
Systems biology

Inferring the experimental design for accurate gene

regulatory network inference
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Abstract

Motivation: Accurate inference of gene regulatory interactions is of importance for understanding the mechanisms
of underlying biological processes. For gene expression data gathered from targeted perturbations, gene regulatory
network (GRN) inference methods that use the perturbation design are the top performing methods. However, the
connection between the perturbation design and gene expression can be obfuscated due to problems, such as ex-
perimental noise or off-target effects, limiting the methods’ ability to reconstruct the true GRN.

Results: In this study, we propose an algorithm, IDEMAX, to infer the effective perturbation design from gene ex-
pression data in order to eliminate the potential risk of fitting a disconnected perturbation design to gene expres-
sion. We applied IDEMAX to synthetic data from two different data generation tools, GeneNetWeaver and
GeneSPIDER, and assessed its effect on the experiment design matrix as well as the accuracy of the GRN inference,
followed by application to a real dataset. The results show that our approach consistently improves the accuracy of
GRN inference compared to using the intended perturbation design when much of the signal is hidden by noise,
which is often the case for real data.

Availability and implementation: https://bitbucket.org/sonnhammergrni/idemax.

Contact: erik.sonnhammer@dbb.su.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulatory interactions control many of the in vivo biochem-
ical mechanisms, and thus play a key role in most processes in living
organisms. Interruptions of these mechanisms can result in several
diseases including cancers (Emmert-Streib et al., 2014; Price et al.,
2010; Sonawane et al., 2019). Therefore, identification of these
regulatory interactions spearheads the way to understand the nature
of the genetic diseases and ultimately cure them. The interactions be-
tween regulators and their targets form a system called a gene regu-
latory network (GRN), and the underlying mechanism of the system
can be revealed by the accurate inference of these GRNs. For this
reason, GRNs can be considered as a key factor in understanding
and separating the pathological mechanisms from physiological.
Through this understanding, GRNs can also be used to directly pro-
pose targets for potential treatments.

Inference of GRNs can be performed from gene expression data
where each gene’s expression is altered by knockdown or

overexpression experiments, such as via shRNAs, siRNAs or small
molecules i.e. drugs. Such experiments are generally referred to as
gene perturbations. There exists a variety of GRN inference meth-
ods, some of which require knowledge of the targets of the perturba-
tions as input, and some that do not. The most popular examples of
the first type, requiring known perturbations, include LASSO
(Friedman et al., 2010; Tibshirani, 1996), least squares with cut-off
(Tjärnberg et al., 2013) and ridge regression (Friedman et al., 2010).
Popular examples of the latter type, not needing known perturba-
tions, include GENIE3 (Huynh-Thu et al., 2010), ARACNe
(Margolin et al., 2006) and Context Likelihood of Relatedness
(CLR) (Faith et al., 2007). It has previously been shown that meth-
ods of the first type are able to achieve perfect GRN inference accur-
acy under good conditions (Tjärnberg et al., 2017, 2015), which is
an advantage over the latter type whose performance remained lim-
ited in previous benchmarks (Greenfield et al., 2010; Guo et al.,
2016; Marbach et al., 2012; Schaffter et al., 2011). However, a
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potential problem for the first type of methods is that the design of
the perturbation, even if targeted at single genes and in principle
known, may not be representative. This can be due to either random
noise or biases from experimental error, such as off-target effects,
both potentially confounding the true effect of the perturbation in
the gene expression data. This can lead to suboptimal GRN infer-
ence when the method fails to fit the experimental perturbation de-
sign to the noisy gene expression. In more technical terms this
problem can be attributed to regression dilution bias. A dilution bias
is a common problem in linear regression when there is too much
random noise between the observed effect and the predictor, here
gene expression and the perturbation. The effect of this bias is that
the fitted values are incorrectly forced toward zero, which for GRN
inference means losing out on explanatory edges (Rennolls, 1990).
Regression dilution is very common in biological fields that use lin-
ear regression to explain their observed effect, yet it is often not
accounted for, which leads to poorer performance of the models
(Hutcheon et al., 2010).

In this study, to overcome the aforementioned problem with de-
sign-utilizing GRN inference methods, we developed an algorithm
that infers the perturbation from the gene expression data. It is
called IDEMAX for ‘Infer DEsign MAtriX’. The method works by
capturing the alteration of a gene’s expression in relation to its over-
all distribution when compared over multiple experiments. The
inferred perturbation design matrix is then used as input to the
GRN inference method, replacing the intended one. We show that
the method can correctly predict the majority of the perturbations
for cases with low noise. Although it tends to yield a rather different
perturbation design matrix for cases with high noise, this still sub-
stantially improves accuracy of the GRN inference compared to
when using the intended perturbation design matrix.

2 Materials and methods

2.1 Algorithm
The IDEMAX perturbation design matrix inference method, as
applied here, assumes that a known number of replicates of gene
perturbations have been performed for each gene, as this is a com-
mon setup. The method finds the expression values that are the most
different from the rest for a given gene, and considers these as the
experiments where the gene was perturbed. It statistically tests each
fold change expression value against the distribution of all the other
expression values of the gene using a Z-score approach (Eq. 1). The
approach is inspired by previous work that have shown that a Z-
score approach excels at outlier detection in distributions
(Cousineau and Chartier, 2010; Misra et al., 2020; Shiffler, 1988).
The highest absolute Z-score value among all is considered to be the
most different gene expression, suggesting that the gene was

perturbed in that position. Depending on the number of the repli-
cates per gene, this many top absolute Z-scores are used to identify
the experiments where a gene was perturbed. By doing this for each
gene in the expression matrix, IDEMAX is able to identify the per-
turbation matrix P. P is a sparse matrix of the same size as the input
expression data with n non-zero values in each row, where n is the
requested number of replicates for each gene. To capture the effect
of the perturbation the sign of the Z-score is assigned to the corre-
sponding cell in the inferred P matrix, where -1 indicates knock-
down/knockout and þ1 overexpression perturbation.

Z
jð Þ

i ¼
x

jð Þ
i � l !jð Þ

i

r !jð Þ
i

; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M (1)

In Equation 1, Z
jð Þ

i refers to the Z-score value of the ith gene for the
jth experiment. The Z-score is calculated over the mean (l) and
standard deviation (r) of all the other measurements of the ith gene
excluding the jth one, which is denoted as (!j). Here N is the number
of genes and M the number of experiments.

By assigning the specified number of perturbations to each gene,
we make sure that this number is preserved within the gene.
However, we introduce a potential problem where some experi-
ments might be assigned to multiple target genes and some experi-
ments may not be assigned to any target genes in a set of single gene
perturbation experiments. While this does occur (Supplementary
Figs. 1 and 7), the results show that this potential drawback does
not have a negative effect on the GRN inference accuracy, as they
are either the same or improved. Therefore, such situations are
allowed in the pipeline, and no optimizations are done. Even though
the inferred P matrix is not strictly one experiment—one target, it is
meant to better correspond to the effective perturbations.

2.2 Synthetic network and data generation
Throughout the process of developing and maturing our approach,
we used synthetic datasets that are connected to an intended design
matrix and a true GRN, which is required to measure the accuracy
of the predictions. For the generation of these synthetic networks
and datasets, we used both the GeneNetWeaver (GNW) network
and data generation tool (Schaffter et al., 2011), and the
GeneSPIDER Matlab toolbox (Tjärnberg et al., 2017). We gener-
ated five different networks for each size of 100, 150 and 200 genes
with GNW, and 100, 250 and 500 genes with GeneSPIDER. Note
that the difference in sizes of the networks is due to using different
network and data generation tools. This selection was made to en-
sure that at least 50% of all genes are regulators, which in GNW
limits the size to around 200. As GeneSPIDER does not have this
limitation, it allows benchmarking on larger datasets. For GNW the
true networks come from the Escherichia coli network where at

Fig. 1. The workflow of the IDEMAX P matrix inference algorithm
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least half of the number of genes are set to be transcription factors,
and the datasets are generated from a stochastic model followed by
theaddition of Gaussian noise. Due to the limitation of not having
biological replicates through GNW, we generated three datasets from the
same true network and merged those as if they were replicates of the
same dataset. The true GeneSPIDER networks are generated from a
scale-free topology with �3 links per gene on average where unlike
GNW each gene is considered a potential regulator, and the datasets are
generated by applying a linear model where the negative pseudoinverse of
the true network is multiplied by the P matrix with three replicates per
gene, and Gaussian noise was added. Datasets from both GNW and
GeneSPIDER were separated into two categories: data with higher vari-
ance and data with lower variance. For a detailed list of the parameters
used in the network and data generation with both GNW and
GeneSPIDER, see Supplementary Notes S1 and S2.

2.3 Performance evaluation of the inference
After the P matrix was inferred, prediction accuracy was calculated
in two ways: (i) the global true positive rate (TPRGlobal) of the num-
ber of correctly predicted perturbations over the number of total
perturbations in the intended design (Eq. 2a). Here this measure-
ment also corresponds to precision and F1-score because the same
amount of predictions is made as there are intended perturbations,
causing the number of false positives to equal the number of false
negatives. (ii) The one-replicate true positive rate (TPROnerep) of the
number of cases where at least one perturbation of the gene’s repli-
cates is correctly predicted, averaged over the total number of genes
(Eq. 2b). The inferred P matrices were compared to the intended
ones one-by-one for each single cell in the matrix, in terms of both
TPRGlobal and TPROnerep.

TPRGlobal ¼
PM

j¼1 TP jð ÞPM
j¼1 TP jð Þ þ

PM
j¼1 FN jð Þ

(2a)

TPROnerep ¼
1

N

XN

i¼1
TP ið Þ; TP ið Þ

¼ 1; if
XW

w¼1
TP wð Þ � 1; 0; else

n o
(2b)

In Equation 2a, M corresponds to the number of experiments, in
other words number of total perturbations, and TP corresponds to
the number of correctly predicted perturbations while FN refers to
not predicting a perturbation when it exists in the intended P ma-
trix. In Eqution 2b, N is the number of genes; TP ið Þ is a binary an-
swer that is ‘1’ when at least one perturbation out of W replicates of
one gene’s perturbation is correctly predicted and ‘0’ when no per-
turbation out of W is correctly predicted. Overall, TPRGlobal corre-
sponds to the total number of correctly predicted perturbations
divided by the total number of experimental perturbations, and
TPROnerep denotes the number of cases where at least one perturb-
ation is correctly predicted out of the number of gene’s replicates
divided by the number of genes.

2.4 GRN inference methods
Five different GRN inference methods were used in this study, three
design-utilizing methods: least squares with cut-off (LSCO), LASSO
and ridge regression with cut-off (RidgeCO) (Tibshirani, 1996;
Tjärnberg et al., 2013), and two testing methods: Genie3 and
Context Likelihood of Relatedness (CLR) (Faith et al., 2007;
Huynh-Thu et al., 2010). For all methods, the wrappers available in
the GeneSPIDER Matlab toolbox were used. GRN inference for all
methods was performed by inferring 20 networks to fulfill a set of
different sparsities ranging from full-to-empty for each single run,
and the inference accuracy was calculated by comparing these net-
works to the true GRN and representing each as a point in the ROC
and precision-recall curves.

2.5 Performance evaluation of the GRN inference
To investigate the effect of the inferred P matrix on the accuracy of
the GRN inference, GRN inference was performed on three different

versions of the generated synthetic data: (i) the data with the
intended perturbation design, (ii) the data with a broken connection
between the gene expression and its perturbation design, (iii) the
data using the perturbation design matrix inferred by IDEMAX.
The accuracy of all inferences with the two different perturbation
designs and the random control were calculated in terms of the area
under the receiver operating characteristics curve (AUROC) and the
area under the precision-recall curve (AUPR) values in comparison
to a known true network.

2.6 Significance of the GRN inference accuracy
In order to test whether the improvement in GRN inference accur-
acy achieved by using the perturbation design inferred by IDEMAX
is significant, we performed an unpaired two-samples two-sided
Wilcoxon test, and calculated the P-values in 95% confidence inter-
vals. Selection of a non-parametric test was made due to the small
sample size, that is 15 observation points for combinations of three
GRN inference methods and five datasets. The significance testing
was performed between intended and inferred, intended and ran-
dom, and inferred and random perturbations for both AUROC and
AUPR. The P-values are given in Table 1 for the high variance data
and in Supplementary Table S1 for the low variance data.

2.7 Perturbation inference on real data
IDEMAX was applied to a biological dataset for a nine-gene subnetwork
of the SOS pathway in E.coli (Gardner et al., 2003), followed by GRN in-
ference and accuracy calculation. The data were collected through overex-
pression experiments, and an experimentally supported GRN for the
dataset is available, allowing us both to assess the overlap between the
intended and inferred perturbations and to calculate the accuracy of
GRN inference. The same measurements as above, AUROC and AUPR,
were used for the accuracy evaluation, and the comparison between the
intended and inferred perturbations was made using the heatmap visual-
ization allowed by the small data sizes.

2.8 Perturbation inference on data from DREAM5
IDEMAX was applied to subsets of DREAM5 in silico and E.coli
datasets consisting of knockout and overexpression perturbations
on single and multiple target experiments. The accuracy of the per-
turbation design inference was measured with the same global and
one-replicate true positive rates as before, and accuracy of GRN in-
ference was evaluated in terms of AUPR in order to allow for a com-
parison to the original challenge publication (Marbach et al., 2012).
Subset data collection pipeline and analysis results are given in
Supplementary Section S4.

3 Results

The performance of the method for inferring the design matrix P was
benchmarked in two ways: first by evaluating how well it can reconstruct
the intended P matrix, and second by measuring its effect on accuracy of
GRN inference. Both benchmarks were performed for two data catego-
ries, namely with higher and lower variance.

The first benchmark uses synthetic data and calculates the true posi-
tive rates (TPRs) of links in the inferred P matrix relative to the intended
P as specified in Equations 2a and 2b. Datasets of three different sizes for
GeneNetWeaver (100, 150 and 200 genes) and three different sizes for
GeneSPIDER (100, 250 and 500 genes) were benchmarked.

For the lower variance data, the overlap between the intended
and inferred P matrices is high, reaching a TPR near 1, indicating
that the intended P matrix is well represented by the data and that
the inferred P successfully captures this when the noise level is low
(Supplementary Fig. S8). For the higher variance data however, the
global true positive rates for all sizes in the GNW and GeneSPIDER
data(Fig. 2) are below 0.07, meaning that most perturbations are
inferred differently than in the intended P. The one-replicate TPRs
are higher, yet stay below 0.09 for GNW data and 0.19 for
GeneSPIDER data. This still means that more than 80% of the gene
expression did not correspond to the intended perturbations,
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indicating that the intended P matrix is poorly represented by the
data and that the inferred P captures other information.

The second benchmark measured the effect on accuracy of GRN
inference that inferring the P matrix has, compared to the intended
P matrix. For this purpose the same simulated datasets from GNW

and GeneSPIDER were used. In order to provide a control, we also
inferred GRNs from datasets where the connection between the
gene expression and perturbation design was broken by random
shuffling, and calculated the inference accuracy. GRN inference ac-
curacy was measured in terms of the area under the receiver-operat-
ing-characteristic and precision-recall curves (AUROC and AUPR,
respectively).

The results show that despite a very low overlap between
intended and inferred P matrices, the inferred P matrix gives sub-
stantially higher accuracy of GRN inference for all datasets (Fig. 3).
The largest improvement is seen for the 100-gene GeneSPIDER data
where the median AUROC increased from 0.50 to 0.64 and the me-
dian AUPR from 0.05 to 0.33. The AUROC and AUPR values differ
significantly between GRN inference using intended and inferred P
matrices, as well as between inferred and random P matrices in all
cases (Table 1). Between intended and random P matrices, AUROC
was not significant for 100- and 200-gene datasets from GNW and
for the 100-gene datasets from GeneSPIDER data while significant
for other sizes, and AUPR values were only significant for the 250-
and 500-gene GeneSPIDER datasets.

GNW and GeneSPIDER are fundamentally different from each
other in their data generation approach, resulting in different data
properties, such as signal-to-noise ratio, variance and condition
number (Fig. 4 and Supplementary Fig. S6 for the higher and lower
variance datasets, respectively). Despite these differences, our
method identified a P matrix that yielded more accurate GRNs than
the intended P for data from both generators. As expected, for low
variance data where the inferred and intended P are similar, the
GRN inference accuracy was also similar (Supplementary Fig. S9).
The accuracy levels are approximately the same for low and high
variance with IDEMAX, whereas they drop substantially when
using the intended P for the high variance data. Therefore, the vari-
ance appears to be the main determining factor for the observed im-
provement by IDEMAX as it can improve the accuracy of GRN
inference from data with high variance up to the accuracy level seen
for low variance data.

We further applied IDEMAX to a public experimental dataset
for the nine-gene subnetwork of the SOS pathway in E.coli
(Gardner et al., 2003). Here it identified almost the same P matrix
as the intended one (Supplementary Fig. S10). Noteworthy, a single
change in the position of a perturbation in the P matrix caused more
true links to be captured, resulting in a clear improvement in the ac-
curacy of the inferred GRN in terms of AUROC and AUPR (Fig. 5).
The results indicate that even a slight alteration in the perturbation
design matrix can lead to a considerable improvement in the follow-
ing GRN inference.

3.1 Application to DREAM5 data
The analyses on the DREAM5 subsets supported the results pre-
sented here as for the in silico subset data a similar perturbation ma-
trix was inferred by IDEMAX which led to a similar GRN inference
accuracy, and for the E.coli subset data IDEMAX inferred a rather

Table 1. Significance of difference in AUROC and AUPR between the inferred, intended and random GRN predictions for high variance data

AUROC AUPR

Data

generation tool

Number

of genes

Intended

versus inferred

Intended

versus random

Inferred

versus random

Intended

versus inferred

Intended

versus random

Inferred

versus random

GNW 100 0.00* 0.27 0.00* 0.00* 0.16 0.00*

150 0.00* 0.00* 0.00* 0.00* 0.16 0.00*

200 0.00* 0.05 0.00* 0.00* 0.41 0.00*

GeneSPIDER 100 0.00* 0.19 0.00* 0.00* 0.20 0.00*

250 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

500 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*

Note: P-values were obtained from the two-tailed unpaired Wilcoxon test with a ¼ 0.05.

*Statistical significance.

Fig. 2. Comparison between the intended and inferred perturbations. True positive

rates using data from (a) GeneNetWeaver and (b) GeneSPIDER datasets were calcu-

lated either globally for all replicates or when one correctly predicted replicate was

considered sufficient
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different perturbation design resulting in improved GRN inference
accuracy (Supplementary Fig. S11).

We investigated potential biological reasons behind the differen-
ces between the intended and inferred perturbation matrices on the
DREAM5 E.coli subset. Of the 66 gene pairs where the intended
and inferred perturbation designs had different target genes for an
experiment, 8% were in the DREAM5 gold standard (P<2.2 �
10-16), suggesting that some perturbations may bleed over to
coupled genes in the system that display a stronger effect at steady
state than the intended target. This could happen if the intended tar-
get is under stronger homeostatic control via feedback mechanisms
(Supplementary Note S4.2).

3.2 Application of GRN inference methods not requiring

a P matrix
To test whether a GRN inference method that does not require
knowledge of the perturbation can result in higher accuracy than
was achieved by methods that do, we inferred GRNs using Genie3
and Context Likelihood of Relatedness (CLR), using the high vari-
ance GeneNetWeaver and GeneSPIDER datasets. The results in
terms of AUROC and AUPR are given in Supplementary Figure S5.
It can be seen that these methods are outperformed by IDEMAX.
The low performance can in part be explained by the existence of

selfloops in the true GRNs, while selfloops are not predicted by
these methods, causing false negatives.

4 Discussion

The perturbation design information is used in many GRN inference
methods, some of which have been previously shown to perform
highly accurately (Tjärnberg et al., 2017).

For real biological data, the perturbation design is often thought
to be known, especially if the perturbations are performed through
knockdown/knockout or overexpression experiments. However, ex-
perimental noise that masks the perturbation effect as well as off-
target effects of the perturbations can break the connection between
the intended perturbation design and the measured gene expression,
which might introduce an obstacle in inferring the underlying
GRNs. Another reason that the inferred design can be different from
the intended is that the perturbation may bleed over to coupled
genes in the system that display a stronger effect than the intended
target, for instance if the intended target is under stronger homeo-
static control. We have found evidence that this happens, see
Supplementary Note S4.2. In the presence of high noise, other GRN
inference methods which do not require knowledge of the perturb-
ation design may also fail to identify any accurate GRNs. To allevi-
ate this situation, we developed a P matrix inference method,

Fig. 3. Accuracy of GRN inference. (a) AUROC and (b) AUPR on GeneNetWeaver data and (c) AUROC and (d) AUPR on GeneSPIDER data. Each box contains combined

values from three inference methods: least squares with cut-off (LSCO), LASSO and RidgeCO, and 5 different datasets for a total of 15 observations. Individual performances

of the inference methods are given in Supplementary Figures S2–S4
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IDEMAX, based on a Z-score approach, detecting a predefined
number of perturbations for each gene in the columns where its fold
change diverges the most from the distribution of the remaining
genes in the system.

The inferred design matrix P is meant to replace the intended P matrix
as an input to design-utilizing GRN inference methods, such as least
squares, LASSO and ridge regression. The IDEMAX design matrix
bypasses potential shortcomings of the intended perturbation design
which may not be appropriate for noisy or biased gene expression data,
and allows the GRN inference methods to more accurately reconstruct
the underlying GRNs. IDEMAX can be used by any design-utilizing

GRN inference method, but unfortunately not by methods, such as
Genie3 that do not take the design matrix into account.

We note that IDEMAX does not assume normality when apply-
ing Z-scores, but the Z-scores are only used for ranking and not for
any statistical significance analysis. Potential alternatives to our ap-
proach include using median instead of the mean, or the absolute
distance to the median under jackknifing. However, preliminary
testing suggested that the taken approach was most favorable.

Also note that IDEMAX may result in multiple targets being
assigned to one experiment while some experiments are not assigned
to any targets. Despite this possibility, the assigned number of tar-
gets per experiment is typically low, with less than 3% of the experi-
ments in the used data assigned to more than 3 target genes. As this
means that the P matrices inferred by IDEMAX are largely realistic,
we did not introduce any restrictions to force the inferred P matrix
to be one target per experiment, especially given that drug perturba-
tions rarely target single genes.

In the presence of high variance, IDEMAX yields P matrices
with low overlap to the intended P matrix. Even though this could
suggest a potential failure of the proposed algorithm, the situation is
in fact the opposite, as a low overlap between the inferred and
intended perturbations is needed for improving the GRN inference.
Due to the high noise level in the fold change gene expression that
corresponds to the dependent variable in the regression model, the
intended perturbation design does not constitute a well enough fit to
the data, resulting in suboptimal GRN inference. Therefore, in the
presence of high noise levels, finding a different P matrix relates to
the success of the method rather than a potential failure. When the
variance was lower and the regression dilution situation is no longer
relevant for such data, IDEMAX had much higher overlap with the
intended perturbations, resulting in similar GRN inference accura-
cies with no statistically significant difference. For high variance
data, IDEMAX yields a perturbation design better fitting the under-
lying gene expression data than the intended design, meaning that
low overlap between the two is welcome and beneficial for overcom-
ing any potential drawback that the regression dilution may intro-
duce, as for improved GRN accuracy.

A key finding here was that the accuracy of perturbation infer-
ence remained very similar between the two data generation tools
despite the differences in the data properties used for this study. This
supports the generality of IDEMAX as it was capable of inferring
significantly more accurate GRNs regardless of the source and prop-
erties of the data. The only data property that caused substantial dif-
ferences across datasets was the variance.

The application of IDEMAX to experimental data for the SOS
pathway added further support to the algorithm as a slightly differ-
ent P matrix was inferred and a clear improvement was observed in
the inferred GRN’s accuracy in terms of both AUROC and AUPR.
Even though the dataset was much smaller than the synthetic data-
sets, it illustrates what a large effect a single perturbation design
change can cause. It should be highlighted that in a gene regulatory
network, genes and their interactions are dependent on each other,
allowing a single change in the position of a perturbation to recover
many more true positives than before.

The biases introduced by the experimental noise or any other
kind of experimental artefacts can be overcome by IDEMAX, and
the inferred P matrix can improve the accuracy of the GRN infer-
ence significantly when used as an input to a design-utilizing GRN
inference method instead of the intended P matrix. In conclusion,
given that high noise levels is one of the biggest obstacles in the in-
ference of accurate GRNs and that real data usually comes with a
high level of experimental noise, IDEMAX introduces a welcome
advance to the field by ameliorating this situation.
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Fig. 4. Distributional characteristics of the 100-gene GeneNetWeaver (GNW) and

GeneSPIDER datasets with higher variance used in the main article file in compari-

son. (a) Noise-free gene expression versus noise both in base 2 logarithm of the fold

change for the GeneNetWeaver data and (b) noise-free gene expression versus noise

both in base 2 logarithm of the fold change for the GeneSPIDER data. (c) Properties

of the GNW and GeneSPIDER datasets (fold change gene expression data including

noise). Signal-to-Noise Ratio was calculated according to (Tjärnberg et al., 2017).

Total variance refers to the variance of the gene expression matrix as a whole,

whereas variance between replicates is the mean value of all intra-replicate

variances

Fig. 5. Application to biological data. GRN inference accuracy in terms of (a)

AUROC and (b) AUPR using intended and inferred P matrices and gene expression

data for the nine-gene subnetwork of the SOS pathway in E.coli. To visualize the

improvement by IDEMAX, true positives in GRNs inferred by RidgeCO are shown

using the (c) intended and (d) inferred P matrices
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