RNA interactions directly regulate host mRNA stability and viral replication. However, globally profiling virus-to-host *in situ* RNA-RNA interactions remains challenging. Here, we present an RNA *in situ* conformation sequencing (RIC-seq)-based protocol for mapping high-confidence virus-to-host *in situ* RNA-RNA interactions in infected cells. We detail steps for formalde-hyde crosslinking, pCp-biotin labeling, *in situ* proximity ligation, chimeric RNA enrichment, strand-specific library construction, and data analysis. This protocol allows unbiased identification of virus-to-host RNA-RNA interactions for various RNA viruses and is potentially applicable to DNA virus-derived transcripts. For complete details on the use and execution of this protocol, please refer to Zhao et al.<sup>1</sup>

### **BEFORE YOU BEGIN**

RNA viruses can infect various host cells and interact with the cellular RNAs.<sup>1–4</sup> The interactions between viral RNA and host RNA have been demonstrated to regulate many biological processes, such as viral replication,<sup>2,5,6</sup> host immune evasion,<sup>7,8</sup> and viral packaging.<sup>9</sup> Identifying high-confidence virus-to-host RNA-RNA interactions is crucial for understanding the molecular mechanisms of viral replication and infection, which can be further employed for developing targeted antiviral therapies. We previously developed a RIC-seq (RNA *in situ* conformation sequencing) technology for profiling *in situ* RNA-RNA interactions in HeLa cells.<sup>10</sup> In this protocol, we further implemented RIC-seq in profiling SARS-CoV-2-to-host RNA-RNA interactions in infected cells and provided a step-by-step protocol. Of note, RIC-seq also identified intra-molecular RNA-RNA interactions of host or viral RNAs that can be used to deduce their secondary structures and tertiary interactions. In addition to SARS-CoV-2, this protocol can also be applicable for studying RNA-RNA interactions in other RNA or DNA virus-infected cells.

We routinely prepared three biological replicates for constructing RIC-seq libraries, each utilizing  $1 \times 10^7$  infected cells. Considering the high abundance of SARS-CoV-2 RNA within the infected cells, which may promiscuously contact with host RNAs, we further introduced an *in vitro* random ligation library by extracting the whole complement of RNA fragments protected by proteins and performing random ligations in a diluted solution. To eliminate any potential false-positive signals and pinpoint reliable virus-to-host RNA-RNA interactions, we only used uniquely mapped inter-molecular chimeric reads that did not overlap with random ligated chimeric reads for downstream







Monte Carlo simulation.<sup>11</sup> The observed pairwise interactions were scrutinized against simulated interactions to identify significant SARS-CoV-2-to-host RNA-RNA interactions.

### **Adapter preparation**

 $\odot$  Timing:  $\sim$ 2 h

△ CRITICAL: Adapters should be prepared before the RIC-seq experiment.

- 1. Dissolve the paired-end illumina (PEI) adapter oligo A and B with DEPC-treated water to a final concentration of 100  $\mu$ M, respectively.
- 2. Add 10  $\mu L$  of PEI adapter oligo A (100  $\mu M$ ) and 10  $\mu L$  of PEI adapter oligo B (100  $\mu M$ ) to a 200- $\mu L$  PCR tube.
- 3. Mix thoroughly and incubate the solution at 70°C for 10 min in a preheated thermal cycler.
- 4. Remove the PCR tube and place it on the laboratory bench. Let the solution cool down to  $20^{\circ}$ C-  $25^{\circ}$ C.

Note: The annealed adapters should be aliquot and stored at  $-20^{\circ}$ C for several years. The final concentration of annealed adapters is 50  $\mu$ M.

5. Before the RIC-seq experiment, dilute the 50  $\mu$ M annealed adapters to 2  $\mu$ M by mixing 2  $\mu$ L of 50  $\mu$ M annealed adapters with 48  $\mu$ L of DEPC-treated water. Mix well and store at -20°C for no more than one year.

### Infected cells preparation

© Timing: ~25 h

- 6. The SARS-CoV-2 strain used in this protocol, IPBCAMS-YL01/2020, was isolated from a clinical sample by the Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College.
- 7. SARS-CoV-2 viruses were amplified in Vero cells. SARS-CoV-2 infectious titers were determined through plaque assay in Vero cells.
- Cultured A549-ACE2 cells with a density of 80% in 10-cm dishes were brought to enhanced biosafety level 3 (BSL-3) facilities and infected with SARS-CoV-2 (MOI = 0.1) for 1 h in Opti-MEM medium. The infected cells were cultured in a maintenance medium (OPTI-MEM medium containing 1% penicillin/streptomycin and 1% BSA) for 24 h.
- 9. Remove the culture medium, and wash infected cells three times with ice-cold PBS.
- 10. Add 10 mL 1% (w/v) formaldehyde to the dish, and incubate for 20 min at 20°C-25°C on a horizontal shaker.

*Note:* The 20-min formaldehyde fixation in this step is necessary because the fixed samples must be heated at 65°C for 30 min to inactivate viruses following the strict P3 laboratory rules. This process may result in partial de-crosslinking. If your sample does not require heat treatment, the formaldehyde treatment time can be reduced to 10 min.

- 11. Add 500  $\mu$ L of 2.5 M glycine to the dish to quench the crosslinking, mix gently, and incubate for 10 min at 20°C–25°C on a horizontal shaker.
- 12. Remove the supernatant and wash infected cells three times with ice-cold PBS.
- 13. Scrape infected cells from the culture dish and transfer them to a 50-mL centrifuge tube.
- 14. Centrifuge at 1,200 g at 4°C for 10 min to collect the cell pellet.



**Note:** This protocol is also applicable to tissue samples and suspension cells. For tissue samples, such as lung tissue, we typically take  $\sim 0.5 \text{ cm}^3$  of lung tissue from COVID-19 patients and cut it into  $\sim 1 \text{ mm}^3$  pieces with a sterile blade. Minced tissue samples or suspension cells were treated with the same conditions as adherent cells, but the minced tissue samples or cell pellets were washed and collected by centrifugation. See troubleshooting, problem 1.

- 15. Discard the supernatant completely. Resuspend the cell pellet with 1 mL ice-cold PBS and transfer to a 1.5-mL Eppendorf LoBind tube.
- 16. Centrifuge at 600 g at  $4^{\circ}$ C for 10 min, and discard the supernatant.
- 17. The fixed infected cells were heated at  $65^{\circ}$ C for 30 min to inactivate the virus.
  - △ CRITICAL: All the experiments related to live SARS-CoV-2 virus were conducted in enhanced biosafety level 3 (P3+) facilities authorized by the National Health Commission of the People's Republic of China.

*Note:* It should be conducted in a biosafety laboratory with the appropriate level if working with other RNA viruses.

**II** Pause point: The fixed cell pellet can be stored at -80°C for no more than 1 month.

### **KEY RESOURCES TABLE**

| REAGENT or RESOURCE                                                          | SOURCE                   | IDENTIFIER       |
|------------------------------------------------------------------------------|--------------------------|------------------|
| Chemicals, peptides, and recombinant proteins                                |                          |                  |
| Tris                                                                         | Amresco                  | Cat# 0497-1KG    |
| Boric acid                                                                   | Amresco                  | Cat# 0588-1KG    |
| Glycine                                                                      | Amresco                  | Cat# 0167-1KG    |
| Hydrochloric acid (HCl)                                                      | Sinopharm                | Cat# 10011008    |
| Sodium hydroxide (NaOH)                                                      | Sigma-Aldrich            | Cat# \$8045-500G |
| Formaldehyde solution                                                        | Sigma-Aldrich            | Cat# F8775-500ML |
| Magnesium chloride hexahydrate (MgCl <sub>2</sub> ·6H <sub>2</sub> O)        | Sigma-Aldrich            | Cat# M0250-500G  |
| Sodium chloride (NaCl)                                                       | Sigma-Aldrich            | Cat# \$3014-1KG  |
| IGEPAL CA-630 (NP-40)                                                        | Sigma-Aldrich            | Cat# 18896-100ML |
| Triton X-100                                                                 | Sigma-Aldrich            | Cat# T8787-250ML |
| Tween 20                                                                     | Sigma-Aldrich            | Cat# P9416-100ML |
| Calcium chloride (CaCl <sub>2</sub> )                                        | Sigma-Aldrich            | Cat# 793639-500G |
| Ethylene glycol-bis(2-aminoethylether)-<br>N,N,N',N'-tetraacetic acid (EGTA) | Sigma-Aldrich            | Cat# E3889-100G  |
| Ethylenediaminetetraacetic acid disodium salt dehydrate ((Na2EDTA·2H2O)      | Sigma-Aldrich            | Cat# E5134-1KG   |
| Sodium dodecyl sulfate (SDS)                                                 | Sigma-Aldrich            | Cat# L3771-500G  |
| Ethanol                                                                      | Sinopharm                | Cat# 10009218    |
| Isopropanol                                                                  | Sinopharm                | Cat# 80109218    |
| Acid phenol: chloroform                                                      | Amresco                  | Cat# E277-400ML  |
| Diethyl pyrocarbonate (DEPC)                                                 | Sigma-Aldrich            | Cat# D5758-100ML |
| GelRed                                                                       | Biotium                  | Cat# 41003       |
| Agarose                                                                      | Biowest                  | Cat# 111860      |
| Yeast RNA                                                                    | Roche                    | Cat# 10109223001 |
| 10× PBS                                                                      | Invitrogen               | Cat# AM9624      |
| SuperScript II reverse transcriptase                                         | Thermo Fisher Scientific | Cat# 18064-014   |
| DNA polymerase I                                                             | Enzymatics               | Cat# P7050L      |
| 5× second strand buffer                                                      | Thermo Fisher Scientific | Cat# 10812-014   |
| T4 polynucleotide kinase                                                     | Enzymatics               | Cat# Y9040L      |
| T4 DNA polymerase                                                            | Enzymatics               | Cat# P7080L      |
| Klenow fragment                                                              | Enzymatics               | Cat# P7060L      |

(Continued on next page)

# CellPress OPEN ACCESS

### **STAR Protocols** Protocol

| Continued                                   |                             |                                                                                                   |
|---------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------|
| REAGENT or RESOURCE                         | SOURCE                      | IDENTIFIER                                                                                        |
| Klenow exo- (3' to 5' exo minus)            | Enzymatics                  | Cat# P7010-LC-L                                                                                   |
| T4 DNA ligase (rapid )                      | Enzymatics                  | Cat# L6030-HC-L                                                                                   |
| Platinum SuperFi DNA polymerase             | Thermo Fisher Scientific    | Cat# 12351050                                                                                     |
| T4 polynucleotide kinase                    | Thermo Fisher Scientific    | Cat# EK0032                                                                                       |
| RQ1 RNase-free DNase                        | Promega                     | Cat# M6101                                                                                        |
| RiboLock RNase inhibitor                    | Thermo Fisher Scientific    | Cat# EO0381                                                                                       |
| Proteinase K                                | Takara                      | Cat# 9034                                                                                         |
| SUPERase In RNase inhibitor                 | Thermo Fisher Scientific    | Cat# AM2694                                                                                       |
| FastAP thermosensitive alkaline phosphatase | Thermo Fisher Scientific    | Cat# EF0651                                                                                       |
| T4 RNA ligase                               | Thermo Fisher Scientific    | Cat# EL0021                                                                                       |
| Micrococcal nuclease                        | Thermo Fisher Scientific    | Cat# EN0181                                                                                       |
| USER enzyme                                 | New England Biolabs         | Cat# M5505S                                                                                       |
| Protease inhibitor cocktail                 | Sigma-Aldrich               | Cat# P8340-5ML                                                                                    |
| RNase H                                     | Thermo Fisher Scientific    | Cat# EN0202                                                                                       |
| TURBO DNase                                 | Thermo Fisher Scientific    | Cat# AM2238                                                                                       |
| Dynabeads MyOne streptavidin C1             | Thermo Fisher Scientific    | Cat# 65002                                                                                        |
| Agencourt AMPure XP beads                   | Beckman Coulter             | Cat# A63881                                                                                       |
| GlycoBlue coprecipitant                     | Thermo Fisher Scientific    | Cat# AM9515                                                                                       |
| Sodium acetate (3 M, pH 5.5)                | Thermo Fisher Scientific    | Cat# AM9740                                                                                       |
| TRIzol reagent LS                           | Thermo Fisher Scientific    | Cat# 10296028                                                                                     |
| Chloroform                                  | Sinopharm                   | Cat# 10006818                                                                                     |
| Adenosine 5'-triphosphate                   | New England Biolabs         | Cat# P0756S                                                                                       |
| Deoxynucleotide (dNTP) solution mix         | New England Biolabs         | Cat# N0447S                                                                                       |
| Deoxynucleotide (dNTP) solution set         | New England Biolabs         | Cat# N0446S                                                                                       |
| dUTP solution                               | Thermo Fisher Scientific    | Cat# R0133                                                                                        |
| Penicillin-streptomycin                     | Thermo Fisher Scientific    | Cat# 15140163                                                                                     |
| DMEM                                        | Thermo Fisher Scientific    | Cat# C11965500BT                                                                                  |
| Opti-MEM                                    | Thermo Fisher Scientific    | Cat# 31985070                                                                                     |
| Trypsin-EDTA (0.25%)                        | Thermo Fisher Scientific    | Cat# 25200072                                                                                     |
| Fetal bovine serum                          | Thermo Fisher Scientific    | Cat# 10091-148                                                                                    |
| Critical commercial assays                  |                             |                                                                                                   |
|                                             | Thormo Eisbor Scientific    | Ca+# 032854                                                                                       |
|                                             | Thermo Fisher Scientific    |                                                                                                   |
| MinElute gol extraction kit                 |                             |                                                                                                   |
| PNIA 2/ and histinulation kit               | Thorma Eichar Scientific    | Cat# 20000                                                                                        |
| RNA 3 end blotinylation kit                 | Tume Research               | Cat# 20100                                                                                        |
| Agilent DNA high constituity kit            | Agilant                     | Cat# 5047 4424                                                                                    |
|                                             | Aglient                     | Cal# 5007-4020                                                                                    |
| Experimental models: Cell lines             |                             | N/A                                                                                               |
| Human: A549-ACE2                            | Dr. Jianwei Wang laboratory | N/A                                                                                               |
| Deposited data                              | 1                           |                                                                                                   |
| Raw and analyzed data                       | Zhao et al.                 | GSA-Human: HRA005709                                                                              |
| Oligonucleotides                            |                             |                                                                                                   |
| PEI adapter oligo A                         | Cao et al. <sup>12</sup>    | /5Phos/GATCGGAAGAGCACACGTCT<br>(5Phos: 50 phosphorylation)                                        |
| PEI adapter oligo B                         | Cao et al. <sup>12</sup>    | ACACTCTTTCCCTACACGACGCTCTTCCGATCT                                                                 |
| P5 primer                                   | Cao et al. <sup>12</sup>    | AATGATACGGCGACCACCGAGATCT<br>ACACTCTTTCCCTACACGACGCTCTTCCGATCT                                    |
| P7 index primer                             | Cao et al. <sup>12</sup>    | CAAGCAGAAGACGGCATACGAGAT<br>NNNNNGTGACTGGAGTTCAGACGT<br>GTGCTCTTCCGATCT<br>(N: random nucleotide) |
| Software and algorithms                     |                             |                                                                                                   |
| RICpipe                                     | Cao et al. <sup>12</sup>    | https://github.com/caochch/RICpipe                                                                |
| Trimmomatic version 0.36                    | Bolger et al. <sup>13</sup> | RRID:SCR_011848; http://www.usadellab.org/<br>cms/index.php?page=trimmomatic                      |

<sup>(</sup>Continued on next page)

Protocol



| Continued                                        |                                 |                                                                                                                         |
|--------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| REAGENT or RESOURCE                              | SOURCE                          | IDENTIFIER                                                                                                              |
| cutadapt version 2.6                             | Martin <sup>14</sup>            | RRID: SCR_011841; http://code.google.com/p/cutadapt/                                                                    |
| BLASTN version 2.5.0                             | Altschul et al. <sup>15</sup>   | RRID: SCR_001598; https://github.com/JacobLondon/Blastn                                                                 |
| STAR aligner version 2.5.2b                      | Dobin et al. <sup>16</sup>      | RRID:SCR_004463;https://github.com/alexdobin/STAR                                                                       |
| Bwa aligner version 0.7.17                       | Li <sup>17</sup>                | RRID:SCR_010910;https://biobwa.sourceforge.net/                                                                         |
| Bowtie2 version 2.3.4.3                          | Langmead et al. <sup>18</sup>   | RRID: SCR_016368; https://github.com/BenLangmead/bowtie2                                                                |
| HISAT2 aligner version 2.1.0                     | Kim et al. <sup>19</sup>        | RRID: SCR_015530; http://daehwankimlab.github.io/hisat2/                                                                |
| BEDTools version 2.30.0                          | Quinlan and Hall <sup>20</sup>  | RRID:SCR_006646; https://bedtools.readthedocs.io/en/latest/                                                             |
| Piranha version 1.2.1                            | Andrew D. Smith                 | RRID:SCR_010903; http://smithlab.usc.edu/<br>plone/software/piranha                                                     |
| Circos version 0.65                              | Krzywinski et al. <sup>21</sup> | RRID: SCR_011798; http://circos.ca/                                                                                     |
| The script for data analysis                     | This paper                      | Zenodo: https://doi.org/10.5281/zenodo.10609902<br>Github: https://github.com/Zhaohailian/<br>SARS-CoV-2_STAR_protocols |
| Others                                           |                                 |                                                                                                                         |
| Filter unit (0.22 μm)                            | Merck                           | Cat# SLGV033RB                                                                                                          |
| Cell culture dishes (10 cm)                      | NEST                            | Cat# 704001                                                                                                             |
| 15 mL centrifuge tubes                           | NEST                            | Cat# 601002                                                                                                             |
| 50 mL centrifuge tubes                           | NEST                            | Cat# 602002                                                                                                             |
| 5 mL serological pipette                         | NEST                            | Cat# 326001                                                                                                             |
| 10 mL serological pipette                        | NEST                            | Cat# 327001                                                                                                             |
| Qubit assay tubes                                | Thermo Fisher Scientific        | Cat# Q32856                                                                                                             |
| Cell lifter                                      | Corning                         | Cat# 3008                                                                                                               |
| 1.5 mL LoBind microcentrifuge tubes              | Eppendorf                       | Cat# 022431021                                                                                                          |
| 0.2 mL PCR tubes                                 | Axygen                          | Cat# PCR-02-C                                                                                                           |
| 0.1–2 μL single-channel manual pipettes          | Rainin                          | Cat# 17014393                                                                                                           |
| 2–20 μL single-channel manual pipettes           | Rainin                          | Cat# 17014392                                                                                                           |
| 20–200 μL single-channel manual pipettes         | Rainin                          | Cat# 17014391                                                                                                           |
| 100–1,000 $\mu$ L single-channel manual pipettes | Rainin                          | Cat# 17014382                                                                                                           |
| NanoDrop 2000c spectrophotometer                 | Thermo Fisher Scientific        | Cat# ND-2000                                                                                                            |
| Qubit 3.0 fluorometer                            | Thermo Fisher Scientific        | Cat# Q33216                                                                                                             |
| Agarose gel electrophoresis (Mini-Sub Cell GT)   | Bio-Rad                         | Cat# 170-4486                                                                                                           |
| Gel tray                                         | Bio-Rad                         | Cat# 170-4435                                                                                                           |
| Safe Imager2.0 blue-light transilluminator       | Invitrogen                      | Cat# G6600                                                                                                              |
| Razor blade                                      | Personna                        | Cat# 84-0701                                                                                                            |
| Universal power supply                           | Bio-Rad                         | Cat# 1645070                                                                                                            |
| DynaMag-2 magnet for 1.5 mL tubes                | Thermo Fisher Scientific        | Cat# 12321D                                                                                                             |
| Vortex mixer                                     | Thermo Fisher Scientific        | Cat# 88880018                                                                                                           |
| Tube rotator                                     | Crystal                         | Cat# TR-02U                                                                                                             |
| CO2 incubators for cell culture                  | Thermo Fisher Scientific        | Cat# 3111                                                                                                               |

### MATERIALS AND EQUIPMENT

All the solutions and buffers used to construct RIC-seq libraries were prepared with DEPC-treated water.

- 1 × PBS. Dilute 100 mL of 10 × PBS with 900 mL of DEPC-treated water. The solution could be stored at  $4^{\circ}$ C for several months.
- 1% (w/v) formaldehyde solution. Mix 270  $\mu$ L of 37% (w/v) formaldehyde with 9.73 mL of 1 × PBS. The solution should be prepared freshly before use.

# △ CRITICAL: Formaldehyde is toxic. Wear the laboratory coat and gloves and handle it carefully.

• 2.5 M glycine. Add 3.7535 g of glycine to 15 mL of DEPC-treated water and adjust the volume to 20 mL. The solution should be sterilized with a 0.22- $\mu$ m filter and could be stored at 20°C–25°C for several months.





• 1 M Tris-HCl, pH 7.0, pH 7.4, pH 7.5, and pH 8.0. Add 6.057 g of Tris base to 40 mL of DEPC-treated water. Use HCl to adjust the pH values in a fume hood and supply the total volume to 50 mL with DEPC-treated water. The solution should be sterilized with a 0.22- $\mu$ m filter and could be stored at 4°C for several months.

▲ CRITICAL: HCl is highly corrosive and can easily cause severe burns to the skin. To prevent skin or eye contact, wear a laboratory coat, gloves, and goggles when preparing the solution.

- 5 M NaCl. Add 14.61 g of NaCl to 45 mL of DEPC-treated water and adjust the volume to 50 mL. The solution should be sterilized with a 0.22-μm filter and could be stored at 20°C–25°C for several months.
- 1 M CaCl<sub>2</sub>. Add 5.549 g of CaCl<sub>2</sub> to 45 mL of DEPC-treated water and adjust the volume to 50 mL. The solution should be sterilized with a 0.22- $\mu$ m filter and could be stored at 20°C–25°C for several months.
- 1 M MgCl<sub>2</sub>. Add 10.165 g of MgCl<sub>2</sub>· $6H_2O$  to 45 mL of DEPC-treated water and adjust the volume to 50 mL. The solution should be sterilized with a 0.22- $\mu$ m filter and could be stored at 20°C–25°C for several months.
- 5 M NaOH. Add 2 g of NaOH to 8 mL of DEPC-treated water and adjust the volume to 10 mL. The solution could be stored at 20°C–25°C for several months.

△ CRITICAL: NaOH is highly corrosive. To prevent skin or eye contact, wear a laboratory coat, gloves, and goggles when preparing the solution.

- 0.5 M EGTA, pH 7.4. Add 9.51 g of EGTA to 40 mL of DEPC-treated water. Use NaOH to adjust the pH values and supply the volume to 50 mL with DEPC-treated water. The solution should be sterilized with a 0.22-µm filter and could be stored at 4°C for several months.
- 0.5 M EDTA, pH 8.0. Add 9.306 g of Na<sub>2</sub>EDTA·2H<sub>2</sub>O to 40 mL of DEPC-treated water. Use NaOH to adjust the pH values and supply the volume to 50 mL with DEPC-treated water. The solution should be sterilized with a 0.22- $\mu$ m filter and could be stored at 4°C for several months.
- 10% (w/v) SDS. Add 5 g of SDS to 40 mL of DEPC-treated water and adjust the volume to 50 mL. The solution should be sterilized with a 0.22- $\mu$ m filter and could be stored at 20°C–25°C for several months.

△ CRITICAL: SDS can cause skin irritation and severe eye damage. Wear the laboratory coat, gloves, and goggles when preparing the solution.

| 10 × TBE buffer                        |                     |        |
|----------------------------------------|---------------------|--------|
| Reagent                                | Final concentration | Amount |
| Tris                                   | 890 mM              | 108 g  |
| Na <sub>2</sub> EDTA·2H <sub>2</sub> O | 20 mM               | 7.44 g |
| Boric acid                             | 890 mM              | 55 g   |
| Total                                  | N/A                 | N/A    |

**Note**: Dissolve the Tris base, Na<sub>2</sub>EDTA·2H<sub>2</sub>O, and Boric acid with 800 mL of DEPC-treated water and adjust the volume to 1 L. The solution could be stored at  $20^{\circ}$ C-25°C for up to 6 months.

| Vero and A549-ACE2 cell culture medium |                                         |        |  |
|----------------------------------------|-----------------------------------------|--------|--|
| Reagent                                | Final concentration                     | Amount |  |
| DMEM basic medium                      | N/A                                     | 445 mL |  |
| FBS                                    | 10%                                     | 50 mL  |  |
| Penicillin-streptomycin                | 100 U/mL                                | 5 mL   |  |
| Total                                  | N/A                                     | 500 mL |  |
| Note: The ready-prepared medium cou    | ld be stored at 4°C for several months. |        |  |

Protocol



| Permeabilization buffer |                     |          |
|-------------------------|---------------------|----------|
| Reagent                 | Final concentration | Amount   |
| 1 M Tris-HCl (pH 7.5)   | 10 mM               | 100 μL   |
| 5 M NaCl                | 10 mM               | 20 µL    |
| NP-40                   | 0.5% (v/v)          | 25 μL    |
| Triton X-100            | 0.3% (v/v)          | 15 μL    |
| Tween 20                | 0.1% (v/v)          | 5 μL     |
| DEPC-treated water      | N/A                 | 9.835 mL |
| Total                   | N/A                 | 10 mL    |

**Note:** The permeabilization buffer without protease inhibitor and RNase inhibitor should be sterilized with a 0.22- $\mu$ m filter and could be stored at 4°C for several months. Add protease inhibitor (final concentration of 1×) and SUPERase In RNase inhibitor (final concentration of 2 U/ $\mu$ L) before use.

| 1 × PNK buffer (0.2% NP-40) |                     |         |  |
|-----------------------------|---------------------|---------|--|
| Reagent                     | Final concentration | Amount  |  |
| 1 M Tris-HCl (pH 7.4)       | 50 mM               | 2.5 mL  |  |
| 1 M MgCl <sub>2</sub>       | 10 mM               | 500 μL  |  |
| NP-40                       | 0.2% (v/v)          | 100 μL  |  |
| DEPC-treated water          | N/A                 | 46.9 mL |  |
| Total                       | N/A                 | 50 mL   |  |

Note: 1  $\times$  PNK buffer (0.2% NP-40) should be sterilized with a 0.22-µm filter after NP-40 was completely dissolved. The solution could be stored at 4°C for several months.

| 1 × MN buffer                  |                     |         |  |
|--------------------------------|---------------------|---------|--|
| Reagent                        | Final concentration | Amount  |  |
| 1 M Tris-HCl (pH 8.0)          | 50 mM               | 500 μL  |  |
| 1 M CaCl <sub>2</sub>          | 5 mM                | 50 μL   |  |
| DEPC-treated water             | N/A                 | 9.45 mL |  |
| Total                          | N/A                 | 10 mL   |  |
| NUL 1 ANNALL (C. L. L.L. 1911) |                     | 1 1     |  |

Note: 1 × MN buffer should be sterilized with a 0.22-µm filter and could be stored at 4°C for several months.

#### 1 × PNK buffer (0.05% NP-40)

| Reagent               | Final concentration | Amount    |
|-----------------------|---------------------|-----------|
| 1 M Tris-HCl (pH 7.4) | 50 mM               | 2.5 mL    |
| 1 M MgCl <sub>2</sub> | 10 mM               | 500 μL    |
| NP-40                 | 0.05% (v/v)         | 25 μL     |
| DEPC-treated water    | N/A                 | 46.975 mL |
| Total                 | N/A                 | 50 mL     |
|                       |                     |           |

Note: 1  $\times$  PNK buffer (0.05% NP-40) should be sterilized with a 0.22-µm filter after NP-40 was completely dissolved. The solution could be stored at 4°C for several months.

| 1 × PNK+EGTA buffer   |                     |          |
|-----------------------|---------------------|----------|
| Reagent               | Final concentration | Amount   |
| 1 M Tris-HCl (pH 7.4) | 50 mM               | 2.5 mL   |
| 0.5 M EGTA            | 20 mM               | 2 mL     |
| NP-40                 | 0.5% (v/v)          | 250 μL   |
| DEPC-treated water    | N/A                 | 45.25 mL |
| Total                 | N/A                 | 50 mL    |

**Note:** 1 × PNK+EGTA buffer should be sterilized with a 0.22- $\mu$ m filter after NP-40 was completely dissolved. The solution could be stored at 4°C for several months.

| High-salt buffer |                     |        |
|------------------|---------------------|--------|
| Reagent          | Final concentration | Amount |
| 10 × PBS         | 5 ×                 | 25 mL  |
| NP-40            | 0.5% (v/v)          | 250 μL |

(Continued on next page)



### STAR Protocols Protocol

| Continued          |                     |          |
|--------------------|---------------------|----------|
| Reagent            | Final concentration | Amount   |
| DEPC-treated water | N/A                 | 24.75 mL |
| Total              | N/A                 | 50 mL    |

Note: High-salt buffer should be sterilized with a 0.22-µm filter after NP-40 was completely dissolved. The solution could be stored at 4°C for several months.

| Proteinase K buffer                    |                                                             |                               |
|----------------------------------------|-------------------------------------------------------------|-------------------------------|
| Reagent                                | Final concentration                                         | Amount                        |
| 1 M Tris-HCl (pH 7.5)                  | 10 mM                                                       | 100 μL                        |
| 0.5 M EDTA                             | 10 mM                                                       | 200 μL                        |
| 10% SDS (wt/vol)                       | 0.5% (w/v)                                                  | 500 μL                        |
| DEPC-treated water                     | N/A                                                         | 9.2 mL                        |
| Total                                  | N/A                                                         | 10 mL                         |
| Note: Proteinase K buffer should be st | erilized with a 0.22- $\mu$ m filter and could be stored at | 20°C–25°C for several months. |

| 5× hybridization buffer |                     |        |
|-------------------------|---------------------|--------|
| Reagent                 | Final concentration | Amount |
| 1 M Tris-HCl (pH 7.4)   | 500 mM              | 500 μL |
| 5 M NaCl                | 1 M                 | 200 μL |
| DEPC-treated water      | N/A                 | 300 μL |
| Total                   | N/A                 | 1 mL   |
|                         |                     |        |

*Note:*  $5 \times$  hybridization buffer could be stored at  $-20^{\circ}$ C for several years.

| Solution A         |                     |        |
|--------------------|---------------------|--------|
| Reagent            | Final concentration | Amount |
| 5 M NaCl           | 50 mM               | 100 μL |
| 5 M NaOH           | 100 mM              | 200 μL |
| DEPC-treated water | N/A                 | 9.7 mL |
| Total              | N/A                 | 10 mL  |

Note: Solution A should be sterilized with a 0.22-µm filter and could be stored at 4°C for several months.

| Solution B                            |                                                                  |             |
|---------------------------------------|------------------------------------------------------------------|-------------|
| Reagent                               | Final concentration                                              | Amount      |
| 5 M NaCl                              | 100 mM                                                           | 200 μL      |
| DEPC-treated water                    | N/A                                                              | 9.8 mL      |
| Total                                 | N/A                                                              | 10 mL       |
| Note: Solution B should be sterilized | with a 0.22- $\mu$ m filter and could be stored at 4°C for sever | ral months. |

| 2× Tween washing and binding buffer (2× TWB buffer) |                     |          |  |
|-----------------------------------------------------|---------------------|----------|--|
| Reagent                                             | Final concentration | Amount   |  |
| 1 M Tris-HCl (pH 7.5)                               | 10 mM               | 100 μL   |  |
| 0.5 M EDTA                                          | 1 mM                | 20 µL    |  |
| 5 M NaCl                                            | 2 M                 | 4 mL     |  |
| Tween 20                                            | 0.02% (v/v)         | 2 μL     |  |
| DEPC-treated water                                  | N/A                 | 5.878 mL |  |
| Total                                               | N/A                 | 10 mL    |  |

Note:  $2 \times TWB$  buffer should be sterilized with a 0.22-µm filter after Tween 20 was completely dissolved. The solution could be stored at 4°C for several months.

Protocol



| 1× TWB buffer                           |                                                                             |                         |
|-----------------------------------------|-----------------------------------------------------------------------------|-------------------------|
| Reagent                                 | Final concentration                                                         | Amount                  |
| 2× TWB buffer                           | 1x                                                                          | 5 mL                    |
| DEPC-treated water                      | N/A                                                                         | 5                       |
| Total                                   | N/A                                                                         | 10 mL                   |
| Nates 1 x TM/D buffer ab suite be start | tion of with a 0.22 way filter and a solar based of the standard of 480 fee | n a su canal na suste s |

Note: 1 × TWB buffer should be sterilized with a 0.22-µm filter and could be stored at 4°C for several months.

| PK buffer                              |                                                                 |                     |  |
|----------------------------------------|-----------------------------------------------------------------|---------------------|--|
| Reagent                                | Final concentration                                             | Amount              |  |
| 1 M Tris-HCl (pH 7.0)                  | 10 mM                                                           | 100 μL              |  |
| 5 M NaCl                               | 100 mM                                                          | 200 μL              |  |
| 0.5 M EDTA                             | 10 mM                                                           | 20 µL               |  |
| 10% SDS (wt/vol)                       | 0.5% (w/v)                                                      | 500 μL              |  |
| DEPC-treated water                     | N/A                                                             | 9.18 mL             |  |
| Total                                  | N/A                                                             | 10 mL               |  |
| Note: PK buffer should be sterilized w | ith a 0.22-um filter and could be stored at $20^{\circ}$ C=25°C | `for several months |  |

### **STEP-BY-STEP METHOD DETAILS**

### Permeabilization and micrococcal nuclease digestion

### © Timing: ~1.5 h

During this procedure, fixed cells are treated with permeabilization buffer to punch holes in cellular membranes for subsequent enzymatic reactions while maintaining the cells intact. Micrococcal nuclease treatment can remove free RNAs not protected by proteins (Figure 1).

- 1. Permeabilize cells by resuspending the cell pellet with 1 mL of permeabilization buffer.
- 2. Mix well by gently pipetting 10 times and incubating the mixture at 4°C for 15 min on the rotator at 20 rpm.
- 3. Collect the cell pellet by centrifuging at  $4^{\circ}$ C for 5 min at 1,200 g, and remove the supernatant.
- 4. Wash the cell pellet with ice-cold  $1 \times PNK$  buffer (0.2% (v/v) NP-40) three times.
  - a. Add 600  $\mu L$  of ice-cold 1  $\times$  PNK buffer (0.2% (v/v) NP-40) to resuspend cell pellet by gently pipetting 10 times.
  - b. Incubate the mixture at  $4^{\circ}$ C for 5 min on the rotator at 20 rpm.
  - c. Collect the cell pellet by centrifuging the tube at 4°C for 5 min at 1,200 g, then remove the supernatant.
  - d. Wash the cell pellet twice more by repeating steps a-c.
- 5. Prepare micrococcal nuclease (MNase) working solution.
  - a. Add 0.2  $\mu$ L of MNase and 199.8  $\mu$ L of 1× MN buffer to a 0.2-mL PCR tube, and mix well by gently pipetting 20 times (1:1000 dilution).
  - b. Add 45  $\mu$ L of diluted MNase and 405  $\mu$ L of 1× MN buffer to a 1.5 mL Eppendorf LoBind tube and mix well by gently pipetting 20 times (1:10,000 dilution).
- 6. Resuspend cell pellet from step 4 with MNase working solution from step 5b.
- 7. Mix well by gently pipetting 10 times, and incubate the sample at 37°C for 10 min in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 2 min.
- 8. Collect the cell pellet by centrifuging the tube at  $4^{\circ}$ C for 5 min at 1,200 g.
- Wash cell pellet twice with ice-cold 1× PNK + EGTA buffer, then twice with ice-cold 1× PNK buffer (0.2% (v/v) NP-40) as described in step 4.

### pCp-biotin labeling

© Timing: ~18 h



### STAR Protocols Protocol



**Figure 1. Diagram RIC-seq on profiling virus-to-host RNA-RNA interactions** Adapted from Zhao et al., Mol Cell, 2024.<sup>1</sup>

During this procedure, the 3' end of proximal RNA fragments were pCp-biotin labeled for enriching chimeric RNA subsequently (Figure 1).

- 10. Fast AP treatment:
  - a. Resuspend cell pellet with Fast AP reaction mixture containing 10  $\mu$ L of 10 × Fast AP buffer, 10  $\mu$ L of fast alkaline phosphatase, and 80  $\mu$ L of DEPC-treated water.
  - b. Mix well by gently pipetting 10 times, and incubate the sample at 37°C for 15 min in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 2 min.

*Note:* Please cut off the first 3 mm of the 200- $\mu$ L tip to prevent cell damage.

- c. Collect the cell pellet by centrifuging the tube at 4°C for 5 min at 1,200 g.
- d. Wash cell pellet twice with ice-cold 1× PNK + EGTA buffer, twice with ice-cold high-salt buffer, and then three times with ice-cold 1× PNK buffer (0.05% (v/v) NP-40) as described in step 4.
- 11. pCp-biotin labeling:
  - a. Resuspend cell pellet with labeling reaction mixture containing 10  $\mu$ L of 10 × T4 RNA ligase reaction buffer, 6  $\mu$ L of Ribolock RNase inhibitor, 4  $\mu$ L of Biotinylated cytidine (Bis) phosphate (pCp-biotin), 10  $\mu$ L of T4 RNA ligase (10 U/ $\mu$ L), and 20  $\mu$ L of DEPC-treated water.
  - b. Mix well by gently pipetting 10 times, then add 50  $\mu L$  of 30% (w/v) PEG 20000 to the sample with a cut-off 200- $\mu L$  tip.
  - c. Mix well by gently pipetting 10 times, and incubate the sample at 16°C for 12–16 h in a ThermoMixer with 15 s of intermittent mixing at 1,200 rpm every 3 min.

Note: PEG 20000 is sticky. Homogenize the reaction mixture gently, and do not vortex.

- 12. Add 2 μL of T4 RNA ligase and 4 μL of 10 mM ATP to the sample on the next day. Mix well by gently pipetting 10 times, and incubate the sample at 16°C for 3 h in a ThermoMixer with 15 s of intermittent mixing at 1,200 rpm every 3 min.
- 13. Collect the cell pellet by centrifuging the tube at  $4^{\circ}$ C for 5 min at 1,200 g.
- 14. Wash cell pellet three times with ice-cold 1× PNK buffer (0.2% (v/v) NP-40) as described in step 4.

### **Proximity ligation**

### <sup>©</sup> Timing: ∼19 h

During this procedure, proximal RNAs are ligated with T4 RNA ligase (Figure 1).

STAR Protocols Protocol



### 15. Fast AP treatment:

- a. Resuspend cell pellet with Fast AP reaction mixture containing 10  $\mu$ L of 10 × Fast AP buffer, 10  $\mu$ L of fast alkaline phosphatase, and 80  $\mu$ L of DEPC-treated water.
- b. Mix well by gently pipetting 10 times, and incubate the sample at 37°C for 15 min in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 2 min.

*Note:* To prevent cell damage, please cut off the first 3 mm of the 200- $\mu$ L tip.

- c. Collect the cell pellet by centrifuging the tube at  $4^{\circ}$ C for 5 min at 1,200 g.
- d. Wash cell pellet twice with ice-cold 1× PNK + EGTA buffer, twice with ice-cold high-salt buffer, and then three times with ice-cold 1× PNK buffer (0.2% (v/v) NP-40) as described in step 4.
- 16. T4 PNK treatment:
  - a. Resuspend cell pellet with T4 PNK reaction mixture containing 10  $\mu$ L of 10 × reaction buffer A, 10  $\mu$ L of T4 polynucleotide kinase, 15  $\mu$ L of 10 mM ATP, and 65  $\mu$ L of DEPC-treated water.
  - b. Mix well by gently pipetting 10 times, and incubate the sample at 37°C for 45 min in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 3 min.
  - c. Collect the cell pellet by centrifuging the tube at 4°C for 5 min at 1,200 g.
  - d. Wash cell pellet twice with ice-cold 1 × PNK + EGTA buffer and twice with ice-cold 1 × PNK buffer (0.05% (v/v) NP-40) as described in step 4.
- 17. Proximal RNA ligation:
  - a. Resuspend cell pellet with ligation mixture containing 20  $\mu$ L of 10× T4 RNA ligase reaction buffer, 8  $\mu$ L of Ribolock RNase inhibitor, 20  $\mu$ L of 1 mg/mL BSA, 10  $\mu$ L of T4 RNA ligase (10 U/  $\mu$ L), and 142  $\mu$ L of DEPC-treated water.
  - b. Mix well by gently pipetting 10 times, and incubate the sample at 16°C for 12–16 h in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 3 min.
- 18. Add 2 μL of T4 RNA ligase and 4 μL of 10 mM ATP to the sample on the next day. Mix well by gently pipetting 10 times, and incubate the sample at 16°C for 3 h in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 3 min.
- 19. Collect the cell pellet by centrifuging the tube at 4°C for 5 min at 1,200 g.
- 20. Wash cell pellet three times with ice-cold 1× PNK buffer (0.2% (v/v) NP-40) as described in step 4.

### **RNA** purification

 $\odot$  Timing:  $\sim$ 15 h

During this procedure, total RNAs are isolated and purified from protein-RNA complexes.

- 21. Proteinase K treatment:
  - a. Resuspend cell pellet with 200  $\mu$ L of proteinase K buffer, then add 50  $\mu$ L of proteinase K to the sample. Mix well by gently pipetting 10 times.
  - b. Incubate the sample at 37°C for 60 min and then 56°C for 15 min in a ThermoMixer with 15 s of intermittent mixing at 1,000 rpm every 3 min.
- 22. Add 750  $\mu L$  of Trizol LS to the sample. Mix well by gently pipetting 20 times and incubate at 20°C–25°C for 5 min.
- 23. Add 200  $\mu L$  of chloroform to the sample and shake vigorously on the vortex for 15 s.
- 24. Incubate the sample at 20°C–25°C for 3 min, then centrifuge the tube at 4°C for 10 min at 16,000 g.
- 25. Collect the aqueous phase carefully and transfer it to a new 1.5-mL Eppendorf tube. Precipitate total RNA by adding 500  $\mu$ L of isopropanol and 1  $\mu$ L of GlycoBlue to the tube.
- 26. Mix well by gently pipetting 20 times and placing the sample at  $-20^{\circ}$ C for 12–16 h.
- 27. Next day, centrifuge the tube at 4°C for 15 min at 16,000 g and remove the supernatant.





- 28. Wash the RNA pellet twice with 600  $\mu$ L of 75% (v/v) ethanol stored at -20°C. Centrifuge the tube at 4°C for 5 min at 16,000 g.
- 29. Remove the supernatant completely, and air-dry the RNA pellet for 2 min.

Note: Avoid over-drying the RNA.

30. Add 20  $\mu$ L of DEPC-treated water to the tube and dissolve the pellet completely by gently pipetting 50 times. Take 1  $\mu$ L of sample and measure the concentration using NanoDrop 2000c.

*Note:* The expected RNA yield in this step is  $50 \ \mu\text{g}-80 \ \mu\text{g}$ . The amount of total RNA depends on the host cell type, and different cells may yield various amounts of total RNA.

**II** Pause point: The total RNA can be stored at  $-80^{\circ}$ C for several weeks.

### **DNase digestion**

 $\odot$  Timing:  $\sim$ 13 h

RNA-DNA ligation products produced by T4 RNA ligase are removed from total RNA with RQ1 DNase treatment during this procedure.

- 31. RQ1 DNase treatment:
  - a. Take 20  $\mu$ g of total RNA to a new 1.5-mL Eppendorf tube, and add 10  $\mu$ L of 10 × RQ1 DNase buffer, 3  $\mu$ L of Ribolock RNase inhibitor, 5  $\mu$ L of RQ1 DNase to the tube. Adjust the total volume to 100  $\mu$ L with DEPC-treated water.
  - b. Incubate the sample at 37°C for 20 min in a ThermoMixer C.
- 32. Add 100  $\mu$ L of DEPC-treated water and 200  $\mu$ L of acid phenol: chloroform to the sample sequentially. Mix well by shaking.
- 33. Centrifuge the tube at  $4^{\circ}$ C for 10 min at 16,000 g.
- 34. Collect the aqueous phase carefully and transfer it to a new 1.5-mL Eppendorf tube. Precipitate RNA by sequentially adding 20  $\mu$ L of 3 M sodium acetate, 1  $\mu$ L of GlycoBlue, and 500  $\mu$ L of 100% (v/v) ethanol to the tube.
- 35. Mix well by gently pipetting 20 times and placing the sample at  $-20^{\circ}$ C for 12–16 h.
- 36. Next day, centrifuge the tube at  $4^{\circ}$ C for 20 min at 16,000 g and remove the supernatant.
- 37. Wash the RNA pellet twice with 600  $\mu$ L of 75% (v/v) ethanol stored at -20°C. Centrifuge the tube at 4°C for 5 min at 16,000 g.
- 38. Remove the supernatant completely, and air-dry the RNA pellet for 2 min.

Note: Avoid over-drying the RNA.

39. Add 6  $\mu L$  of DEPC-treated water to the tube and dissolve the pellet completely by gently pipetting 50 times.

**II** Pause point: The DNase-treated RNA can be stored at -80°C for several weeks.

### **rRNA** depletion

© Timing: ~2 h

This procedure removes rRNAs in total RNAs using the published RNase H-based rRNA depletion method.<sup>22</sup> We synthesized 195 DNA probes with 50 nt-length that were reverse complementary to each rRNA and mixed them with equal molar masses.

Protocol



- 40. Transfer the RNA sample from step 39 to a new 0.2-mL PCR tube. Add 10  $\mu$ L of rRNA probes (2  $\mu$ g/ $\mu$ L) mixture and 4  $\mu$ L of 5× hybridization buffer to the tube. Mix well by gently pipetting 20 times.
- 41. Incubate the sample for 2 min at 95°C in a thermal cycler, then gradually slow down to 22°C at -0.1°C/s, hold at 22°C for 5 min, and immediately place the tube on ice.
- 42. Add 10  $\mu$ L of RNase H digestion mixture containing 3  $\mu$ L of 10× RNase H buffer, 2  $\mu$ L of DEPC-treated water, and 5  $\mu$ L of RNase H to the tube.
- 43. Mix well by gently pipetting 20 times, and incubate the sample for 30 min at 37°C in the thermal cycler.
- 44. Add 10  $\mu$ L of Turbo DNase digestion mixture containing 4  $\mu$ L of 10 × TURBO DNase buffer, 1  $\mu$ L of DEPC-treated water, and 5  $\mu$ L of TURBO DNase to the tube.
- 45. Mix well by gently pipetting 20 times, and incubate the sample for 30 min at 37°C in the thermal cycler.
- 46. Purify the rRNA-depletion RNA using an RNA Clean & Concentrator-5 kit following the manufacturer's instructions. Finally, RNA was eluted with 18.5 μL of DEPC-treated water, and we could get 17 μL product. Take 1 μL of RNA and quantify it using a Qubit RNA HS assay kit and Qubit fluorometer following the manufacturer's instructions.

*Note:* The expected RNA yield in this step is 2  $\mu$ g–4  $\mu$ g. See troubleshooting, problem 2.

**II** Pause point: The rRNA-depletion RNA can be stored at -80°C for several weeks.

### pCp-biotin selection

 $\odot$  Timing: ~16 h

Biotin-labeled RNAs are selected with Dynabeads MyOne Streptavidin C1 beads during this procedure (Figure 1).

*Note:* To save time, Dynabeads MyOne Streptavidin C1 beads could be prepared during rRNA removal.

- 47. Blocked C1 beads preparation:
  - a. Homogenize the C1 beads in the vial by vortexing for 30 s at least. Transfer the required volume (20  $\mu$ L for each sample) of C1 beads to a 1.5-mL Eppendorf tube.
  - b. Place the tube on the magnetic rack for 1 min and remove the supernatant.
  - c. Add an equal volume of solution A to the tube, resuspend the C1 beads by gently pipetting 10 times, and incubate at 20°C-25°C for 2 min.
  - d. Place the tube on the magnetic rack for 1 min and remove the supernatant.
  - e. Wash C1 beads once more by repeating steps c and d.
  - f. Add an equal volume of solution B to the tube, and resuspend the C1 beads by gently pipetting 10 times.
  - g. Place the tube on the magnetic rack for 1 min and remove the supernatant. Add blocking mixture containing 100  $\mu$ L of 2× TWB buffer, 32  $\mu$ L of yeast RNA (~50  $\mu$ g), and 68  $\mu$ L of DEPC water to the tube.
  - h. Mix well by gently pipetting 20 times and incubate the sample on a rotator at 20°C–25°C for 60 min at the speed of 20 rpm.
  - i. Place the tube on the magnetic rack for 1 min and remove the supernatant. Resuspend the beads with 600  $\mu$ L of ice-cold 1× TWB buffer and mix well by gently pipetting 10 times.
  - j. Wash C1 beads twice more by repeating step i.
  - k. Place the tube on the magnetic rack for 1 min and remove the supernatant.

### 48. RNA fragmentation:

a. Transfer the RNA sample from step 46 to a 0.2-mL PCR tube, add 4  $\mu$ L of 5× first-strand buffer to the tube, and mix well by gently pipetting 20 times.





- b. Incubate the sample for 5 min at  $94^\circ C$  in the thermal cycler, and immediately place the tube on ice.
- 49. pCp-biotin selection:
  - a. Add 50  $\mu L$  of 2× TWB buffer, 20  $\mu L$  of fragmented RNA from step 48, and 30  $\mu L$  of DEPC-treated water to the blocked beads from step 47 and mix well by gently pipetting 20 times.
  - b. Incubate the sample on a rotator at  $20^\circ\text{C}\text{--}25^\circ\text{C}$  for 30 min at 20 rpm.
  - c. Wash C1 beads four times with 600  $\mu L$  of ice-cold 1  $\times$  TWB buffer by gently pipetting up and down.
  - d. Place the tube on the magnetic rack for 1 min and remove the supernatant.
- 50. RNA elution:
  - a. Resuspend the beads with 100  $\mu L$  of PK buffer and mix well by gently pipetting 10 times.
  - b. Place the tube in a ThermoMixer C and incubate at 95°C for 10 min with continuous mixing at 1,000 rpm.
  - c. Place the tube on the magnetic rack for 1 min and transfer the supernatant to a new 1.5-mL Eppendorf tube.
  - d. Repeat steps a and b once more to elute RNA. At last, rinse C1 beads with 100  $\mu L$  of PK buffer.
  - e. Place the tube on the magnetic rack for 1 min and transfer the supernatant to the 1.5-mL Eppendorf tube. The total eluted volume is 300  $\mu L$ .
- 51. Purify RNA with acid phenol: chloroform:
  - a. Mix the eluted product with 300  $\mu$ L of acid phenol: chloroform.
  - b. Mix well by shaking and centrifuge the tube at 4°C for 10 min at 16,000 g.
  - c. Collect the aqueous phase carefully and transfer it to a new 1.5-mL Eppendorf tube. Precipitate RNA by adding 18  $\mu$ L of 5 M NaCl, 1  $\mu$ L of GlycoBlue, and 900  $\mu$ L of 100% (v/v) ethanol to the tube.
  - d. Mix well by gently pipetting 20 times and placing the sample at  $-20^\circ\text{C}$  for 12–16 h.
- 52. Next day, centrifuge the tube at  $4^{\circ}$ C for 20 min at 16,000 g and remove the supernatant.
- 53. Wash the RNA pellet twice with 600  $\mu$ L of 75% (v/v) ethanol stored at -20°C. Centrifuge the tube at 4°C for 5 min at 16,000 g.
- 54. Remove the supernatant completely, and air-dry the RNA pellet for 2 min.

Note: Avoid over-drying the RNA.

55. Add 10  $\mu L$  of DEPC-treated water to the tube and dissolve the pellet completely by gently pipetting 50 times.

**II** Pause point: The selected RNA can be stored at -80°C for several weeks.

### Strand-specific library construction

@ Timing:  ${\sim}9~h$ 

This procedure converts RNAs selected by streptavidin beads into a strand-specific library for paired-end deep sequencing.

### 56. First-strand cDNA synthesis:

- a. Transfer the RNA from step 55 to a 0.2-mL PCR tube, and add 0.5  $\mu L$  of 100 ng/ $\mu L$  N6 primer to the sample.
- b. Incubate the sample for 5 min at 65°C in the thermal cycler, and immediately place the tube on ice for at least 2 min.
- c. Add the first-strand cDNA synthesis reaction mixture containing 3  $\mu$ L of 5 × first-strand buffer, 0.5  $\mu$ L of Ribolock RNase inhibitor, 0.5  $\mu$ L of 0.1 M DTT, 1  $\mu$ L of 10 mM dNTPs, and 0.5  $\mu$ L of SuperScript II reverse transcriptase to the tube.





- d. Mix well by gently pipetting 20 times. Incubate the sample at 25°C for 10 min, 42°C for 40 min, 70°C for 15 min, and hold at 12°C in the thermal cycler.
- 57. Second-strand DNA synthesis:
  - a. Transfer the reverse transcription product to a new 1.5-mL Eppendorf tube. Add the second-strand DNA synthesis mixture containing 10 μL of 5× second-strand buffer, 0.2 μL of RNase H, 0.8 μL of 25 mM dNTPs (dUTP), 20.5 μL of Ultra-pure water, and 2.5 μL of Escherichia coli DNA polymerase I to the tube.

*Note:* Prepare 25 mM dNTPs (dUTP) by mixing 10  $\mu$ L of 100 mM dATP, 10  $\mu$ L of 100 mM CTP, 10  $\mu$ L of 100 mM dGTP, 2  $\mu$ L of 100 mM dTTP, and 8  $\mu$ L of 100 mM dUTP. The final concentrations of dATP, dCTP, dGTP, dTTP, and dUTP are 25 mM, 25 mM, 25 mM, 5 mM, and 20 mM respectively.

- b. Mix well by gently pipetting 20 times, and incubate the sample at 16°C for 2 h in the ThermoMixer C with 15 s of intermittent mixing at 300 rpm every 3 min.
- 58. Purify DNA product with AMPure XP beads:
  - a. Equilibrate the AMPure XP beads for 30 min at 20°C–25°C and homogenize the XP beads by vortexing for 30 s at least.

Note: AMPure XP beads could be equilibrated at 20°C–25°C during second-strand DNA synthesis to save time.

- b. Transfer 90  $\mu L$  of XP beads to the sample from step 57, and mix well by gently pipetting 10 times.
- c. Incubate the sample for 5 min at 20°C–25°C, then place the Eppendorf tube on the magnetic rack until the solution becomes clear.
- d. Remove the supernatant. Add 200  $\mu$ L of freshly prepared 80% (v/v) ethanol to the Eppendorf tube. Gently spin the tube for two revolutions on the magnetic rack.
- e. Repeat step d to wash the XP beads once more.
- f. Discard the ethanol completely. Leave the open Eppendorf tube on a magnetic stand and air-dry for 1–3 min.
- g. Add 44  $\mu$ L of Qiagen elution buffer and resuspend XP beads by gently pipetting 10 times.
- h. Incubate the sample for 5 min at 20°C–25°C. Place the Eppendorf tube on the magnetic rack until the solution becomes clear.
- i. Transfer the supernatant (43  $\mu$ L) to a new 1.5-mL Eppendorf tube carefully.
- 59. Take 1 μL of DNA product and quantify it using a Qubit dsDNA HS assay kit and Qubit fluorometer following the manufacturer's instructions.

*Note:* The expected DNA yield in this step is 10 ng-25 ng.

II Pause point: The purified DNA product can be stored at  $-20^{\circ}$ C for several weeks.

- 60. End repair:
  - a. Add end repair reaction mixture containing 5 μL of 10× T4 polynucleotide kinase buffer, 0.4 μL of 25 mM dNTPs, 1.2 μL of T4 DNA polymerase, 0.2 μL of Klenow fragment, and 1.2 μL of T4 polynucleotide kinase to the sample from step 58.
  - b. Mix well by gently pipetting 20 times, and incubate the sample at 20°C for 30 min in the ThermoMixer C.
- 61. Purify the end-repaired product with 90 μL of AMPure XP beads and elute DNA with 20.5 μL of Qiagen elution buffer following step 58.
- 62. Transfer the supernatant (19.7  $\mu L)$  to a new 1.5-mL Eppendorf tube carefully.





### 63. dA-tailing:

- a. Add dA-tailing reaction mixture containing 2.3  $\mu$ L of 10× Blue buffer, 0.5  $\mu$ L of 5 mM dATP, and 0.5  $\mu$ L of Klenow (3'–5' exo-) to the sample.
- b. Mix well by gently pipetting 20 times, and incubate the sample at 37°C for 30 min in the ThermoMixer C.
- 64. Adapter ligation:
  - a. Add adapter ligation reaction mixture containing 1.4  $\mu$ L of 2× rapid ligation buffer, 0.1  $\mu$ L of 10 mM ATP, 1  $\mu$ L of 2  $\mu$ M Adapter, and 1  $\mu$ L of T4 DNA ligase (Rapid) to the sample from step 63.

△ CRITICAL: T4 DNA ligase (Rapid) should last be added to the sample to prevent adapter self-ligation.

b. Mix well by gently pipetting 20 times, and incubate the sample at 20°C for 15 min in the ThermoMixer C.

△ CRITICAL: The reaction time of this step should be strictly limited to prevent excessive adapters from self-ligating.

- 65. Purify the DNA product with 47.7 μL of AMPure XP beads and elute DNA with 25.5 μL of Qiagen elution buffer following step 58.
- 66. Transfer the supernatant (25  $\mu$ L) to a new 1.5-mL Eppendorf tube carefully.
- 67. Purify the DNA product once more with 45 μL of AMPure XP beads and elute DNA with 17 μL of Qiagen elution buffer following step 58.
- 68. Transfer the supernatant (16.2  $\mu$ L) to a new 1.5-mL Eppendorf tube carefully.

**II** Pause point: The purified DNA product can be stored at -20°C for several weeks.

- 69. Test the optical PCR cycle number to avoid overamplification:
  - a. Prepare the following PCR reaction mixture in 0.2-mL tubes, and mix well by gently pipetting 20 times.

| Reagent                         | Final concentration | Amount |
|---------------------------------|---------------------|--------|
| P5 primer (10 μM)               | 0.4 μM              | 1 μL   |
| P7 index primer (10 μM)         | 0.4 µM              | 1 μL   |
| 5× SuperFi buffer               | 1×                  | 5 μL   |
| 25 mM dNTPs                     | 0.4 mM              | 0.4 μL |
| Platinum SuperFi DNA Polymerase | 0.008 U/µL          | 0.1 μL |
| USER enzyme                     | 0.02 U/µL           | 0.5 μL |
| DNA template                    | N/A                 | 1 μL   |
| ddH <sub>2</sub> O              | N/A                 | 16 μL  |
| Total                           | N/A                 | 25 μL  |

b. Perform the PCR amplification using the following conditions.

| Steps                | Temperature | Time   | Cycles    |
|----------------------|-------------|--------|-----------|
| Pretreatment         | 37°C        | 15 min | 1         |
| Initial denaturation | 98°C        | 30 s   | 1         |
| Denaturation         | 98°C        | 10 s   | 10 and 14 |
| Annealing            | 62°C        | 30 s   |           |
| Extension            | 72°C        | 30 s   |           |

(Continued on next page)

Protocol



| Continued       |             |       |        |
|-----------------|-------------|-------|--------|
| Steps           | Temperature | Time  | Cycles |
| Final extension | 72°C        | 5 min | 1      |
| Hold            | 12°C        | ∞     |        |

**Note:** Pretreatment at 37°C for 15 min enables the USER enzyme to degrade the dUTP-containing strand before the PCR reaction, allowing us to obtain strand-specific libraries.

- c. Add 5  $\mu$ L of 6 × DNA loading buffer to the sample and mix well by gently pipetting 10 times. Detect the signal strength of the PCR product by performing 1.5% (w/v) agarose gel electrophoresis for  $\sim$ 1 h at 120 V in 1 × TBE buffer.
- d. Visualize the DNA band in the gel using a blue-light transilluminator. See troubleshooting for problems 3 and 4.

70. Final PCR with optimal PCR cycles:

Note: The intensity of the DNA signal determines the optimal number of PCR cycles in step 69.

 a. Prepare the following PCR reaction mixture in 0.2-mL tubes, and mix well by gently pipetting 20 times.

| Reagent                                                                                                             | Final concentration | Amount  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------|---------|--|
| P5 primer (10 μM)                                                                                                   | 0.4 µM              | 1 μL    |  |
| P7 index primer (10 μM)                                                                                             | 0.4 µM              | 1 μL    |  |
| 5 × SuperFi buffer                                                                                                  | 1 ×                 | 5 μL    |  |
| 25 mM dNTPs                                                                                                         | 0.4 mM              | 0.4 μL  |  |
| Platinum SuperFi DNA Polymerase                                                                                     | 0.032 U/µL          | 0.4 μL  |  |
| USER enzyme                                                                                                         | 0.12 U/µL           | 3 μL    |  |
| DNA template                                                                                                        | N/A                 | 14.2 μL |  |
| Total                                                                                                               | N/A                 | 25 μL   |  |
| Note: Different samples require different index primers for pooling sequencing and demultiplexing sequencing reads. |                     |         |  |

### b. Perform the PCR amplification using the following conditions.

| Steps                | Temperature | Time   | Cycles |
|----------------------|-------------|--------|--------|
| Pretreatment         | 37°C        | 15 min | 1      |
| Initial denaturation | 98°C        | 30 s   | 1      |
| Denaturation         | 98°C        | 10 s   | 11     |
| Annealing            | 62°C        | 30 s   |        |
| Extension            | 72°C        | 30 s   |        |
| Final extension      | 72°C        | 5 min  | 1      |
| Hold                 | 12°C        | ∞      |        |

*Note:* We typically use 11 cycles for final libraries PCR. Users may adjust the PCR cycles based on the signal intensity of the product in step 69. Do not use PCR cycle numbers that are too high to avoid high PCR duplicates and low library complexity.

- c. Add 5  $\mu$ L of 6 × DNA loading buffer to the sample and mix well by gently pipetting 10 times. Run the electrophoresis on 1.5% (w/v) agarose gel for ~1 h at 120 V in 1 × TBE buffer.
- d. Visualize the DNA band in the gel using a blue-light transilluminator.

*Note:* UV transilluminator should be forbidden as it may damage DNA.

e. Cut the smeared DNA band from 200 bp to 450 bp, and purify the DNA product with a Qiagen MinElute gel extraction kit following the manufacturer's instructions.





f. Elute the purified DNA in 15 μL of elution buffer. Take 1 μL of product and quantify it using a Qubit dsDNA HS assay kit and Qubit fluorometer following the manufacturer's instruction.

*Note:* The expected DNA yield in this step is 10 ng-100 ng.

**II** Pause point: The libraries can be stored at  $-20^{\circ}$ C for several months.

71. In vitro random ligation library construction.

*Note:* To identify high-confidence RNA-RNA interactions, we construct *in vitro* random ligation libraries to remove the potential random RNA-RNA contact background.

- a. Prepare equal numbers of infected cells for *in vitro* random ligation library construction.
- b. Perform the 'Permeabilization and micrococcal nuclease digestion' and 'pCp-biotin labeling' following steps 1–14 in the main procedure.
- c. Perform the 'Fast AP treatment' and 'T4 PNK treatment' following steps 15 and 16 in the main procedure.
- d. Perform the 'Proteinase K treatment' following step 21 in the main procedure.
- e. Purify total RNA following steps 22–29 in the main procedure.
- f. Add 20  $\mu L$  of DEPC-treated water to the tube and dissolve the pellet completely by gently pipetting 50 times.
- g. In vitro random ligation:
  - i. Add the ligation mixture containing 10  $\mu$ L of T4 RNA ligase (10 U/ $\mu$ L), 200  $\mu$ L of 10 × T4 RNA ligase reaction buffer, 200  $\mu$ L of 1 mg/mL BSA, 8  $\mu$ L of RNAsin, and 1,562  $\mu$ L of DEPC-treated water to the RNA sample.
  - ii. Mix well by gently pipetting 20 times. Place the tube on a rotator and incubate the sample at 16°C for 16 h at 20 rpm.
- h. Purify RNA with acid phenol: chloroform:
  - i. Aliquot the sample into four 1.5-mL Eppendorf tubes, and add 500  $\mu L$  of acid phenol: chloroform to each tube.
  - ii. Mix well by shaking, then centrifuge the tube at  $4^{\circ}$ C for 10 min at 16,000 g.
  - iii. Collect the aqueous phase carefully and transfer it to a new 1.5-mL Eppendorf tube. Precipitate total RNA by adding 1 μL of GlycoBlue and 500 μL of isopropanol to the tube.
     iv. Mix well by gently pipetting 20 times and placing the sample at -20°C for 12-16 h.
- i. Next day, centrifuge the tube at 4°C for 20 min at 16,000 g and remove the supernatant.
- j. Wash the RNA pellet twice with 600  $\mu$ L of 75% (v/v) ethanol stored at -20°C. Centrifuge the tube at 4°C for 5 min at 16,000 g.
- k. Remove the supernatant completely, and air-dry the RNA pellet for 2 min.
- l. Add 5  $\mu$ L of DEPC-treated water to the tube, dissolve the pellet completely by gently pipetting 50 times, then combine the RNA samples. Take 1  $\mu$ L of sample and measure the concentration using NanoDrop 2000c.

III Pause point: The RNA sample can be stored at  $-80^{\circ}$ C for several weeks.

 m. Take 20 μg of RNA for 'Genomic DNA digestion', 'rRNA depletion', 'pCp-biotin selection', and 'Strand-specific library construction' following steps 31–70 in the main procedure.

### Deep sequencing and data processing

### $\odot$ Timing: $\sim$ 10 days

RIC-seq libraries are sequenced with the Illumina NovaSeq 6000 platform during this procedure. *In situ* and *in vitro* random ligation libraries should yield comparable levels of raw reads.

Protocol



- 72. The RIC-seq libraries typically require  $\sim$ 100 million raw reads per sample.
- 73. Process the RIC-seq paired-end raw reads in FASTQ files using the RICpipe program (https://github.com/caochch/RICpipe)<sup>12</sup> to obtain intra- and inter-molecular chimeric reads in sam files. See troubleshooting for problems 5 and 6.
  - a. Trim the adapters using the Trimmomatic program<sup>13</sup> and low-complexity fragments for each end of reads using the cutadapt program.<sup>14</sup>
  - b. Align the clean reads to the rRNA using the STAR program<sup>16</sup> and collect the unmapped reads.
  - c. Assemble the virus and host reference genome into a reference genome and align the unmapped to the reference genome using STAR and BWA<sup>17</sup> programs.
  - d. Classify the chimeric reads as intra-molecular if both arms are mapped to the same host or virus reference transcript, while those with two arms mapped to different transcripts are classified as inter-molecular.

**Note:** Chimeric reads whose left and right arms separately map to the virus and the host reference genome are also classified as inter-molecular, representing virus-to-host RNA-RNA interactions.

e. Combine the chimeric reads from multiple replicates for downstream analysis if they are highly correlated.

**Note:** The percentage of chimeric reads is a parameter to assess the library quality. In our hands, the successful RIC-seq library in infected A549-ACE2 cells contains a chimeric reads ratio of approximately 17%, with more than 20% of the chimeric reads representing virus-to-host interactions. The high percentage of virus-to-host chimeric reads increases the detection power for virus RNA targets. Moreover, the Pearson correlation coefficient calculated by the count of chimeric reads or interaction frequency greater than 0.9 indicates high reproducibility across the replicates.

- 74. Remove the false-positive virus-to-host RNA-RNA interactions:
  - a. Save the inter-molecular chimeric reads as a SAM format file named "intergene.sam".
  - b. Extract the sequences of the pairwise arms for the virus-to-host chimeric reads and save them as two FASTA format files named "part\_A.fa" and "part\_B.fa".
  - c. Discard the virus-to-host chimeric reads with both arms aligned to the virus genome by BLASTN<sup>15</sup> with an identity higher than 80%.
  - d. Save the remaining inter-molecular chimeric reads as a SAM format file named "intergene.rm\_FalsePosi.sam" in the output directory.

```
>perlextract_seq.plintergene.sam
```

```
> blastn -query part_A.fa -task megablast -db virus.fa -out part_A.out -evalue 1 -word_size 5
-outfmt 7 -num_threads 16
> blastn -query part_B.fa -task megablast -db virus.fa -out part_B.out -evalue 1 -word_size 5
-outfmt 7 -num_threads 16
> perlfilter_according_to_BLASTN.pl part_A.out part_B.out intergene.sam 0.8 > intergene.rm_
FalsePosi.sam
```

- 75. Collect the high-confidence chimeric reads with both arms uniquely mapped to the genome.
  - a. Extract the sequences of the pairwise arms for the chimeric reads and save them as a FASTQ format file named "rm\_FalsePosi.fq".





- b. Align the chimeric reads to the reference genome using HISAT2,<sup>19</sup> Bowtie2,<sup>18</sup> and STAR programs.
- c. Retain reads with alignment quality greater than 20 using at least one of the three mapping softwares for two aligned arms, and save them as a SAM format file named "rm\_FalsePosi.-bothUniq.sam" in the output directory.

> perl step1.prepare\_reads\_fragment.pl rm\_FalsePosi.sam

> hisat2 -p 12 -k 2 -x human\_virus.pan.fa -U rm\_FalsePosi.fq -S rm\_FalsePosi.reMapHisat2.sam
--un rm\_FalsePosi.unMapHisat2.fq 2> rm\_FalsePosi.hisat2.log

> bowtie2 -un rm\_FalsePosi.unMapBowtie.fq --sensitive -N 1 -L 17 --end-to-end -p 12 -x human\_virus.pan.fa -U rm\_FalsePosi.fq -S rm\_FalsePosi.reMapBowtie.sam 2> rm\_FalsePosi.reMapBowtie2.log

> STAR --runMode alignReads --genomeDir Pangenome --readFilesIn rm\_FalsePosi.fq --outFileName Prefix rm\_FalsePosi.toGenome\_ --outReadsUnmapped Fastx --outFilterMatchNminOverLread 0.9 --outFilterScoreMinOverLread 0.9 --outSAMattributes All --runThreadN 16

> perl step2.separatBothUniq\_and\_Other.requireLocitoo.pl rm\_FalsePosi.fq intergene.rm\_ FalsePosi.sam rm\_FalsePosi.reMapHisat2.sam rm\_FalsePosi.reMapBowtie.sam rm\_FalsePosi. toGenome\_Aligned.out.sam

- 76. Remove the background inter-molecular chimeric reads from the *in vitro* random ligation library.
  - a. Extract the coordinates of the pairwise arms of the inter-molecular chimeric reads obtained from both *in situ* and *in vitro* random ligation libraries and save them as two BEDPE format files named "intergene.rm\_FalsePosi.bothUniq.bedpair" and "random.intergene.rm\_FalsePosi.bothUniq.bedpair".
  - b. Remove the inter-molecular RNA-RNA interaction fragments from the *in situ* ligation library that overlapped with the *in vitro* random ligation library and save them as a SAM format file named "intergene.rm\_FalsePosi.bothUniq.rm\_Random.sam" in the output directory.

> perl from\_sam\_to\_pair\_reads\_bed.pairs.pl intergene.rm\_FalsePosi.bothUniq.sam

> bedtools pairtopair -a intergene.rm\_FalsePosi.bothUniq.bedpair -b random.intergene.rm\_ FalsePosi.bothUniq.bedpair -type notboth -f 0.05 > intergene.rm\_FalsePosi.bothUniq.rm\_ Random.bedpair

> python obtain\_sam\_file.py intergene.rm\_FalsePosi.bothUniq.rm\_Random.bed intergene.rm\_ FalsePosi.bothUniq.sam > intergene.rm\_FalsePosi.bothUniq.rm\_Random.sam

**Note:** In our hands, only 7% of the inter-molecular chimeric reads in the *in situ* libraries that overlapped with the *in vitro* random ligation libraries were discarded. The low overlapping percentage indicates less background resulting from randomly ligating.

- 77. Identify high-confidence virus RNA targets:
  - a. Adopt the Monte Carlo simulation strategy<sup>11</sup> to detect significant inter-molecular RNA-RNA interactions by comparing observed with the simulated random interactions.
  - b. Consider the virus-to-host RNA-RNA interactions supported by at least two chimeric reads with a *P*-value lower than 0.05 as the high-confidence virus-to-host interactions.

> perl MonteCarlo\_simulation\_use\_fragment.pl whole\_gene\_region.bed 100000 0.05 20 intergene\_simulation intergene.rm\_FalsePosi.bothUniq.rm\_Random.sam > run.sh

> bash run.sh

STAR Protocols Protocol



> awk -F '\t' 'BEGIN{OFS="\t"}{if((\$1=="NC\_045512.2")&&(\$13>=2)) print \$7,\$8,\$9,\$10,\$11, \$12;else if((\$7=="NC\_045512.2")&&(\$13>=2)) print \$1,\$2,\$3,\$4,\$5,\$6 }' intergene\_simulation. significant.interMolecular.interaction.list > virus\_target.txt

*Note:* We set a minimum cutoff for two chimeric reads to support the inter-molecular RNA-RNA interactions. The thresholds for the count of chimeric reads and *P*-value can be adjusted by the users according to their requirements.

78. Identify virus binding peaks in the host genome:

- a. Extract the 50-nt fragments around the juncture of virus-to-host chimeric reads in the host transcripts from step 76 and save them as a BED format file named "fragment50nt.bed".
- b. Retain the fragments located in the mature RNAs using the Bedtools program.<sup>20</sup>
- c. Identify the peaks using the Piranha software and save them as a BED format file named "peaks.bed" in the output directory.

| <pre>&gt; perl find_targets_related_to_a_region_plus.pl intergene.rm_FalsePosi.bothUniq.rm_Ran-<br/>dom.sam NC_045512.2 0 30000 &gt; virus.TargetAndSource.sam</pre> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| > perl extract_junction.pl virus.TargetAndSource.sam                                                                                                                 |
| > python junction_fragment_region.py out1.arms.info 50 > fragment50nt.bed                                                                                            |
| <pre>&gt; sort -k1,1 -k2,2n fragment50nt.bed  awk -F '\t' 'BEGIN{OFS="\t"{if(\$2&gt;=0) print \$0 }' &gt; fragment50nt.sort.bed</pre>                                |
| <pre>&gt; grep -E 'PC5UTR PCCDS PC3UTR' chlSab2.gene_element.bed  bedtools intersect -a frag-<br/>ment50nt.sort.bed -bs -u &gt; fragment50nt.exon.bed</pre>          |
| > Piranha -s -o peaks.bed -p 0.05 -b 20 -a 0.96 fragment50nt.exon.bed                                                                                                |
|                                                                                                                                                                      |

79. Capture U3 snoRNA secondary structure:

- a. Assemble the U3 snoRNA sequence (GenBank: NR\_006880.1) into a mini-genome and map sequencing reads to the mini-genome using the RICpipe program.<sup>12</sup>
- b. Collect the chimeric reads and save them as a SAM format file named "U3\_chimeric\_reads.sam".
- c. Extract the junctures of chimeric reads to construct the RNA interaction map with 2-nt resolution and discard the pairwise 2-nt interaction windows with a connection score less than 0.01.
- d. Cluster the pairwise 2-nt interaction pairs with both ends overlapping within 2-windows distance.
- e. Visualize the resulting chimeric reads in the representative clusters using the Integrative Genomics Viewer (IGV) tool.<sup>23</sup>

```
> perl sam_to_bedpe.pl U3_chimeric_reads.sam 0.01 U3_chimeric_reads.list
U3_chimeric_reads.2nt.bedpe
> perl cluster_pixels.pl U3_chimeric_reads.2nt.bedpe > U3_chimeric_reads.cluster.bedpe
> perl creat_artifical_bam.pl U3_chimeric_reads.list U3_chimeric_reads.cluster.bedpe
U3.fasta
> awk -F '\t' 'BEIGN{0FS="\t"}{if($12=="RG:Z:ManualLoops_1") print $0 }' U3.read_of_
cluster.sam > U3.read_of_cluster1.sam
> samtools view -t chr.sizes -bSo U3.read of cluster1.bam U3.read of cluster1.sam
```





> samtools sort -o U3.read\_of\_cluster1.sort.bam U3.read\_of\_cluster1.bam

#### > samtools index U3.read\_of\_cluster1.sort.bam

**Note:** We set a minimum cutoff for interacting windows with a connection score above 0.01 to retain the high-confidence interacting windows, which can be adjusted by the users according to their requirements. The window size of 2 nucleotides could provide high nucleotide resolution, and this parameter can be adjusted according to the length of RNA and the users' requirements.

80. Predict the 3' UTR secondary structure of the virus:

- a. Collect the chimeric reads that were only mapped to the virus reference genome and save them as a SAM format file named "virus\_chimeric\_reads.sam".
- b. Extract the junctures of chimeric reads within the virus genome to construct the RNA interaction matrix with 2-nt resolution.
- c. Predict 10 candidate secondary structures for the 3' UTR sequence with a maximum pairing distance of 250 nt using the Fold program from the RNAstructure software suite.<sup>24</sup>
- d. Compare the RIC-seq signal of paired and unpaired pairwise 2-nt windows for each candidate secondary structure using a one-tailed t-test and sort 10 candidate secondary structure models by *P*-values.
- e. Select the secondary structure model with the lowest minimum free energy (MFE) ranked by *P*-values among the top 5 structure models.

| > perl sam_to_loops.pl virus_chimeric_reads.sam   sort -k3,3 -k7,7 > virus.sort.list                 |
|------------------------------------------------------------------------------------------------------|
| > java -jar juicebox_tools.jar pre -r 1,2,5,10,25,50,100 virus.sort.list virus.hic hs.size           |
| > java -jar juicebox_tools.jar dump observed VC_SQRT virus.hic hs1 hs1 BP 2<br>virus.2nt.vcrt.matrix |
| > perl format_hic_to_matrix.pl virus.2nt.vcrt.matrix > virus.2nt.vcrt.format.matrix                  |
| > Fold 3UTR.fa 3UTR.ctmaxdistance 250                                                                |
| > perl select_local_structure.pl 3UTR.ct virus.2nt.vcrt.format.matrix > log.3UTR.txt                 |
| Snython3 select structure ny log NUTR tyt NUTR of Shest structure of                                 |

### **EXPECTED OUTCOMES**

#### Chimeric reads and virus targets of RIC-seq libraries in SARS-CoV-2 infected A549-ACE2 cells

In our hands, the *in situ* RIC-seq libraries in SARS-CoV-2 infected A549-ACE2 cells yielded 13,827,107 intra-molecular chimeric reads and 13,386,942 inter-molecular chimeric reads, with 5,888,407 representing virus-to-host chimeric reads. After removing the potential false-positive inter-molecular chimeric reads from *in vitro* random ligation libraries, we obtained 12,448,253 inter-molecular chimeric reads, with 5,548,860 high-confidence virus-to-host chimeric reads for identifying 5,754 virus targets.

#### PCR products of RIC-seq libraries

Figure 2 displays the expected length distribution of RIC-seq DNA libraries on the agarose gel.

### The length distribution of RIC-seq libraries

Figure 3 displays the length distribution of RIC-seq DNA libraries analyzed by Agilent 2100 Bioanalyzer using the Agilent High Sensitivity DNA Kit.

Protocol





### The secondary structure of SARS-CoV-2 3' UTR

Figure 4 displays the RNA interaction map and predicted secondary structure of 3' UTR of SARS-CoV-2.

### SARS-CoV-2 and host RNA-RNA interactions revealed by RIC-seq

Figure 5 displays the SARS-CoV-2 targets along the host genome (left) and inter-molecular chimeric reads for SARS-CoV-2 *ORF-M* and host RNA *NFKBIZ* (right). Pairwise interacting RNA fragments are illustrated as arc lines. The red outer circle of the circos plot represents SARS-CoV-2-to-host chimeric reads in the virus genome. The purple and green histograms represent SARS-CoV-2-to-host chimeric reads and peaks in the host genome. The inner circle (blue arcs) represents high-confidence SARS-CoV-2 targets. *NFKBIZ* is marked with a red arrow.

### Host U3 snoRNA secondary structure captured by RIC-seq

Figure 6 displays the known U3 snoRNA secondary structure as blue arc lines. Different clusters of intra-molecular chimeric reads mapped to U3 snoRNA are shown in distinct colors. Black lines mark the junctures of chimeric reads.

### LIMITATIONS

RIC-seq can capture the whole complement of protein-mediated intra- and inter-molecular RNA-RNA interactions. If the RNA-RNA interactions are merely mediated by base pairing rather than proteins, these interactions will be largely lost at MNase digestion and the subsequent washing steps.



Figure 3. Bioanalyzer analyzing the length of RIC-seq libraries







Figure 4. The secondary structure of SARS-CoV-2 3'

However, some RNA duplexes that protrude from a protein complex can also be captured by RIC-seq,<sup>10</sup> though it is inefficient compared with interactions directly mediated by proteins.

UTR

Single-stranded and positive-sense RNA viruses, such as SARS-CoV-2, will generate genomic RNA and subgenomic RNA after entering host cells. RIC-seq cannot distinguish whether the virus-to-host chimeric reads are derived from genomic RNA or subgenomic RNA. In addition, RIC-seq may be inefficient in capturing the genomic RNA interacted host RNAs for those double-stranded RNA viruses. However, these double-stranded RNA viruses transcribed positive-strand RNAs can be efficiently captured by RIC-seq technology.

The percentage of virus-to-host chimeric reads primarily depends on the abundance of viral RNA in infected host cells. RIC-seq application in RNA viruses replicating weakly in host cells may be unsuitable due to the lower percentage of virus-to-host chimeric reads that can be detected. However, designing the modified probes targeted viral RNAs to enrich those virus-to-host chimeric reads may address this limitation.

### TROUBLESHOOTING

### **Problem 1**

Cells remain in the culture dish or float in the supernatant after centrifugation (steps 13 and 14 in the infected cells preparation section).



**Figure 5. SARS-CoV-2 and NFKBIZ RNA-RNA interactions revealed by RIC-seq** *P*-values are adjusted using Benjamini–Hochberg multiple testing correction. Adapted from Zhao et al., Mol Cell, 2024.<sup>1</sup>







Figure 6. U3 snoRNA secondary structure captured by RIC-seq

### **Potential solution**

- Add 0.01% (v/v) of NP-40 to the PBS before scraping cells from the culture dish.
- Increase the centrifugation speed to 2,400 g.

#### Problem 2

Excessive RNA yield after rRNA depletion (step 46).

### **Potential solution**

The potential reason is insufficient rRNA removal. Two solutions may solve this problem. 1) You can repeat rRNA depletion following steps 40–46 directly. 2) You can take another 20 µg total RNA. Perform genomic DNA digestion and rRNA depletion following steps 31–46. The amounts of rRNA probes in step 40, RNase H in step 42, and TURBO DNase in step 44 can be doubled.

### **Problem 3**

Prominent DNA band between 100 and 200 bp (step 69).

### **Potential solution**

The potential reason is adapter self-ligation in step 64. You should reduce the amount of adapters and control the reaction time strictly to 15 min in step 64.

### **Problem 4**

There is no visible DNA smear band on the gel between 200 and 450 bp (step 69).

### **Potential solution**

The potential reason is low input total RNA. You can increase the PCR cycles in step 69 or increase the total RNA in step 31.

### **Problem 5**

The chimeric reads ratio is too low (step 73).

### **Potential solution**

The potential reason is low proximal ligation efficiency. You can increase the amounts of T4 RNA ligase and the reaction time in step 17.





### **Problem 6**

The percentage of virus-to-host chimeric reads is too low (step 73).

### **Potential solution**

The potential reason is the low abundance of viral RNA in infected cells. You can increase the MOI usage and virus infection time in step 8 of infected cells preparation.

### **RESOURCE AVAILABILITY**

### Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yuanchao Xue (ycxue@ibp.ac.cn).

#### **Technical contact**

Further information and requests for the details of protocol should be directed to and will be fulfilled by the technical contact, Zhaokui Cai (caizhaokui@ibp.ac.cn)

#### **Materials** availability

This study did not generate new unique reagents.

#### Data and code availability

RIC-seq data for infected A549-ACE2 cells (recently published in Zhao et al., Mol cell<sup>1</sup>) are available in the Genome Sequence Archive for Human (GSA-Human) under accession number HRA005709. The scripts for RIC-seq data analysis can be found at https://github.com/Zhaohailian/ SARS-CoV-2\_STAR\_protocols and https://doi.org/10.5281/zenodo.10609902.

### ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China (32025008, 32130064, and 81921003), the National Key R&D Program (2022YFA1303300), the Strategic Priority Program of CAS (XDB37000000), and the K.C. Wong Education Foundation (GJTD-2020-06) to Y.X. and grants from the China Postdoctoral Science Foundation (2021M703414) and the National Natural Science Foundation of China (32370605) to Z.C.

### **AUTHOR CONTRIBUTIONS**

Y.X. conceived and supervised the project. Z.C. performed the experiments and prepared the experimental parts of this protocol, and H.Z. performed bioinformatics analysis and prepared the bioinformatic part.

### **DECLARATION OF INTERESTS**

The authors declare no competing interests.

### REFERENCES

- Zhao, H., Cai, Z., Rao, J., Wu, D., Ji, L., Ye, R., Wang, D., Chen, J., Cao, C., Hu, N., et al. (2024). SARS-CoV-2 RNA stabilizes host mRNAs to elicit immunopathogenesis. Mol. Cell 84, 490–505.e9.
- Liao, K.C., Xie, X., Sundstrom, A.K.B., Lim, X.N., Tan, K.K., Zhang, Y., Zou, J., Bifani, A.M., Poh, H.X., Chen, J.J., et al. (2023). Dengue and Zika RNA-RNA interactomes reveal pro- and antiviral RNA in human cells. Genome Biol. 24, 279.
- Ziv, O., Price, J., Shalamova, L., Kamenova, T., Goodfellow, I., Weber, F., and Miska, E.A. (2020). The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2. Mol. Cell 80, 1067–1077.e5.
- Yang, S.L., DeFalco, L., Anderson, D.E., Zhang, Y., Aw, J.G.A., Lim, S.Y., Lim, X.N., Tan, K.Y., Zhang, T., Chawla, T., et al. (2021). Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. Nat. Commun. 12, 5113.
- Masaki, T., Arend, K.C., Li, Y., Yamane, D., McGivern, D.R., Kato, T., Wakita, T., Moorman, N.J., and Lemon, S.M. (2015). miR-122 stimulates hepatitis C virus RNA synthesis by altering the balance of viral RNAs engaged in replication versus translation. Cell Host Microbe 17, 217–228.
- 6. Fukuhara, T., Kambara, H., Shiokawa, M., Ono, C., Katoh, H., Morita, E., Okuzaki, D., Maehara,

Y., Koike, K., and Matsuura, Y. (2012). Expression of MicroRNA miR-122 Facilitates an Efficient Replication in Nonhepatic Cells upon Infection with Hepatitis C Virus. J. Virol. *86*, 7918–7933.

- Liu, Y., Sun, J., Zhang, H., Wang, M., Gao, G.F., and Li, X. (2016). Ebola virus encodes a miR-155 analog to regulate importin-α5 expression. Cell. Mol. Life Sci. 73, 3733–3744.
- Nachmani, D., Stern-Ginossar, N., Sarid, R., and Mandelboim, O. (2009). Diverse herpesvirus microRNAs target the stressinduced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5, 376–385.

Protocol

CellPress OPEN ACCESS

- Seif, E., Niu, M., and Kleiman, L. (2013). Annealing to sequences within the primer binding site loop promotes an HIV-1 RNA conformation favoring RNA dimerization and packaging. RNA 19, 1384–1393.
- Cai, Z., Cao, C., Ji, L., Ye, R., Wang, D., Xia, C., Wang, S., Du, Z., Hu, N., Yu, X., et al. (2020). RIC-seq for global in situ profiling of RNA-RNA spatial interactions. Nature 582, 432–437.
- Morf, J., Wingett, S.W., Farabella, I., Cairns, J., Furlan-Magaril, M., Jiménez-García, L.F., Liu, X., Craig, F.F., Walker, S., Segonds-Pichon, A., et al. (2019). RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus. Nat. Biotechnol. 37, 793–802.
- Cao, C., Cai, Z., Ye, R., Su, R., Hu, N., Zhao, H., and Xue, Y. (2021). Global in situ profiling of RNA-RNA spatial interactions with RIC-seq. Nat. Protoc. 16, 2916–2946.
- Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
- Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
- Li, H. (2013). Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. Preprint at arXiv. https://doi.org/10. 48550/arXiv.1303.3997.
- Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.
- Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915.

- 20. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics *26*, 841–842.
- Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., and Marra, M.A. (2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645.
- Adiconis, X., Borges-Rivera, D., Satija, R., DeLuca, D.S., Busby, M.A., Berlin, A.M., Sivachenko, A., Thompson, D.A., Wysoker, A., Fennell, T., et al. (2013). Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat. Methods 10, 623–629.
- Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26.
- 24. Reuter, J.S., and Mathews, D.H. (2010). RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinf. 11, 129.