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Abstract
To construct and validate a ferroptosis-associated signature predictive of prognosis in lung adenocarcinoma (LUAD), and
systematically evaluate the underlying molecular connections in cancer biology.
We retrievedmRNAs sequencing profiles of LUAD from the cancer genome atlas (TCGA) data portal and clinical information from

the cBio Cancer Genomics Portal. The differentially expressed ferroptosis-associated genes (DEFAGs) were screened between
normal samples and LUAD by packages “limma” in R. Then the total TCGA cohort was randomly divided into training set and testing
set. Based on the training set, a DEFAG signature was built and further validated in the test set, the total TCGA cohort and other
independent cohorts from the gene expression omnibus data portal. A nomogram was constructed and validated, and the
correlation between high-risk group and cancer biology was further evaluated.
We initially identified 68 DEFAGs from TCGA cohort. A 6 DEFAG signature was built and further validated in the test set, the total

TCGA cohort and other 2 independent cohorts including GSE31210 and GSE72094 from gene expression omnibus data portal.
Further exploration indicated that high-risk group combined with TP53 mutation harbored the most unfavorable prognosis while
low-risk group with TP53 wild-type status had the most favorable survival advantage over other groups. Moreover, high-risk group
was associated with higher cancer stemness, tumor mutation burden, and CD274 (programmed cell death 1 ligand 1) expression.
We constructed a robust ferroptosis-associated gene signature and a nomogram predictive of prognosis in LUAD, and provided

a new perspective on associations between ferroptosis and cancer.

Abbreviations: AJCC = American joint committee on cancer, DEFAGs = differentially expressed ferroptosis-associated genes,
DEGs = differently expressed genes, GSEA = gene set enrichment analysis, ICIs = immune checkpoint inhibitors, LUAD = lung
adenocarcinoma, mRNAsi = stemness index based on mRNA expression, OS = overall survival, PDCD1(PD1) = programmed cell
death 1, PDL1= programmed cell death 1 ligand 1, ROC= receiver operator characteristic, TCGA= the cancer genome atlas, TMB
= tumor mutation burden.
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1. Introduction

Lung cancer remains a major public health problem worldwide
and is the leading cause of cancer-related mortality in human,
accounting for 228,820 estimated new cases and 135,720
estimated deaths in 2020 in the United States nationally.[1] Lung
adenocarcinoma(LUAD) isoneof themost commonnonsmall cell
lung carcinoma types, which account for almost 85% of all lung
cancer cases.[2] Although various therapeutic options are
administrated including surgery, chemotherapy, radiation, mo-
lecular targeted therapy and immunotherapy, prognosis of lung
cancer is still not satisfactory, with a 5-year survival rate of 57%
for stage I disease and only 4% for those with stage IV disease.[3,4]

Unfortunately, approximately 70% of lung cancer patients are
found to be locally advanced or metastatic at the time of
diagnosis.[5] With the rapid development of molecular biology,
there still requires efforts in exploring predictive models based on
molecular biomarkers for early diagnosis, predictive therapeutic
responses to specific therapies and prognosis in lung cancer.
Ferroptosis, an iron-dependent form of regulated cell death, is

characterized by accumulation of lipid peroxides and plays an
important role in cancer biology.[6,7] Ferroptosis is triggered by
the inactivation of an essential metabolic process recognized as
glutathione depletion and glutathione peroxidase 4 inactivation,
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leading to the accumulation of lipid peroxides and reactive
oxygen species.[8] Regarding inherited resistance to apoptosis of
cancer, investigation targeting nonapoptotic regulated cell death
process might provide clinical significance for cancer therapy.[9]

Although some publications investigated the correlations
between ferroptosis and LUAD,[10–13] this study aimed to
explore multi-omics data on LUAD including mRNA expres-
sion, protein expression, mutational status as well as clinical
information, construct and validate a ferroptosis-associated
signature predictive of prognosis, and systematically evaluate the
underlying molecular connections in cancer biology.
2. Materials and methods

2.1. Data collection

This study was not involved with new participants, so ethics
committee approval was not necessary. The level 3 mRNA
transcriptome profiling and mutation data of LUAD with
corresponding clinical information were downloaded from the
cancer genome atlas (TCGA) data portal (https://tcga-data.nci.
nih.gov/tcga/) and cBioPortal (https://www.cbioportal.org/) in
December, 2020. Other cohorts included GSE31210 with 226
LUADs cases andGSE72094with 398LUADcaseswere retrieved
from the gene expression omnibus portal (https://www.ncbi.nlm.
nih.gov/geo/).[14–17] A total of 91 ferroptosis-associated genes
(Table S1, Supplemental Digital Content, http://links.lww.com/
MD2/A952) were collected from previous literature and “WP_
FERROPTOSIS” in the gene set enrichment analysis (GSEA)
database (https://www.gsea-msigdb.org/gsea/index.jsp).[6,18–22]
2.2. Identification of DEFAGs and prognostic signature

A total of 68 differentially expressed ferroptosis-associated genes
(DEFAGs) were identified between 54 normal tissues and 497
LUAD tissues from TCGA cohort at the threshold of jlog2 fold
changej> 0 and false discovery rate< 0.05 by packages “limma”
inR in thewholeTCGALUADcohort.A total of 457LUADcases
with detailed follow-up information were randomly divided into
training set (n=229) and testing set (n=228) by the “caret”
package inR.Univariate andmultivariateCox regression analysis
wereusedtoexploreoverall survival (OS)-associatedDEFAGsand
construct a prognostic signature based onOS-associatedDEFAGs
by package “survival” inR in the training set. The risk scoreswere
calculated based on the gene expressions and corresponding
coefficients by the following formula:

RiskScore ¼
Xn

i¼1

Coef f icientðiÞ�GeneðiÞ

The prognostic signaturewas further validated in the testing set
and thewholeTCGALUADset (n=457),andother2 independent
cohorts (GSE31210 and GSE72094). Moreover, the mRNA and
protein expressiondifferences of the selectedgenes in the signature
were compared between normal tissue and LUAD based on
transcriptomeprofiling fromTCGAportal and thehumanprotein
atlas database (https://www.proteinatlas.org/).[23]
2.3. Nomogram and clinical characteristics

The patients of the whole TCGA LUAD cohort were stratified
into high- and low-risk groups based on the median value of risk
2

scores. The OS differences were compared between high- and
low-risk groups by stratification of various clinical character-
istics including age, gender, T status, N status, M status,
American joint committee on cancer (AJCC) stage. A nomogram
consisting of clinical variables and the risk scores were
constructed to predict the 1-, 3-, and 5-year OS of LUAD cases,
while calibration plots and time-dependent receiver operating
characteristic (ROC) curves were applied to evaluate the
nomogram.

2.4. Enrichment analysis between high- and low- risk
groups

The differently expressed genes (DEGs) (jlog2 fold changej ≥ 1,
false discovery rate<0.05) between high- and low- risk groups
based on the prognostic signature were identified by using the R
package “limma”. The “clusterProfiler” R package was utilized
to perform gene ontology analyses based on the DEGs between
the high-risk and low-risk groups. The Kyoto encyclopedia of
genes and genomes and potential activated pathways of DEGs in
the high-risk group were analyzed using GSEA method.[24]

2.5. Prognostic signature and cancer biology

Tumor mutation burden (TMB) was defined as the total amount
of mutations per million bases of tumor tissue from TCGA
database via theGDCdata portal (https://portal.gdc.cancer.gov/).
The stemness index based on mRNA expression (mRNAsi)
calculated using a one-class logistic regression machine learning
algorithm was applied to LUAD samples from the TCGA cohort,
and the mRNAsi scores were represented using b values ranging
from zero (no gene expression) to one (complete gene expression)
as a marker of cancer stemness.[25]
2.6. Statistical analysis

Wilcoxon rank-sum test was used to compare mRNA levels
between tumor tissues and LUAD tissues, and programmed cell
death 1 [PDCD1 (PD1)] expression, CD274 (programmed cell
death 1 ligand 1 [PDL1]) expression, TMB, and mRNAsi
between the high- and low- risk groups. Univariate and
multivariate Cox regression analyses were used to select OS-
associated factors and construct predictive models for prognosis.
The OS between high- and low- risk groups was compared by
Kaplan–Meier analysis with the log-rank test. All statistical
analyses were performed with R software (Version 4.0.2, R
Foundation for Statistical Computing, Vienna, Austria) or
GraphPad Prism v7.00 (GraphPad Software Inc., USA).
3. Results

3.1. Construction and validation of a prognostic signature

The total flowchart was demonstrated in Figure 1. Among the 91
ferroptosis-associated genes, 68 DEFAGs were identified. As
demonstrated in the heatmap (Fig. 2A) and volcano plot
(Fig. 2B), 40 ferroptosis-associated genes were upregulated while
28 ferroptosis-associated genes were downregulated in LUAD
tissues, when compared with normal tissues. Univariate Cox
regression was conducted to analyze the correlations between
the 68 DEFAGs and OS, and 9 OS-associated DEFAGs were
obtained in the training set, as demonstrated in the forest plot
(Fig. 2C). Based on the 9 OS-associated DEFAGs selected from
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Figure 1. The total flowchart of this study. KEGG = Kyoto encyclopedia of genes and genomes, GO = gene ontology, GSEA = gene set enrichment analysis,
LUAD = lung adenocarcinoma, TCGA = the cancer genome atlas.
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the univariate Cox regression analysis, a multivariate Cox
proportional hazard model consisting of 6 OS-associated
DEFAGs, was established using stepwise regression. Risk scores
of the 6 DEFAG signature were evaluated based on gene
expressions and coefficients as follows: Risk score=
(0.509∗CISD1)+ (0.287∗ACSL3)+ (�0.045∗PEBP1)+(�2.192∗
NOX1)+(0.549∗CHAC1)+(�12.221∗ GLS2). Then the medi-
an risk score was set as the cutoff value, the LUAD patients were
stratified into the low-risk group and high-risk group in the
training set, testing set and the whole LUAD set, respectively.
The survival curves indicated significant OS advantage of low-
risk group over high-risk group in the training set (Fig. 3A, P <
.001), testing set (Fig. 3C, P= .011), and the whole LUAD set
(Fig. 3E, P< .001). The time-dependent ROC curves showed
that area under curve of 1year, 2years, and 3years with
moderate predictive performance (Fig. 3 B, D, and F). To
evaluate whether the 6 DEFAG signature harbored similar
predictive value in other cohorts, the same formula was used to
generate risk scores of cases in GSE31210 and GSE 72094
cohorts. Consistent with the results in the TCGA cohort, patients
with high-risk scores also had poor OS than those with low-risk
scores (Figure S1A and C, Supplemental Digital Content, http://
links.lww.com/MD2/A947), and predictive efficacy were also
satisfactory (Figure S1B and D, Supplemental Digital Content,
http://links.lww.com/MD2/A947).
3

3.2. Gene expressions and mutational status

The different mRNA and protein expressions of genes in the
signature between normal and LUAD tissues were demonstrated
in Figures 4 and 5. Compared with normal tissues, only PEBP1
were downregulated while other selected genes were upregulated
in LUAD tissues. Moreover, the gene mutational status was
shown in Figure 6, including the mutational proportion and hot
spots, among which GLS2 was the most common mutational
gene. Based on the mutational data from the dataset of LUAD
(TCGA, PanCancer Atlas), the top 10 mutational genes were
identified including TP53, TTN, MUC16, CSMD3, RYR2,
LRP1B, ZFHX4, USH2A, KRAS, and XIRP2, as demonstrated
in Figure S2, Supplemental Digital Content, http://links.lww.
com/MD2/A948.

3.3. Independent prognostic factors and construction of a
nomogram

After stratified by clinical characteristics, the low-risk group still
harbored OS advantage over high-risk group in patients with
age<65years, >65years, female, male, T2, T3/4, N0, N1/2/3
status (Figure S3, Supplemental Digital Content, http://links.
lww.com/MD2/A949), and M0, unknown M status, stage II,
stage III–IV (Figure S4, Supplemental Digital Content, http://
links.lww.com/MD2/A950). Univariate and multivariate Cox
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Figure 3. Predictive value of the 6 DEFAGs signature in the TCGA cohort. (A), (C), and (E) Kaplan–Meier curves for high- and low-risk groups in the training set,
testing set, and the whole LUAD set, respectively. (B), (D), and (F) AUC of time-dependent ROC curves verified the prognostic performance of the risk score in the
training set, testing set and the whole LUAD set, respectively. DEFAGs = differentially expressed ferroptosis-associated genes, LUAD = lung adenocarcinoma,
ROC = receiver operator characteristic, TCGA = the cancer genome atlas.

Figure 2. Exploration of prognostic DEFAGs in the TCGA cohort. (A) Heatmap indicated 68 DEFAGs between 54 normal tissues and 497 lung cancer tissues. (B)
Volcano plot represented the upregulated and down-regulated DEFAGs in the TCGA cohort. (C) Forest plot of univariate Cox regression analysis of prognostic
DEFAGs in training set. DEFAGs = differentially expressed ferroptosis-associated genes, FC = fold change, TCGA = the cancer genome atlas.
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Figure 4. Different mRNA expressions of genes in the signature between normal and LUAD tissues. LUAD = lung adenocarcinoma.
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regression analysis were performed to explore the predictive
factors for OS in the TCGA cohort, including clinical variables
and risk scores based on the 6 DEFAG signature. The results
indicated that the risk scores based on the signature was
significantly associated with OS of LUAD as an independent
factor (Figure S5A and B, Supplemental Digital Content, http://
links.lww.com/MD2/A951). The ROC curve analysis showed
that the risk score based on the signature was 0.695, only
secondary to the stage and better than other clinical parameters
(Figure S5C, Supplemental Digital Content, http://links.lww.
com/MD2/A951), which indicated that our signature was an
independent prognostic factor to predict OS of LUAD patients.
Moreover, a nomogram consisted of risk score and other clinical
parameters including age, gender, T stage, M stage, N stage,
AJCC stage was constructed (Fig. 7A). The calibration plots
demonstrated the predictive ability for 1-, 3-, and 5-year OS as
shown in Figure 7 B–D. The area under curve values of the
nomogram at 1-, 3-, and 5- year were 0.73, 0.723, and 0.68,
respectively (Fig. 7E).

3.4. Functional enrichment analysis and GSEA

Gene ontology functional enrichment indicated that the DEGs
between high- and low- risk groups in the TCGA cohort were
mostly associated with humoral immune response, chromatin
silencing, chromatin organization involved in negative regula-
tion of transcription, negative regulation of gene expression,
epigenetic (Fig. 8A). The Kyoto encyclopedia of genes and
genomes functional enrichment indicated that the DEGs were
enriched in cancer related pathways including IL-17 signaling
pathway, necroptosis andWnt signaling pathway. (Fig. 8B). The
GSEA analysis demonstrated that the high-risk group were
5

enriched in the process of cell cycle, homologous recombination,
P53 signaling pathway, pancreatic cancer, pentose phosphate
pathway, small cell lung cancer, ubiquitin mediated proteolysis
(Fig. 9A), while the low-risk group were enriched in basal cell
carcinoma, calcium signaling pathway, fatty acid metabolism
(Fig. 9B).

3.5. TP53 mutation, TMB, cancer stemness between high-
and low-risk groups

Considering the most frequent mutation of TP53 in the total
TCGA cohort and the P53 signaling pathway enriched in the
high-risk group in the GSEA analysis, we explored TP53
mutation frequency differences between high- and low-risk
groups in the training set, testing set and the whole LUAD set,
and compared the survival differences under TP53 mutation
status stratification, and found that both in low-risk and high-
risk groups,TP53 mutation was an unfavorable factor affecting
OS of LUAD patients. Moreover, TP53 mutation in high-risk
group showed the most unfavorable survival curve while TP53
wild-type in low-risk group indicated the obvious survival
advantage over other groups (Fig. 10). Compared with low-risk
group, high risk group was associated with higher CD274
(PDL1) (Fig. 11A, P< .001), mRNAsi (Fig. 11D, P< .001), not
significantly associated with PDCD1 (PD1) (Fig. 11B, P= .319),
CTLA4 (Fig. 11C, P= .269), TMB (Fig. 11E, P= .0825).

4. Discussions

Ferroptosis, as a form of lipid peroxidation-induced cell death,
can be regulated in many ways, from altering the activity of
antioxidant enzymes to the level of transcription factors.[26]
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Figure 5. Different protein expressions of genes in the signature between
normal and LUAD tissues from the HPA database. HPA= human protein atlas,
LUAD = lung adenocarcinoma.

Zhou and Zhu Medicine (2022) 101:16 Medicine
Induction of ferroptosis by directly targeting GPX4 and its
compensatory members provided a promising option for cancer
treatment.[27] This study systematically investigated the expres-
sion differences and potential roles of the 91 ferroptosis-
associated genes in LUAD. A total of 68 DEFAGs were identified
in LUAD compared to normal tissues based on the RNA-seq data
6

from the TCGA cohort. A robust ferroptosis-associated gene
signature was constructed in the training set, and validated in
multiple cohorts with satisfactory predictive efficacy.
The selected 6 ferroptosis-related genes could be categorized

into iron metabolism (CISD1), lipid metabolism (PEBP1,
ACSL3), oxidant metabolism (NOX1, CHAC1), and energy
metabolism (GLS2).[8] CISD1, an outer mitochondrial mem-
brane protein, played a significant role in regulation of iron and
reactive oxygen species (ROS) homeostasis and inhibiting
mitochondrial iron uptake, lipid peroxidation as well as
subsequent ferroptosis.[28,29] PEBP1 was shown to contribute
to ferroptosis by complexing with lipoxygenases and allowing
them to produce lipid peroxides.[30] ACSL3 activated monoun-
saturated fatty acids, which promoted a ferroptosis-resistant cell
state by suppressing ROS accumulation at the plasmamembrane
and decreasing levels of phospholipids containing oxidizable
polyunsaturated fatty acids.[31] Moreover, a recent study found
that lymph protected metastasizing melanoma cells from
ferroptosis due to higher levels of glutathione and oleic acid
and less free iron in lymph when compared with blood plasma.
In an ACSL3-dependent manner, oleic acid protected melanoma
cells from ferroptosis and increased their capacity to form
metastatic tumors.[32] As a core member of the mitochondrial
glutaminases, GLS2 was identified as a transcriptional target of
the tumor suppressor protein P53 and was responsible for P53-
mediated oxygen consumption, increased cellular antioxidant
function in cancer cells.[26,33] Interestingly, among the 6 genes,
only GLS2 expression was risky for OS, while other 5 genes were
protective against mortality. However, coefficients in the
signature were not consistent with gene roles and vary
significantly; the conflict might be associated with different
expression levels of included genes and the method of Cox
regression, which was used to establish the best-fit signature
without considering gene roles.
TP53 was one of the 91 ferroptosis-associated genes, and its

expression levels were not associated with prognosis in LUAD.
Further analysis of mutational data indicated that TP53 was the
most frequent mutated gene in LUAD, with 52.1% mutational
frequency. Moreover, P53 signaling pathway was related to the
high-risk group based on the ferroptosis-associated gene
signature, which suggested the tight connection between TP53
mutation and risk scores. Our study indicated that high-risk
group was characterized with a greater proportion of TP53
mutation, and survival analysis demonstrated that TP53
mutation or not exerted a profound role in both low-risk and
high-risk groups. Regarding the tumor suppressing character of
TP53, the high-risk group with TP53 mutation harbored the
most unfavorable prognosis, while TP53 wild-type in low-risk
group was predictive of most favorable survival. Multi-omics
analysis in this study provided a promising predictive model
for cancer prognosis. Compared with previous literature,[10–13]

this study constructed a new predictive model consisting of
6 ferroptosis-associated genes, innovatively investigated the
correlation between TP53 mutations and this model, and
explored the value of this model combined with TP53
mutational status in prognosis prediction.
Clinicopathological characteristics were significant predictors

of cancer treatment. After stratified by various clinical factors,
the risk scores based on the ferroptosis-associated gene signature
were still tightly connected with LUAD prognosis. Univariate
and multivariate Cox regression analysis indicated that the risk
scores based on the signature was significantly associated with



Figure 6. Gene mutational status of genes in the signature, (A) mutational proportion, (B) hot spots.
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OS of LUAD as an independent factor. A nomogram based on
risk scores and clinical parameters including age, gender, T stage,
M stage, N stage, AJCC stage was built with excellent predictive
values in 1-, 3-, and 5-year OS, which might have great potential
to guide therapeutic decision-making in LUAD.
Figure 7. (A) Nomogram consisted of risk score and other clinical parameters inc
plots of the predictive ability for 1-, 3-, and 5-year OS. (E) AUC values of the nomog
area under curve.

7

Cancer immunotherapy based on immune checkpoint inhib-
itors (ICIs) has achieved promising however limited success, the
optimalmethod to select potentially beneficial responders to ICIs
is significant in the clinic. High TMB was found to be beneficial
in patients treated with ICIs.[34] Compared with low-risk group,
luding age, gender, T stage, M stage, N stage, AJCC stage. (B)–(D) Calibration
ram at 1-, 3-, and 5- year. AJCC= American joint committee on cancer, AUC=
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Figure 9. The GSEA analysis demonstrated that the high-risk group were enriched in the process of cell cycle, homologous recombination, P53 signaling pathway,
pancreatic cancer, pentose phosphate pathway, small cell lung cancer, ubiquitin mediated proteolysis (A), while the low-risk group were enriched in basal cell
carcinoma, calcium signaling pathway, fatty acid metabolism (B). GSEA = gene set enrichment analysis, KEGG = Kyoto encyclopedia of genes and genomes.

Figure 8. Functional analyses between high- and low- risk groups in the TCGA cohort. (A) The GO enrichment of DEGs between the high-risk and low-risk
groups. (B) The KEGG functional enrichment of DEGs between the high-risk and low-risk groups. DEGs = differently expressed genes, GO = gene ontology,
KEGG = Kyoto encyclopedia of genes and genomes, TCGA = the cancer genome atlas.
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Figure 11. The relationship of the signature with cancer biology. (A) CD274 (PDL1), (B) PDCD1 (PD1), (C) CTLA4, (D) cancer stemness (mRNAsi), and (E) TMB.
PDCD1 (PD1) = programmed cell death 1, mRNAsi = stemness index based on mRNA expression, TMB = tumor mutation burden.

Figure 10. Survival differences under TP53 mutation status stratification in low-risk and high-risk groups. TCGA = the cancer genome atlas.

Zhou and Zhu Medicine (2022) 101:16 www.md-journal.com
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high-risk group based on the signature was associated with
higher cancer stemness, TMB, PDL1 expression, which might
suggest better immunotherapeutic response to ICIs in the high-
risk group. Moreover, the induction of ferroptosis combined
with ICIs showed synergistically enhanced antitumor activity,
which was a novel strategy to overcome ICI-resistance in cancer
treatment.[35]
5. Conclusions

In this study, we constructed a robust ferroptosis-associated gene
signature and a nomogram predictive of prognosis in LUAD,
which was closely related to prognosis, TMB, cancer stemness,
and provided a new perspective on associations between
ferroptosis and LUAD.
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