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Mendelian randomization (MR) is a valuable tool for inferring causal relationships
among a wide range of traits using summary statistics from genome-wide association
studies (GWASs). Existing summary-level MR methods often rely on strong assump-
tions, resulting in many false-positive findings. To relax MR assumptions, ongoing
research has been primarily focused on accounting for confounding due to pleiotropy.
Here, we show that sample structure is another major confounding factor, including
population stratification, cryptic relatedness, and sample overlap. We propose a unified
MR approach, MR-APSS, which 1) accounts for pleiotropy and sample structure
simultaneously by leveraging genome-wide information; and 2) allows the inclusion of
more genetic variants with moderate effects as instrument variables (IVs) to improve
statistical power without inflating type I errors. We first evaluated MR-APSS using
comprehensive simulations and negative controls and then applied MR-APSS to study
the causal relationships among a collection of diverse complex traits. The results suggest
that MR-APSS can better identify plausible causal relationships with high reliability.
In particular, MR-APSS can perform well for highly polygenic traits, where the IV
strengths tend to be relatively weak and existing summary-level MR methods for causal
inference are vulnerable to confounding effects.

causal inference | Mendelian randomization | pleiotropy | sample structure | selection bias

Inferring the causal relationship between a risk factor (exposure) and a phenotype of
interest (outcome) is essential in biomedical research and social science (1). Although
randomized controlled trials (RCTs) are the gold standard for causal inference, RCTs
can be very costly and sometimes even infeasible or unethical (e.g., random allocation
to prenatal smoking) (2). Mendelian randomization (MR) was introduced to mimic
RCTs for causal inference in observational studies (3, 4). Recently, MR analysis has
drawn increasing attention (5) because it can take summary statistics from genome-
wide association studies (GWASs) as input, including single-nucleotide polymorphism
(SNP) effect-size estimates and their SEs, to investigate causal relationships among human
complex traits.

MR is an instrumental variable (IV) method to infer the causal relationship between
an exposure and an outcome, where genetic variants—e.g., SNPs—serve as IVs of the
exposure (6, 7). To eliminate the influence of confounding factors, conventional MR
methods rely on strong assumptions, including (A-I) IVs are associated with the exposure;
(A-II) IVs are independent of confounding factors; and (A-III) IVs only affect the outcome
through the exposure. However, assumptions (A-II) and (A-III) are often not satisfied in
practice, due to confounding factors hidden in GWAS summary statistics, leading to false-
positive findings (5, 8). To perform causal inference with genetic data, it is indispensable
to distinguish two major confounding factors: pleiotropy (8) and sample structure (9, 10).

First, SNPs exhibit pervasive pleiotropic effects. Pleiotropy occurs when a genetic
variant directly affects both exposure and outcome traits or indirectly through an inter-
mediate phenotype (11). Pleiotropy can induce trait association or genetic correlation
in the absence of causality (11). Due to the polygenicity of complex traits and linkage
disequilibrium (LD) in the human genome, pleiotropic effects can widely spread across
the whole genome (12). Therefore, a substantial proportion of SNPs can carry pleiotropic
effects, and they fail to satisfy (A-II) and (A-III) on IVs in conventional MR methods.

Second, sample structure can lead to bias in SNP effect-size estimates and introduce
spurious trait associations. Here, sample structure encompasses population stratification,
cryptic relatedness, and sample overlap in GWASs of the exposure and outcome traits.
In the presence of population stratification and cryptic relatedness, SNPs can affect
the outcome through sample structure, and, thus, they violate assumptions (A-II) and
(A-III) on IVs. Without correcting for sample structure, SNP effect-size estimates can be
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severely biased, which may lead to misinterpretation on trait
association and, thus, many false-positive discoveries in causal
inference. Sample overlap can also lead to spurious trait associ-
ations (13). Although principal component analysis (PCA) (14)
and linear mixed models (LMMs) (15) are widely used to account
for sample structure in GWASs, the results from LDSC (16) show
that sample structure is often unsatisfactorily corrected in publicly
available GWAS summary statistics.

To maximize the usage of publicly available GWAS sum-
mary statistics for causal inference, a number of summary-level
MR methods have been developed, including Inverse Variance
Weighted regression (IVW) (17), Egger (18), RAPS (19), dIVW
(20), Weighted-median (21), Weighted-mode (22), Mendelian
Randomization Analysis Using Mixture Models (MRMix) (23),
CML-MA (24), and CAUSE (25). Despite these efforts, there are
two major limitations in existing summary-level MR methods.
First, most of them only use a small subset of SNPs passing the
genome-wide significance (P ≤ 5× 10−8) for causal inference.
To account for pleiotropy [including correlated pleiotropy and
uncorrelated pleiotropy (25)], it is challenging to fit a flexible
model with limited information from genome-wide significant
SNPs. Second, existing summary-level MR methods presume that
PCA- or LMM-based approaches have satisfactorily accounted
for sample structure, and, thus, they largely ignore the influence
of sample structure in GWAS summary statistics. Due to the
complexity of human genetics, sample structure driven by socioe-
conomic status (26) or geographic structure (27) may not be fully
corrected by routine adjustment, and it may remain as a major
confounding factor hidden in GWAS summary statistics.

In this paper, we develop MR-APSS, a unified approach to
MR Accounting for Pleiotropy and Sample Structure simultane-
ously. Specifically, we propose a foreground–background model
to decompose the observed SNP effect sizes, where the back-
ground model accounts for confounding factors hidden in GWAS
summary statistics, including correlated pleiotropy and sample
structure, and the foreground model performs causal inference
while accounting for uncorrelated pleiotropy. MR-APSS differs
from existing methods in the following aspects. First, under the
assumptions of LD score regression (LDSC) (16), the back-
ground model accounts for pleiotropy and sample structure using
genome-wide summary statistics. In contrast, most summary-level
MR methods only use SNPs passing the genome-wide significance
(P ≤ 5× 10−8). Second, MR-APSS allows us to include more
SNPs without achieving the genome-wide significance as IVs to
improve statistical power. With the pre-estimated background
model, MR-APSS can inform whether an SNP belongs to the
background component or the foreground component. Even in
the presence of many invalid IVs, the type I error will not be
inflated because only the foreground signals are used for causal
inference. As more SNPs are included, the increasing amount of
the foreground signal can improve the statistical power.

To demonstrate the effectiveness of MR-APSS, we have per-
formed a comprehensive simulation study and analyzed 640 pairs
of exposure and outcome traits from 26 GWASs. In the simulation
study, we showed that MR-APSS still had satisfactory perfor-
mance when the assumptions of IVs were violated. We examined
MR-APSS on a wide spectrum of complex traits using GWAS
summary statistics, including psychiatric/neurological disorders,
social traits, anthropometric traits, cardiovascular traits, metabolic
traits, and immune-related traits. Real data results indicate that
pleiotropy and sample structure are two major confounding fac-
tors. By rigorous statistical modeling of these confounding factors,
MR-APSS not only avoids many false-positive findings, but also
improves the statistical power of MR. When inferring causal

relationships among highly polygenic traits, such as psychiatric
disorders and social traits, the strengths of IVs tend to be relatively
weak, and causal inference is vulnerable to confounding effects.
Thus, existing MR methods will suffer from either low statistical
power or inflated type I errors. The empirical results indicate that
MR-APSS is particularly useful in this scenario because it accounts
for confounding factors and allows for incorporating many IVs
with moderate effects, demonstrating its advantage over existing
MR methods.

Results

Overview of MR-APSS. Causality, pleiotropy, and sample struc-
ture are three major sources to induce correlation between GWAS
estimates of exposure-outcome traits. To distinguish causality
from correlation, it is indispensable to eliminate the possibil-
ity that correlation is induced by confounding factors, such as
pleiotropy and sample structure (including population stratifica-
tion, cryptic relatedness, and sample overlap).

MR-APSS takes GWAS summary statistics of exposure and
outcome traits as its input and performs causal inference based
on a proposed foreground–background model (see an overview
in Fig. 1 and details in Materials and Methods). Under the as-
sumptions of LDSC (16) (see details in SI Appendix, section 1.1),
the background model can effectively account for confounding
factors by disentangling pleiotropy (Fig. 1B) and sample structure
(Fig. 1C ). This is because the pleiotropic effects can be tagged by
LD, and the influence of sample structure is uncorrelated with LD
(16). In addition to the LDSC assumptions in the background
model, we have made two key assumptions for causal inference.
First, we assume that the correlated pleiotropy effects can be
approximately characterized by the genetic correlation, which can
be estimated from genome-wide summary statistics. Second, we
assume that the direct effect is independent of the instrument
strength in our foreground model (known as the InSIDE condi-
tion). This is reasonable because correlated pleiotropy effects have
been accounted for by using genome-wide genetic correlation.
By further accounting for selection bias (28) due to selection of
IVs (Materials and Methods), the foreground model can use the
classical causal diagram to perform causal inference (Fig. 1A). In
summary, our method requires the LDSC assumptions for the
background model and the InSIDE condition for the foreground
model to relax assumptions (A-II) and (A-III).

Compared Methods. Because MR-APSS uses the GWAS sum-
mary statistics as its input, we mainly compared MR-APSS with
nine summary-level MR methods and grouped them (including
MR-APSS) into three groups based on their assumptions,
including IVW from group 1; Egger, RAPS, and dIVW from
group 2; and Weighted-median, Weighted-mode, MRMix, CML-
MA, CAUSE, and MR-APSS from group 3 (Table 1). We provide
a review of them in SI Appendix, sections 2.1 and 2.2. We show
theoretically that the IVW estimator and the dIVW estimator can
be biased in the presence of pleiotropy and sample structure
(SI Appendix, section 2.6). To establish a better connection
with causal literature, we also provide a review of individual-
level MR methods in SI Appendix, section 2.3 and Table S1. We
conducted comparisons between summary-level MR methods
and individual-level MR methods. Detailed results are provided in
SI Appendix, sections 3.3 and 4.4 and Figs. S1, S6, and S16–S21.

Simulation Studies. To evaluate MR-APSS in various scenarios
and compare it with nine MR methods in Table 1, we first
performed simulation studies under the MR-APSS model. After

2 of 12 https://doi.org/10.1073/pnas.2106858119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106858119/-/DCSupplemental
https://doi.org/10.1073/pnas.2106858119


A B C D

Fig. 1. The MR-APSS approach. To infer the causal effect β between exposure X and outcome Y, MR-APSS uses a foreground–background model to characterize
the estimated effects of SNPs Gj on X and Y (γ̂j and Γ̂j) with SEs (̂sX ,j , ŝY ,j), where the background model accounts for polygenicity, correlated pleiotropy (B)
and sample structure (C), and the foreground model (A) aims to identify informative instruments and account for uncorrelated pleiotropy to perform causal
inference. (D) We consider inferring the causal relationship between body mass index (BMI) and T2D as an illustrative example of MR-APSS. The estimated causal
effect is indicated by a red line with its 95% CI indicated by the shaded area in transparent red color. Triangles indicate the observed SNP effect sizes (γ̂j and Γ̂j).
The color of triangles indicates the posterior of a valid IV, i.e., the posterior of an IV carrying the foreground signal (Zj = 1; dark blue) or not (Zj = 0; light blue).

that, we investigated the robustness of MR-APSS in the presence
of model misspecification.

For exposure and outcome traits, we used 47,049 SNPs on
chromosomes 1 and 2 of 20,000 individuals of White British
ancestry randomly drawn from the UK BioBank (UKBB). SNP
effect sizes (γj ,αj , uj , vj ) were generated from the relationship
shown in Fig. 1 and Eq. 1 in Materials and Methods. Based
on real genotype data and simulated SNP effect sizes, we gen-
erated both traits and obtained summary statistics (see details
in SI Appendix, section 3.1). The relationship shown in Fig. 1 is
composed of the background signal and the foreground signal.
For the background signal, polygenic effects (uj , vj ) of all SNPs
were normally distributed with variance components (σ2

u = τ2v =
0.5/47, 049), such that the heritabilities of both exposure X
and outcome Y were specified at 0.5. The magnitudes of the
error terms (εj , ξj ) were determined by the fixed sample sizes
of 20,000. For the foreground signal, we randomly assigned 500

out of 47,049 SNPs as IVs. As the instrument strength (γj ) and
the magnitude of the direct effect (αj ) are given by variance
components σ2 and τ2 (Fig. 1), we specified σ2 : σ2

u = 20 to
mimic real data scenarios. We set τ2 : τ2v = 1, so the magnitude
of the direct effects in the foreground model is the same as that of
the polygenic effects.

We compared MR-APSS with nine MR methods, includ-
ing IVW, dIVW, RAPS, MRMix, cML-MA, Egger, CAUSE,
Weighted-median, and Weighted-mode. Note that the perfor-
mance of MR methods depends on the selected IVs. Using a
stringent criterion, fewer SNPs will be selected, as IVs and MR
methods tend to have lower power of detecting the causal effect
and a lower false-positive rate. When more SNPs are included
using a loose criterion, MR methods tend to have higher power,
but a higher false-positive rate, because their model assump-
tions are more likely to be violated. To evaluate the perfor-
mance of MR methods under null (β = 0), we used a stringent

Table 1. Summary of 10 summary-level MR methods
Method (A-II) (A-III) Key assumptions Sample structure Selection bias
IVW (17) � � Γj = βγj; All IVs are valid; NOME. × ×
Egger (18) � × Γj = βγj + αj; InSIDE (γj |= αj); Directional

pleiotropy (E(αj) = μ); NOME.
× ×

RAPS (19) � × Γj = βγj + αj; InSIDE (γj |= αj); Balanced
pleiotropy (αj ∼N (0, τ2)).

× ×

dIVW (20) � × Γj = βγj + αj; InSIDE (γj |= αj); Balanced
pleiotropy (αj ∼N (0, τ2)).

× �

Weighted-median (21) × × Majority valid; NOME. × ×
Weighted-mode (22) × × Plurality valid. × ×
MRMix (23) × × Plurality valid. × ×
cML-MA (24) × × Plurality valid. × ×
CAUSE (25) × × All IVs can be invalid; majority of IVs not be

affected by correlated pleiotropy.
Sample overlap ×

MR-APSS × × All IVs can be invalid; assumptions of LDSC
(16) in the background model; InSIDE in the
foreground model.

� �

Three IV assumptions: (A-I) IVs are associated with the exposure; (A-II) IVs are independent of confounders; and (A-III) IVs only affect the outcome through the exposure. NOME, the
no-measurement error assumption. InSIDE, the instrument strength is independent of the direct effect. Majority valid, more than 50% of the IVs should be valid. Plurality valid, out of all
groups of IVs having the same asymptotic ratio estimates of the causal effect, the largest group is the group of valid IVs.
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Fig. 2. Comparison of 10 summary-level MR methods on simulated data. (A–F) QQ plots of − log10(p) values from different methods under null simulations in
the absence of causal effect (β = 0). Null simulations were performed under different scenarios. (A, B, and E) Null simulations with genetic correlation (rg = 0.2)
induced by pleiotropy, but without correlation in estimation errors (c12 = 0). (C, D, and F) Null simulations in the presence of correlation in estimation errors
(c12 = 0.15) due to sample structure, but in the absence of nonzero genetic correlation (rg = 0). Based on results in A–D, MR-APSS, Egger, Weighted-mode, and
CAUSE do not provide overly inflated P values. (G and H) Comparison of MR-APSS, Egger, Weighted-mode, and CAUSE under alternative simulations (β �= 0).
(G) The power under the settings that the causal effect size β varied from 0.05 to 0.45. (H) Estimates of causal effect under the alternative simulations (β = 0.25).
The results were summarized from 50 replications.

criterion (IV threshold P = 5× 10−6) to select IVs for IVW,
dIVW, RAPS, MRMix, cML-MA, Egger, Weighted-median, and
Weighted-mode. For CAUSE, we used its default threshold P =
1× 10−3 to include IVs. For MR-APSS, we used P = 5× 10−4.
For all nine MR methods, we applied LD pruning (r2 = 0.01) to
the selected IVs to ensure that they were nearly independent.

We first examined type I error control of different MR methods
under null (β = 0) in the presence of genetic correlation induced
by pleiotropy. We simulated data with genetic correlation, but
without correlation in estimation errors. Quantile–quantile (QQ)
plots of different MR methods are shown in Fig. 2 A, B, and E
for genetic correlation rg = 0.2 (more results for different genetic
correlations are given in SI Appendix, Fig. S2). Clearly, MR-APSS
is the only method that produces well-calibrated P values. To
better examine how MR-APSS accounted for polygenicity and
pleiotropy, we manually set the variance component of MR-APSS
to zero, i.e., Ω= 0. We denote this version of MR-APSS as MR-
APSS (Ω= 0). As shown in Fig. 2E, MR-APSS produced well-
calibrated P values, while MR-APSS (Ω= 0) produced overly
inflated P values. This suggests that variance component Ω plays
a critical role in accounting for polygenicity and pleiotropy. We
also noticed different performance of alternative MR methods
(Fig. 2 A and B). In the presence of nonzero genetic correlation,
MR methods, such as IVW, dIVW, RAPS, MRMix, cML-MA,
Weighted-median, and MR-APSS (Ω= 0), tended to produce
inflated P values. Different from other MR methods, CAUSE
produced very deflated P values, and, thus, CAUSE was very
conservative in identifying causal effects.

Next, we examined the type I error control under null (β = 0)
in the presence of correlation between estimation errors due to
sample structure. Specifically, we set genetic correlation rg = 0
and simply generated correlation of estimation errors (c12 =
0.15) using 10,000 overlapped samples in exposure and outcome
studies (more results for different c12 are given in SI Appendix,
Fig. S3). We notice that correlation between estimation errors

can also be induced by population stratification and cryptic
relatedness. To avoid unrealistic simulation of population
stratification, we investigated this issue when we performed real
data analysis. The QQ plots of different MR methods are shown
in Fig. 2 C, D, and F. IVW, dIVW, RAPS, MRMix, cML-MA,
and Weighted-median produced overly inflated P values. These
results indicate that correlation between estimator errors can be
a major confounding factor, leading to false-positive findings.
Again, CAUSE produced very deflated P values. To see how MR-
APSS accounts for correlation between estimation errors, we set
C= I, i.e., c1 = c2 = 1 and c12 = 0. In such a way, MR-APSS
was forced to ignore the correlation between estimation errors.
We denote this version of MR-APSS as MR-APSS (C= I).
As shown in Fig. 2F, MR-APSS (C= I) produced inflated
P values. In contrast, MR-APSS produced well-calibrated P val-
ues. These results suggest that MR-APSS can satisfactorily account
for correlation between estimation errors due to sample structure.

Finally, we examined the power of MR methods. As shown
above, IVW, dIVW, RAPS, MRMix, cML-MA, and Weighted-
median often produced overly inflated type I errors in the presence
of either pleiotropy or sample structure. Hence, we only compared
MR-APSS with Egger, Weighted-mode, and CAUSE. We simu-
lated data with both genetic correlation (rg = 0.1) and correla-
tion between estimation error (c12 = 0.1). We varied the causal
effect size β from 0.05 to 0.45. MR-APSS was the overall winner
in terms of power (Fig. 2G). We further compared the estimation
accuracy of the causal effects using MR-APSS, Egger, Weighted-
mode, and CAUSE (Fig. 2H ). Consistent with the literature (29),
we observed that Egger had a very large estimation error. As
discussed in SI Appendix, section 2.4, CAUSE often misinterprets
the causal effect as correlated pleiotropy, leading to underestima-
tion of the true causal effect. Consistently, we observed that the
estimate of Weighted-mode and CAUSE was biased to the null
(β = 0). In the above simulations, the foreground–background
variance ratio was fixed at σ : σu = 20 : 1. We provide more
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results with different foreground–background variance ratios (σ :
σu ∈ {40, 10}) in SI Appendix, Figs. S4 and S5.

To evaluate the robustness of MR-APSS in the presence of
model misspecification, we also conducted simulations with the
CAUSE model. The main patterns of the performance of the 10
MR methods largely remained the same. We provide details in
SI Appendix, section 3.2 and Figs. S6–S8.

Real Data Analysis: Negative Control Outcomes. To fairly ex-
amine the type I errors of MR methods, we use the negative
control outcomes proposed by Sanderson et al. (9), where con-
founding factors (e.g., pleiotropy and sample structure) naturally
exist. The traits that can serve as ideal negative control outcomes
should satisfy two conditions. First, they should not be causally
affected by any of the exposures considered. Second, the exposure
and outcome traits could be affected by some unmeasured con-
founders, e.g., population stratification. Following the same way
of Sanderson et al. (9) to choose negative control outcomes, we
considered natural hair colors before graying (Hair color: black;
Hair color: blonde; Hair color: light brown; and Hair color: dark
brown) and skin tanning ability (Tanning) from UKBB because
they are largely determined at birth, and they could be affected by
sample structure.

We considered 26 exposure traits from UKBB and Genomics
Consortiums (details for the GWAS sources are given in
SI Appendix, Table S2). These traits can be roughly divided into
five categories, including psychiatric/neurological disorders, social
traits, anthropometric traits, cardiometabolic traits, and immune-
related traits. The data-preprocessing steps for GWAS summary
statistics are described in SI Appendix, section 4.1. The sample
sizes of those GWASs range from 114,244 to 385,603, with a
minimum of 15,954 for autism spectrum disorder (ASD) and a
maximum of 898,130 for type 2 diabetes (T2D). Given the large
sample sizes of GWASs, we used the genome-wide significance
threshold 5× 10−8 as the IV threshold for IVW, dIVW, RAPS,
Egger, MRMix, CML-MA, Weighted-median, and Weighted-
mode in real data analysis. This stringent criterion helps to exclude
invalid IVs for these methods and, thus, reduce their false-positive
rates. Due to the stringent IV selection, we were not able to find
enough SNPs (> 4) as IVs for four exposure traits, i.e., major
depressive disorder (MDD), ASD, subject well-being, and the
number of children ever born. For CAUSE (25), we used its
default P value threshold P = 1× 10−3 to select IVs. For MR-
APSS, we used 5× 10−5 as the default IV threshold.

First, we applied MR-APSS and the nine summary-level MR
methods to infer the causal effects between these 26 exposure
traits and 5 negative control outcomes. To make the comparison
fair, we focused on the results for 110 pairs, where each method
had sufficient IVs for MR analysis. Ideally, these P values should
be uniformly distributed between zero and one under the null
(β = 0). Fig. 3A shows the QQ plots of − log10(p) values of the
six methods (red dots). Clearly, MR-APSS and Weighted-mode
produced well-calibrated P values. IVW, dIVW, RAPS, MRMix,
cML-MA, and Weighted-median produced overly inflated P val-
ues, while Egger produced slightly inflated P values. CAUSE
produced deflated P values in the beginning, but inflated P values
later. We investigated the reasons why the five MR methods
performed unsatisfactorily. As shown in Fig. 3B, we examined the
estimates of two key parameters, rg and c12, of our background
model, where rg is the genetic correlation capturing the overall
correlated pleiotropic effects and c12 captures the correlation of
estimation errors due to sample structure (e.g., population strati-
fication, cryptic relatedness, and sample overlap). Among the 110
exposure–outcome trait pairs, 81 trait pairs had nearly zero genetic

correlation, and 29 trait pairs had nonzero genetic correlation at
the nominal level of 0.05 (marked by *). We also examined the cor-
relation of estimation errors due to sample structure. Among the
110 trait pairs, 63 pairs had significant nonzero ĉ12 at the nominal
level 0.05 (marked by *). To identify the major reason for the
inflated P values produced by the nine MR methods, we restricted
ourselves to the 81 trait pairs whose genetic correlation was nearly
zero. For these 81 pairs, we generated the QQ plots of − log10(p)
values of the 10 MR methods (blue triangles in Fig. 3A). Clearly,
IVW, dIVW, RAPS, MRMix, cML-MA, and Weighted-median
still produced overly inflated P values. Egger produced slightly
better calibrated P values. CAUSE produced deflated P values in
the beginning, but inflated P values later. We further restricted
ourselves to trait pairs whose genetic correlation and correlation
of estimation errors were both nearly zero. For these trait pairs
(green diamond), MR-APSS, Weighted-mode RAPS, MRMix,
cML-MA, Weighted-median, and Egger produced well-calibrated
P values. IVW and dIVW still produced inflated P values. CAUSE
produced very conservative P values. These results suggest that
sample structure is another major confounding factor, in addition
to pleiotropy.

It is worthwhile to mention that nonzero c12 can be induced
by either population stratification or sample overlap. To see this,
let us consider the relationship between Height (GIANT) (30)
and Tanning from UKBB. Recall that parameters c1 and c2
capture the bias in estimation errors (εj , ξj ), and parameter c12
captures their correlation (Fig. 1). By applying LDSC to estimate
our background model, we obtained ĉ1 = 1.34 (SE = 0.022) for
Height (GIANT) and ĉ2 = 1.81 (SE = 0.023) for Tanning, re-
spectively. These results indicate that the publicly released GWAS
summary statistics are affected by confounding factors, such as
population stratification. By applying LDSC, we obtained ĉ12 =
−0.17 (SE = 0.011). As we know, the samples from GIANT
do not overlap with UKBB (31). Therefore, the nonzero ĉ12
value should be mainly attributed to population stratification.
As a comparison, we also considered Height (UKBB) (32) and
Tanning from UKBB. By applying LDSC, we obtained ĉ1 = 1.97
(SE = 0.040) for Height (UKBB), suggesting that the released
GWAS summary statistics of Height (UKBB) might potentially
suffer from population stratification. By applying LDSC, we
obtained ĉ12 =−0.36 (SE = 0.014) for Height (UKBB) and
Tanning (UKBB). Such a nonzero value could be attributed to
both population stratification and sample overlap.

To better examine the role of MR-APSS in accounting for
pleiotropy or sample structure, we applied MR-APSS, but fixed
Ω= 0 and C= I, respectively. We denote the two variations
as MR-APSS (Ω= 0) and MR-APSS (C= I), where MR-APSS
(Ω= 0) does not account for pleiotropy, and MR-APSS (C= I)
does not account for sample structure. As shown in Fig. 3 C–D,
both MR-APSS (Ω= 0) and MR-APSS (C= I) reported in-
flated P values. For example, based on Bonferroni correction,
several trait pairs (marked with black circles in Fig. 3 C–D)
were falsely detected as causal by MR-APSS (Ω= 0) and MR-
APSS (C= I). As shown in Fig. 3B (marked by squares), their
corresponding r̂g and ĉ12 values were significantly different from
zero. By using negative control outcomes, we show that MR-APSS
can produce well-calibrated P values by accounting for pleiotropy
and sample structure.

Inferring Causal Relationships among Complex Traits. To per-
form causal inference, we considered 26 complex traits from
5 categories, including psychiatric/neurological disorders, social
traits, anthropometric traits, cardiometabolic traits, and immune-
related traits. Before applying MR methods, we examined the
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A

B C

Fig. 3. Evaluation of the type I error control of MR methods using negative control outcomes. (A) QQ plots of − log10(p) values from 10 summary-level MR
methods for causal inference between complex traits and negative control outcome. Red dots represent all 110 trait pairs tested by each method. Blue triangles
represent the 81 trait pairs with insignificant genetic correlation at the nominal level of 0.05. Green diamonds represent the 29 trait pairs whose genetic
correlations rg and c12 are both insignificant at the nominal level of 0.05. (B) Estimates of rg and c12 for trait pairs between 26 complex traits and 5 negative
control outcomes. (C) QQ plots of − log10(p) values from MR-APSS, MR-APSS (Ω = 0), and MR-APSS (C = I) for trait pairs between 26 complex traits and 5
negative control outcomes. The circled P values correspond to the trait pairs marked by squares in (B), which are largely confounded by pleiotropy and sample
structure.

estimates of rg and c12 in the background model of MR-APSS
for all 325 pairwise combinations of the 26 traits. We found
that genetic correlation (rg ) of 198 pairs significantly differed
from zero at the nominal level of 0.05 (marked by ∗ in Fig. 4A).
Among them, genetic correlation of 130 pairs remained significant
after Bonferroni correction with p ≤ 0.05/325 (marked by ∗∗
in Fig. 4A). For the estimates of c12, 126 pairs had significant
nonzero ĉ12 at the nominal level of 0.05 (marked by ∗ in Fig. 4B),
and 76 pairs of them remained significantly different from zero
after Bonferroni correction (marked by ∗∗ in Fig. 4B). Of note,
56 pairs of traits had significantly nonzero estimates of both r̂g
and ĉ12 after Bonferroni correction. The above results suggest
that both pleiotropy and sample structure are presented as major
confounding factors for causal inference.

We considered inferring the causal relationship between traits
X and Y in both directions, i.e., X →Y (X as exposure and Y
as outcome) and Y →X (Y as exposure and X as outcome).
To avoid causal inference between two very similar phenotypes
(e.g., Angina and coronary artery disease [CAD]), we excluded
several trait pairs, which are marked in gray as nondiagonal cells
in Fig. 4C. Therefore, 640 trait pairs remained for MR tests in
total. We applied MR-APSS to these trait pairs using IV threshold

P = 5× 10−5 and identified 34 significant causal relationships
after Bonferroni correction (Fig. 4C, marked by triangles). As
shown in Fig. 4A, many traits in social or neurological/psychiatric
categories were observed to be genetically correlated with a wide
range of complex traits from different categories. After accounting
for pleiotropy and sample structure, the results from MR-APSS
indicate that genetic correlation of many trait pairs should not
be attributed to the causal effects. An example is Depression,
which was also genetically correlated with 18 complex traits
from different categories, such as body mass index (BMI) (r̂g =
0.220, SE = 0.024) from the Anthropometric category; and
Insomnia (r̂g = 0.454, SE = 0.025) and schizophrenia (SCZ)
(r̂g = 0.321, SE = 0.027) from the neurological/psychiatric cat-
egory. MR-APSS only confirmed the causal effect of Depression
on Insomnia (β̂ = 0.570, P = 4.38× 10−5). Clearly, MR-APSS
can serve as an effective tool to distinguish causality from genetic
correlation.

As a comparison, we also applied the nine compared methods
to infer the causal relationships for the 640 trait pairs. We
used P = 5× 10−8 as the IV selection threshold for IVW,
dIVW, RAPS, Egger, MRMix, CML-MA, Weighted-median,
and Weighted-mode and P = 1× 10−3 for CAUSE. For MR
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Fig. 4. Application of MR-APSS to infer causal relationships between 26 complex traits. (A) Estimates of genetic correlation between 26 complex traits. Positive
and negative estimates of genetic correlation r̂g are indicated in red and blue, respectively. Trait pairs with significant r̂g at the nominal level of 0.05 are marked
by *. Trait pairs that remain to be significant after Bonferroni correction with P ≤ 0.05/325 are marked by **. (B) Estimates of c12 between 26 complex traits.
Positive and negative estimates of c12 are shown in purple and green, respectively. Trait pairs with significant ĉ12 at the nominal level of 0.05 are marked
by *. Trait pairs remain to be significant after Bonferroni correction with P ≤ 0.05/325 are marked by **. (C) Causal relationships detected by MR-APSS. The
positive and negative estimates of causal effects of the exposure on the outcome are indicated by red up-pointing triangles and blue down-pointing triangles,
respectively. (D) The Venn diagram shows the causal effects detected by MR-APSS, CAUSE, Egger, and Weighted-mode after Bonferroni correction.

methods, including IVW, dIVW, RAPS, Egger, MRMix, CML-
MA, Weighted-median, and Weighted-mode, only 541 trait pairs
were tested because 99 trait pairs had less than four SNPs as IVs.
For CAUSE, all 640 trait pairs were included. A summary of
the causal relationships detected by the nine compared methods
is given in SI Appendix, Figs. S22–S30. RAPS reported 58 trait
pairs with significant causal effects after Bonferroni correction.
Among them, 24 trait pairs were considered insignificant by MR-
APSS after Bonferroni correction. Notably, RAPS made a similar
assumption with the foreground model of MR-APSS; however, it
has no background model to account for pleiotropy and sample
structure. To better understand the difference between RAPS and
MR-APSS, we applied MR-APSS (Ω= 0) or MR-APSS (C= I)

to those trait pairs. The testing P values of 18 trait pairs became
significant based on Bonferroni correction. An example was BMI
and Insomnia (SI Appendix, Table S3) with r̂g = 0.184 (SE =

0.025) and ĉ12 = 0.058 (SE = 0.010). RAPS produced β̂ = 0.07
with P = 3.04× 10−9. Without accounting for pleiotropy or
sample structure, MR-APSS (Ω= 0) and MR-APSS (C= I)
reported β̂ = 0.070 with P = 1.70× 10−7 and β̂ = 0.063 with
P = 1.01× 10−4, respectively. After accounting for both
pleiotropy and sample structure, MR-APSS estimated causal effect
between BMI and Insomnia as β̂ = 0.0337 with P = 0.128. The
results indicate that RAPS was likely affected by pleiotropy and
sample structure.
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Fig. 5. Evaluation of the performance of MR-APSS under different IV selection thresholds. (A) The average estimated number of valid IVs (dark color) and
invalid IVs (light color) for traits from each category using IV thresholds P = 5 × 10−5 and P = 5 × 10−8. (B and C) QQ plots of − log10(p) values from MR-APSS
(B) and MR-APSS without accounting for selection bias (C) when applied to between 26 complex traits and 5 negative control outcomes. (D) The number of
significant trait pairs between 26 complex traits identified by MR-APSS with different IV thresholds. (E–G) An illustrative examples of exposure: Depression.
(E) The number of selected IVs Mt at threshold t and the estimated number of valid IVs. (F and G) The estimated average and total IV strengths.

Since IVW, dIVW, RAPS, MRMix, cML-MA, and Weighted-
median tended to have higher type I errors than the nomi-
nal level, we mainly compared statistical power of MR-APSS
with Egger, CAUSE, and Weighted-mode (Fig. 4D). A com-
plete list of causal relationships among these traits detected by
MR-APSS, Egger, CAUSE, and Weighted-mode are summarized
in SI Appendix, Table S4. Based on Bonferroni correction, MR-
APSS detected 18 significant causal effects that were not reported
by CAUSE, Egger, and Weighted-mode, showing higher statistical
power of MR-APSS. For example, MR-APSS detected significant
causal effects of BMI on eight traits. Five of them were supported
with evidence of causality from previous literature, including T2D
(33), serum urate (Urate) (34), and three cardiovascular diseases
(CVDs; high blood pressure [HBP], Angina, and CAD) (35).
For these five supported trait pairs, Egger only detected three
significant causal relationships (BMI on CAD, T2D, and HBP),
and CAUSE only detected three significant causal relationships
(BMI on Urate, HBP, and T2D), and, further, Weighted-mode
detected two significant causal relationships (BMI on T2D and
BMI on HBP). In addition to the confirmed findings, MR-
APSS detected significant causal effects of BMI on Depression
(β̂ = 0.07, P = 2.09× 10−5), ever smoked regularly (Smoking)
(β̂ = 0.11, P = 1.36× 10−6), and Income (β̂ =−0.17, P =
1.83× 10−11). Those findings are consistent with results from
previous MR studies (36–38), suggesting that being overweight
not only increases the risk of depression and tobacco dependence,
but also suffers from reduced income. Our results also revealed
Neuroticism as an important health indicator, especially for hu-
man psychiatric health. Neuroticism is one of the Big Five person-
ality traits, characterized by negative emotional states, including
sadness, moodiness, and emotional instability. Higher neuroti-
cism is associated with premature mortality and a wide range of
mental illnesses or psychiatric disorders (31, 39). There is grow-
ing evidence that neuroticism plays a causal role in psychiatric

disorders, such as SCZ (40) and MDD (41). Evidence from MR-
APSS also supported the significant causal effect of Neuroticism
on SCZ (β̂ = 0.57, P = 7.02× 10−7) and MDD (β̂ = 0.18,
P = 2.06× 10−5). None of the three methods, CAUSE, Egger,
and Weighted-mode, detected significant causal effects of Neu-
roticism on MDD or SCZ. MR-APSS also revealed that Neuroti-
cism could be causally linked to Insomnia (β̂ = 0.29, P = 2.7×
10−10) and Anorexia (β̂ = 0.4, P = 6.90× 10−7). Weighted-
mode and Egger did not report these two cases, and CAUSE
only detected a significant causal effect between Neuroticism and
Insomnia (β̂ = 0.14, P = 3.89× 10−6).

Type I Error Control and Statistical Power with Different IV
Thresholds. Existing summary-level MR methods select IVs
based on a P value threshold (or an equivalent t value). In this
section, we would like to highlight the advantages of our method.
Regarding the type I error control, our method is insensitive to
the choice of threshold. Regarding the improvement of statistical
power, our method prefers a loose threshold, and we use P =
5× 10−5 as the default setting in real applications. More details
regarding the default IV threshold in real applications are given
in SI Appendix, section 4.3.

To examine the type I error control of MR-APSS when vary-
ing the IV thresholds, we varied the IV threshold from 5× 10−8

to 5× 10−5 when applying MR-APSS to infer the causal rela-
tionships between 26 complex traits and the 5 negative control
outcomes. As more IVs are involved with a looser IV threshold,
the number of invalid IVs increases because they are prone to
the violation of MR assumptions. However, most of the IVs
were detected by MR-APSS as invalid IVs (Fig. 5A). Since MR-
APSS only uses the valid instrument strength in the foreground
model for causal inference (Zj = 1), the type I error will not
be inflated when more invalid IVs are included. As shown in
Fig. 5B, the P values from MR-APSS for trait pairs between
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26 complex traits and 5 negative control outcomes remain well-
calibrated at different IV thresholds. These results confirm that
the type I error of MR-APSS is insensitive to the IV threshold.
It is important to note that correction of the selection bias is
a critical step to control type I errors in MR-APSS. Without
accounting for the selection bias, the magnitude of the true effect
of a selected SNP is largely overestimated, and it tends to falsely
contribute to the foreground signal (Zj = 1) for causal inference,
thus producing false positives. To verify this, we modified MR-
APSS to ignore selection bias and applied this modified version
to the same trait pairs with negative control outcomes. Without
accounting for the selection bias, the P values produced by the
MR-APSS model given in Eq. 6 become inflated (Fig. 5C ). When
the threshold varies from 5× 10−8 to 5× 10−5, the inflation
of P values becomes more severe because more SNPs will falsely
contribute to the foreground signal. As a comparison, we ran
other summary-level MR methods to the same trait pairs. The
QQ plots are shown in SI Appendix, Fig. S32. Clearly, P values
produced by most summary-level MR methods (except Weighted-
mode) become more inflated when the IV threshold becomes less
stringent.

As P values of MR-APSS are well-calibrated when the IV
threshold varies from 5× 10−5 to 5× 10−8, we can examine
the statistical power of MR-APSS with different IV thresholds.
We applied MR-APSS to infer the causal relationships among
26 complex traits by varying the IV threshold at 5× 10−5,
5× 10−6, 5× 10−7, and 5× 10−8. In general, we find that
the average IV strength (defined in Eq. 11) decreases with the
IV threshold becomes looser, and the total IV strength (defined
in Eq. 12) increases as more IVs are included in the analysis.
We provide two concrete examples to illustrate these points (see
details in SI Appendix, section 4.2 and Fig. S14). As a result, the
statistical power of MR-APSS can be improved by including SNPs
with moderate effects. These results are confirmed in Fig. 5D,
where the number of significant pairs identified by MR-APSS
increases from 16 to 34 when the IV threshold becomes looser
from 5× 10−8 to 5× 10−5.

When investigating the causal relationship among 26 complex
traits, the number of valid IVs, as well as the total IV strength,
increased a lot by changing the IV threshold from 5× 10−8

to 5× 10−5 (Fig. 5A). We found that the social and neurolog-
ical/psychiatric traits can benefit a lot from this property. Despite
the large sample sizes for these traits, the number of IVs is too small
to perform powerful MR analysis when using the IV threshold
P = 5× 10−8. For example, Depression only had a very small
number of IVs using a stringent IV threshold P = 5× 10−8.
When the IV thresholds became looser, the number of selected IVs
and the number of valid IVs increased a lot (Fig. 5E). Although
the average IV strength decreased as the IV threshold became
looser (Fig. 5F ), the total IV strength increased dramatically
(Fig. 5G). We also observed that, due to the limited number
of IVs using a stringent IV threshold P = 5× 10−8, MR-APSS
could not detect a significant causal effect of Depression on
Insomnia (β̂ = 0.197, SE = 0.214, P = 0.358). By using a looser
IV threshold, MR-APSS detected a significant causal relation-
ship between Depression and Insomnia (β̂ = 0.569, SE = 0.139,
P = 4.38× 10−5).

Discussion

In this paper, we have developed a summary-level MR method—
namely, MR-APSS—to perform causal inference. To account
for the confounding bias due to pleiotropy and sample
structure, the background model of MR-APSS inherits the

assumptions of LDSC. MR-APSS also assumes the InSIDE
condition in the foreground model to infer the causal effect,
i.e., rf =Corr(γj ,αj ) = 0. In other words, we assume that
the association between the exposure and the outcome should
be induced by their causal relationship, rather than rf , after
accounting for confounding factors (e.g., correlated pleiotropy
and sample structure) in the background model. Although our
method relies on this assumption to infer the causal effect,
we can empirically check the influence of this assumption via
the following sensitivity analysis. Specifically, we can evaluate
how the estimated causal effect β̂ changes when Corr(γj ,αj )
varies. In this way, users can obtain useful information about
their inferred causal relationship under the perturbation of
assumptions. We provide more details on sensitivity analysis in
SI Appendix, section 1.5 and Fig. S13.

Besides the development of summary-level MR methods, we
are aware of recent developments of individual-level MR meth-
ods, including sisVIVE (42), Two-Stage Hard Thresholding (43),
GENIUS (44), GENIUS-MAWII (45), and Mendelian Random-
ization Mixed-Scale Treatment Effect Robust Identification (46).
We believe that summary-level MR methods and individual-level
MR methods are complementary to each other. On the one hand,
summary-level methods relying on linear models only require
marginal estimates and their SEs. Therefore, they are widely
applicable to screen causal relationships between an exposure and
an outcome. This is important because the access to individual-
level data may be restricted due to privacy protection (47). On the
other hand, individual-level methods can be more powerful than
summary-level MR methods when individual-level data are acces-
sible. First, individual-level MR methods can allow for a more flex-
ible model to handle nonlinearity in causal inference. We are aware
of several nonlinear MR methods using individual-level data (48,
49). Unlike linear MR methods, which approximate a population-
averaged causal effect, the nonlinear MR methods estimate the
localized average causal effects in each stratum of population
using individual-level data. For example, a very recent MR study
applies a nonlinear MR method to investigate whether a nonlinear
model is a better fit for the relationship between diastolic blood
pressure (DBP) and CVD (50). Second, individual-level MR
methods can utilize more information, which is only available
in individual-level GWAS datasets. For example, the individual-
level methods GENIUS (44) and GENIUS-MAWII (45) require
heteroscedasticity of the exposure, but this kind of information is
not available in GWAS summary statistics. We find that GENIUS
and GENIUS-MAWII are robust in the presence of pleiotropy
and sample structure. The estimation efficiency of GENIUS and
GENIUS-MAWII depends on their IV strengths, which are re-
lated to the heteroscedasticity of the exposure. In this regard,
GENIUS and GENIUS-MAWII relax classical MR assumptions
by requiring heteroscedasticity of the exposure, while MR-APSS
relaxes classical MR assumptions by imposing the LDSC assump-
tions in its background model and the InSIDE condition in
its foreground model. Through simulation studies and real data
analyses, we find that GENIUS, GENIUS-MAWII, and MR-
APSS are quite complementary to each other. We provide more
detailed results in SI Appendix, sections 2.3, 3.3, and 4.4. In sum-
mary, we believe that summary-level methods and individual-level
MR methods are complementary to each other, and they jointly
contribute to the MR literature for causal inference. Summary-
level MR methods are often preferred for large-scale screening
of causal relationships, and individual-level MR methods can
provide a closer examination for causal relationships of interest.

Similar to existing summary-level MR-methods, we consider
linear models to perform causal inference, even for binary traits.
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To have better interpretation of the causal-effect estimates for
binary traits, we show that the output from the observed 0–1
scale based on linear models can be transformed to the liability
scale based on the probit models. We provide the details in
SI Appendix, section 1.7.

Despite the improvement of MR-APSS over many existing
MR methods, more research is needed for causal inference with
genetic data. First, the background model is proposed to ac-
count for pleiotropy and sample structure hidden in GWASs
of complex traits. The direct application of this model in some
other contexts may not be suitable. For example, it is of great
interest to infer the causal relationship between gene expression
and complex diseases based on transcriptome-wide MR. However,
it remains unclear what kind of signals should be considered
as the background signals. The development of new statistical
methods for transcriptome-wide MR is highly desirable. Second,
multivariate MR is drawing more and more attention (51, 52).
As some risk factors are known to be related to a certain type
of disease, it is more interesting to ask what other risk factors
can be inferred, conditioning on the known ones. We hope that
MR-APSS can motivate more researchers to uncover more reliable
causal relationships using rich genetic data resources.

Materials and Methods

The MR-APSS Approach. MR-APSS takes GWAS summary statistics{γ̂j , Γ̂j, ŝX,j,

ŝY ,j

∣∣∣|γ̂j/̂sX,j| ≥ t}j=1,...,Mt as input to perform causal inference, where γ̂j and Γ̂j

are the estimated j-th SNP’s effects on exposure X and outcome Y, respectively,
and ŝX,j and ŝY ,j are their SEs; |γ̂j/̂sX,j| ≥ t is the selection criterion to ensure that
SNP j is associated with X; and Mt is the number of SNPs selected as IVs using
a threshold t of z values. To infer the causal effect β of exposure X on outcome
Y, we propose to decompose the observed SNP effect sizes into background and
foreground signals (Fig. 1):(

γ̂j

Γ̂j

)
= Zj

(
γj

βγj + αj

)
Uncorrelated
pleiotropy︸ ︷︷ ︸

Foreground

+

(
uj

vj

)
Polygenicity
Correlated

pleiotropy

+

(
εj

ξj

)
Sample structure

(Population stratification,
cryptic relatedness,

sample overlap etc.)︸ ︷︷ ︸
Background

, [1]

where uj and vj are the polygenic effects of SNP j on X and Y, εj and ξj are the
estimation errors of SNP effect sizes, γj is the remaining SNP effect on exposure
X as the instrument strength,αj is the direct SNP effect on outcome Y, and Zj is a
Bernoulli variable indicating whether SNP j has a foreground component (Zj = 1)
or not (Zj = 0).

The Background Model of MR-APSS. To model polygenic effects and their
correlation induced by pleiotropy (Fig. 1B), we assume a variance component
model

p (uj, vj|Ω) =N
((

uj

vj

) ∣∣∣0, Ω
)

, with Ω=

(
σ2

u rgσuτv

rgσuτv τ 2
v

)
, [2]

where (uj, vj) are random effects from a bivariate normal distribution with mean
vector 0 and covariance matrix Ω, rg is the genetic correlation induced by
pleiotropic effects between X and Y, and σ2

u and τ 2
v are the variance of polygenic

effects on X and Y, respectively. To account for bias and correlation in estimation
errors due to sample structure, we consider the following model:

p
(
εj, ξj|C, Ŝj

)
=N

((
εj

ξj

) ∣∣∣0, ŜjCŜj

)
, [3]

where Ŝj =

(
ŝX,j 0
0 ŝY ,j

)
, C =

(
c1 c12

c12 c2

)
, and the parameters c1 and c2 are

used to adjust the bias in estimator errors, and c12 accounts for the correlation

between the estimation errors. In the presence of population stratification and
cryptic relatedness, c1 and c2 will deviate from one (typically larger than one).
Moreover, either population stratification or sample overlap can induce covari-
ance between the estimation errors, resulting in nonzero c12.

Under the assumptions of LDSC (16), we can exploit the LD structure of the
human genome to account for confounding factors in the background model.
Let 	j =

∑
k r2

jk be the LD score of SNP j, where rjk is the correlation between
SNP j and SNP k. The key idea to adjust LD effects is based on the fact that the
true genetic effects are tagged by LD, while the influence of sample structure is
uncorrelated with LD. Then, we show that our background model (Zj = 0) can be
written as (SI Appendix, section 1.1)

p(γ̂j, Γ̂j|Ω, C, Ŝj, 	j) =N
((

γ̂j

Γ̂j

) ∣∣∣0, 	jΩ+ ŜjCŜj

)
, [4]

where pleiotropy and sample structure are captured by the first-order and zero-
order terms of the LD score, respectively. Therefore, both Ω and C in the back-
ground model are pre-estimated by LDSC using genome-wide summary statistics
(SI Appendix, section 1.4.1). As observed in real data analysis, pleiotropy and
sample structure are two major confounding factors for causal inference. We
provide more discussion about the asymptotic distribution of summary statistics
after principal component adjustment in SI Appendix, section 1.9.

The Foreground Model of MR-APSS. By accounting for confounding factors
using the background model, we only need three mild assumptions on instru-
ment strength γj and direct effect αj to infer causal effect β, as shown in Fig. 1A.
First, there exist some nonzero values in {γj}j=1,...,Mt . Second, the strengths
of instruments {γj}j=1,...,Mt are independent of confounding factors. Third, the
instrument strengths are independent of the direct effects (InSIDE condition),
i.e.,(γ1, . . . , γMt ) |= (α1, . . . , αMt ). Although our assumptions seem similar to
those of existing methods, they are only imposed to the foreground signal, and,
thus, they are much weaker than existing MR methods. Specifically, we assume
that γj and αj are normally distributed and independent of each other:

p (γj, αj|Σ) =N
((

γj

αj

) ∣∣∣0, Σ
)

, where Σ=

(
σ2 0
0 τ 2

)
. [5]

The Foreground–Background Model of MR-APSS. Now, we combine the
background model and the foreground model to characterize the observed SNP
effect sizes (γ̂j, Γ̂j). Let π0 = p(Zj = 1) be the probability that SNP j carries the
foreground signal. Combining Eqs. 1, 2, 3, and 5 and integrating out γj, αj, uj,
vj, εj, ξj, and Zj, we have the following probabilistic model:

p(γ̂j, Γ̂j|π0, β, Σ, Ω, C, Ŝj, 	j)

= π0N
((

γ̂j

Γ̂j

) ∣∣∣0, 	jA(β)ΣA(β)T + 	jΩ+ ŜjCŜj

)

+ (1 − π0)N
((

γ̂j

Γ̂j

) ∣∣∣0, 	jΩ+ ŜjCŜj

)
,

[6]

where A(β) =
(

1 0
β 1

)
. A detailed derivation for Eq. 6 is given in

SI Appendix, section 1.2. The theoretical justification of the uniformity of the
approximated distribution for (γ̂j, Γ̂j) in Eq. 6 for j = 1, . . . , Mt is given in
SI Appendix, section 1.8.

Accounting for Selection Bias in MR-APSS. Recall that SNPs are selected
based on a P value threshold, or, equivalently, a threshold t of z score,
i.e., |γ̂j/̂sXj | ≥ t. This selection process introduces nonignorable bias, i.e.,

E(γ̂j

∣∣∣|γ̂j/̂sXj | ≥ t) �= γj, which has been known as the winner’s curse

in GWAS (28, 53). To correct the selection bias in MR, we further take
into account the selection condition |γ̂j/̂sXj | ≥ t. After some derivations
(SI Appendix, section 1.3), model [6] becomes a mixture of truncated normal
distributions:
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p
(
γ̂j, Γ̂j

∣∣∣|γ̂j/̂sXj | ≥ t, πt , β, Σ, Ω, C, Ŝj, 	j

)

= (1 − πt)

N
((

γ̂j

Γ̂j

) ∣∣∣0, 	jΩ+ ŜjCŜj

)

2Φ
(

−t̂sX,j√
�jσ

2
u+ŝ2

X,j

)

+ πt

N
((

γ̂j

Γ̂j

) ∣∣∣0, 	jA(β)ΣA(β)T + 	jΩ+ ŜjCŜj

)

2Φ

⎛
⎝ −t̂sXj√

�jσ
2+�jσ

2
u+ŝ2

Xj

⎞
⎠

,

[7]

whereπt = p(Zj = 1
∣∣∣|γ̂j/̂sXj | ≥ t) is the probability that the j-th SNP carries the

foreground signal after selection.

Parameter Estimation and Statistical Inference. In MR-APSS, the parame-
ters of Ω̂ and Ĉ in the background model are estimated by LDSC using genome-
wide summary statistics. Given Ω̂ and Ĉ, the log-likelihood function of the

observed data Dt = {γ̂j, Γ̂j, ŝX,j, ŝY ,j

∣∣∣|γ̂j/̂sX,j| ≥ t}j=1,...,Mt can be written as:

L(θ|Dt) =

Mt∑
j=1

log
[
(1 − πt)

N
((

γ̂j

Γ̂j

) ∣∣∣0, �jΩ̂+ ŜjĈŜj

)

2Φ

(
−t̂sX,j√

�jσ
2
u+ĉ1 ŝ2

X,j

)

+ πt

N
((

γ̂j

Γ̂j

) ∣∣∣0, �jA(β)ΣA(β)T + �jΩ̂+ ŜjĈŜj

)

2Φ

(
−t̂sX,j√

�jσ
2
u+�jσ

2+ĉ1 ŝ2
X,j

) ]
.

[8]

To obtain the maximum likelihood estimate of model parameters θ =
{β, πt ,Σ}, we then derive an efficient expectation-maximization algorithm
(see details in SI Appendix, section 1.4.2). As a by-product, we can estimate the
numbers of valid IVs and invalid IVs as π̂tMt and (1 − π̂t)Mt , respectively. Real
data results of the estimated numbers of valid and invalid IVs are shown in Fig. 5A.
The posterior of SNP j serving as a valid IV can be estimated as p(Ẑj = 1|Dt),
as shown in dark blue in Fig. 1D. The likelihood ratio test can be conducted to
examine the existence of the causal effect. Considering the following hypothesis
test:

H0 : β = 0 v.s. H1 : β �= 0, [9]

the likelihood-ratio test statistic is given by

T = 2
(

L(θ̂|Dt)− L(θ̂0|Dt)
)

, [10]

where θ̂ and θ̂0 are the parameter estimates obtained under hypotheses H1 and
H0, respectively. Under the null hypothesis H0, the test statistic T is asymptotically
distributed as χ2

df=1, and its P value can be obtained accordingly.

IV Strength. The performance of MR methods depend on the instrument
strength. For MR-APSS, we define

average strength of IVs = E

⎡
⎣ 1

Mt

Mt∑
j=1

Zjγ
2
j

∣∣∣∣∣∣ t

⎤
⎦, [11]

total strength of IVs = E

⎡
⎣ Mt∑

j=1

Zjγ
2
j

∣∣∣∣∣∣ t

⎤
⎦, [12]

which measure the average/total IV strength for those Mt SNPs with the selection
criterion (|γ̂j/̂sX,j| ≥ t). Given the observed summary statistics and the selection
criterion t, we can use MR-APSS to obtain the posterior distributions of (γj, Zj).
Therefore, we can obtain the estimates of average IV strength and total IV strength
defined in Eq. 11 and Eq. 12. According to the above definitions, the average and
total IV strengths depend on both the IV threshold and sample size. In general, we
find that the average IV strength decreases when the IV threshold becomes looser,
and the total IV strength increases as more IVs are included in the analysis. Our
definitions of IV strengths for the MR-APSS model are closely connected to the IV
strengths defined in the MR literature (see details in SI Appendix, section 2.5).

Data and Code Availability. All the GWAS summary statistics used in this
paper are publicly available. The URLs for downloading the datasets are summa-
rized in SI Appendix, Table S2. All study data are included in the article and/or
supporting information. The MR-APSS software, the datasets, and sources codes
for replicating the real data analysis are available at GitHub (https://github.com/
YangLabHKUST/MR-APSS).
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