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High-resolution functional 2-photon microscopy of neural activity is a cornerstone
technique in current neuroscience, enabling, for instance, the image-based analysis
of relations of the organization of local neuron populations and their temporal neural
activity patterns. Interpreting local image intensity as a direct quantitative measure of
neural activity presumes, however, a consistent within- and across-image relationship
between the image intensity and neural activity, which may be subject to interference
by illumination artifacts. In particular, the so-called vignetting artifact—the decrease of
image intensity toward the edges of an image—is, at the moment, widely neglected in
the context of functional microscopy analyses of neural activity, but potentially introduces
a substantial center-periphery bias of derived functional measures. In the present report,
we propose a straightforward protocol for single image-based vignetting correction.
Using immediate-early gene-based 2-photon microscopic neural image data of the
mouse brain, we show the necessity of correcting both image brightness and contrast to
improve within- and across-image intensity consistency and demonstrate the plausibility
of the resulting functional data.

Keywords: vignetting correction, functional microscopic imaging, neural activity, image analysis, imaging
artifacts

INTRODUCTION

Modern microscopic imaging techniques provide unique insights into the structure and
functioning of complex biological neural systems. For many applications—ranging from whole-
brain imaging (Gao et al., 2019) to single-cell isolation (Brasko et al., 2018)—it has been shown
that illumination correction, that is, the removal of uneven illumination of a scene and specimen,
facilitates image interpretation, improves visibility particularly of fine structures and is a pivotal
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pre-processing step for subsequent image analysis (Smith et al.,
2015). Illumination correction is, therefore, often an essential
component of microscopy imaging setups (Model, 2014; Khaw
et al., 2018) and image post-processing (Ljosa and Carpenter,
2009; Caicedo et al., 2017; Todorov and Saeys, 2019).

A common and major illumination artifact in microscopic
images is the vignetting artifact, which reflects a (usually radial)
decrease of the image brightness, its contrast, or the saturation
from the image center toward the periphery (Leong et al., 2003).
Correction approaches can be divided into prospective methods
that exploit reference images (Young, 2000), retrospective
multiple image-based correction (Singh et al., 2014; Smith et al.,
2015; Peng et al., 2017) and single image-based strategies.
Reference and multiple image-based methods are considered
most reliable (Smith et al., 2015), but are not always applicable
due to application-specific constraints (e.g., data availability).
At this point, single image correction strategies come into play
(Leong et al., 2003; Zheng et al., 2008).

In the present report, we focus on high-resolution functional
microscopic imaging and its application to studying the
functioning of biological neural systems. Techniques such as
calcium indicator-based (O’Donovan et al., 1993; Svoboda et al.,
1997; Wachowiak and Cohen, 2001; Stosiek et al., 2003; Birkner
et al., 2017; Tischbirek et al., 2019; Yildirim et al., 2019) or
immediate early gene (IEG)-based imaging (Barth et al., 2004;
Wang et al., 2006, 2019; Barth, 2007; Xie et al., 2014; Franceschini
et al., 2020) allow, in principle, an interpretation of the read-
out of local image intensity as neural activity. While, intuitively,
a quantitative comparison of neural activity of, for example,
local neuron populations is susceptible to illumination artifacts,
illumination correction has, so far, been widely neglected or
unreported in respective studies. A potential reason might be
that established reference- and multiple image-based correction
methods result in the same correction effect at any given location
on different microscopic images. This in turn may compromise
the analysis of interrelations of neural activity patterns by
inducing artificial correlations between the modified images.

To overcome this issue,

• we develop and propose a straightforward single image-
based vignetting correction protocol and
• demonstrate the value of the vignetting correction using

single channel IEG microscopic images of the mouse brain.

Due to the application-inherent lack of ground truth data
to evaluate the effect of the illumination correction, we focus
on data plausibility: In the presence of a vignetting artifact, the
functional data contain a significant center-periphery bias of
neural activity measures that, for the performed experiments,
cannot be accounted for by the underlying biology. Considering
the reduction of the center-periphery bias in neural activity as
well as consistency of absolute and relative activity changes over
time as proxies of success, we demonstrate that the vignetting
correction substantially improves data plausibility. Going beyond
the standard approach of only taking into account the brightness
of the image background (Leong et al., 2003), we further show

that the largest improvement in data plausibility is achieved by
correction of both image brightness and contrast.

MATERIALS AND METHODS

Imaging and Image Data
The present study is based on single channel 2-photon imaging
mouse data as detailed in Xie et al. (2014). The mouse strain was
BAC-EGR-1-EGFP [Tg(Egr1-EGFP)GO90Gsat/Mmucd from the
Gensat project, distributed by Jackson Laboratories]. Animal
care was in accordance with the institutional guidelines of and
the experimental protocol approved by Tsinghua University. To
allow for in vivo imaging, a cranial window was implanted
between the ears of 3–5 months old mice. Data recording started
a month later. EGFP fluorescent intensity was imaged using an
Olympus Fluoview 1200MPE with pre-chirp optics and a fast
AOM mounted on an Olympus BX61WI upright microscope,
coupled with a 2 mm working distance, 25 × water immersion
lens (numerical aperture 1.05). The animals were anesthetized
1 h after they explored a multisensory environment. Under the
given experimental conditions, anesthetization is known to have
very little effect on protein expression (Bunting et al., 2016), and
protein expression to reflect neural activity (Xie et al., 2014). We
randomly selected one image stack with measurements acquired
at 2 days (interval in between: 5 days) to showcase our analysis.
The stack belonged to the primary visual (VISp) area. Stack size
was 512× 512 pixels with a pixel edge length of 0.996 µm for the
in-plane slices, containing 350 slices in z-direction with a spacing
of 2 µm. Neuron segmentation was performed as described in Xie
et al. (2014). The segmentation was performed in the uncorrected
image data, to avoid neuron position mismatches between the
unprocessed and the corrected image data. The neuron center
positions were used to evaluate neural activity.

Illumination Correction Pipeline
Our proposed single image-based pipeline for vignetting
correction in 2-photon functional microscopy data is outlined
in Figure 1A. Let a raw, i.e., measured and potentially post-
processed, single channel microscopic image (an example is
shown in Figure 1B) be denoted by I0(x, y) with

(
x, y

)
∈

[xmin, x max ]×
[
ymin, ymax

]
=: � ⊂ R2. In the following, we

approximate the relationship between I0 and the sought true
image and neural activity I, respectively, by

I
(
x, y

)
= CT

I0
(
x, y

)
−MB

(
x, y

)
MC

(
x, y

) + BT (1)

with MC(x, y) and MB(x, y) as a spatially varying gain or contrast
distribution and a spatially varying background brightness,
respectively, that are to be estimated and compensated during
the illumination correction. BT and CT are pre-defined additive
and multiplicative constants to bring the corrected image into
a desired value range (Piccinini et al., 2012), and are not
part of the correction process. With CT = 1 and BT = 0,
Equation 1 corresponds to the standard notation as, for instance,
used by Smith et al. (2015).
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FIGURE 1 | (A) Working pipeline. (B–H) One example of the proposed vignetting correction of a 2-photon microscopy image of mouse area VISp at layers II/III depth
(200 µm depth). (B) The original image, i.e., before correction. (C) Example patch selection. (D) Histograms of image pixel intensities, illustrating the effect of the
performed outlier reduction. In top-down direction: first, histograms of all pixels in the patch; second, after dropping off the long tail; third, after dropping off some
data of certain values at both ends; last, after dropping off additional data of certain amounts at both ends (details given in the source code). At the end, the similarity
to a normal distribution estimated by a Shapiro-Wilk test is 0.996, larger than the threshold we used (0.98). (E) Corresponding Gaussian fitting of the background
intensity for the patch pixels. (F) Supporting point (i.e., the patch centers) brightness B(x(i), y(i)) (left panel) and contrast C(x(i), y(i)) (right panel). (G) The estimated
global brightness distributions MB(x, y) and MC (x, y) (left and right panel). (H) The final modified image.

The proposed correction approach follows the common
assumption that vignetting effects can be approximated by
Gaussian functions. Leong et al. (2003) for instance, described
the uneven illumination as an additive low frequency signal and
approximated it by an isotropic Gaussian distribution with large
standard deviation. The distribution parameters were, however,
chosen ad hoc and image-specific (Leong et al., 2003). Here,
we also model MB(x, y) and MC(x, y) by 2-dimensional (2D)
Gaussian functions, but estimate the distribution parameters by
analysis of I0 (x, y).

To be able to efficiently cope with potentially large image data
sets, we employ a patched-based approach, consisting of two
main steps:

[STEP 1] patch-based robust estimation of local background
brightness and contrast for a sufficient amount of supporting
points distributed across I0(x, y), and

[STEP 2] estimation of MB(x, y) and MC(x, y) based on the
supporting point brightness and contrast values.

STEP 1: Patch-Based Estimation of Local Brightness
and Contrast
In line with most existing methods in the given context, we
focus on the image background to estimate the vignetting
functions (Leong et al., 2003; Charles et al., 2008; Chalfoun
et al., 2015). Let I(i)0 denote a patch of I0 with a patch
center

(
x(i), y(i)) ∈ � and a domain [xi − λx/2, xi + λx/2]×

Frontiers in Neuroinformatics | www.frontiersin.org 3 January 2022 | Volume 15 | Article 674439

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-674439 December 28, 2021 Time: 16:51 # 4

Li et al. Single Image-Based Vignetting Correction

FIGURE 2 | Evaluation results for the proposed vignetting correction for the neural activities Xl in layers II/III of a mouse VISp area. The mouse was located in the
home cage. The images stack was evenly divided into 16 regions on x-y plane, as shown in (A–D). (A) Shows the mean activities of all neurons within each region
sampled from the raw images, (B) shows their standard deviations. (C,D) Show the mean values and the standard deviations sampled from the modified images.
(E) Shows the comparison of the neural activities between each pair of regions, where colors stand for the p-values of a respective t-test with Bonferroni correction.
(F) Shows the comparison of the distributions of the neural activities between each pair of regions, where colors indicate δSTD with logarithm scale. In (E,F), the
lower rectangles, i.e., the values below the diagonal, show the comparison with the data from the original images. The upper triangles represent corresponding data
from the modified images. All parameters for the vignetting correction are the same as applied in Figure 1.

[
yi − λy/2, yi + λy/2

]
=: �i ⊂ �, with λx and λy as the side

lengths of the patches (Figure 1C). Subsequently, we assume
an ordered sequence of patches

(
I(i)0

)
i=1,...,n

to be given that

covers I0. However, the proposed approach is applicable to any
patch sampling strategy. The patch centers are considered the
supporting points for [STEP 2]; the associated brightness and
contrast values were computed based on a histogram analysis of
the intensity values of the patch pixels. Starting with the original
histogram for a patch I(i)0 , contributions by high intensity, that
is, foreground objects such as highly active neurons that lead to
a long-tailed intensity distribution, were removed following the
approach of Clauset et al. (2009) and Alstott et al. (2014) that
seeks to find the minimum histogram data point to optimally
fit a power law to the right tail of pixel intensity distribution.
The histogram data points above this intensity value were
discarded from further analysis. Further remaining high and
low intensity values were removed by focusing on the central
parts of the histogram and the intensity distribution, respectively.
The intensity distribution of the remaining data points was
tested for normality using the Shapiro-Wilk test (Shapiro and
Wilk, 1965); only patches with a resulting value above a pre-
defined threshold of the test statistic were considered valid
supporting points for [STEP 2] (Figure 1D). The corresponding

local brightness and contrast values B(x(i), y(i)) and C(x(i), y(i))
were approximated by the expectation and the standard deviation
of the fitted normal distribution (Figure 1E). For further details
and parameter values used in our study, we refer to the source
code (see Data Availability).

STEP 2: Approximation of MB(x, y) and MC(x, y)

Based on the patches I(i)0 , i ∈ I ⊆ {1, . . . , n}, for which
the intensity distributions passed the Shapiro-Wilk test,
the corresponding set of patch estimates B

(
x(i), y(i)) and

C
(
x(i), y(i)) (Figure 1F) were used to fit 2D-Gaussian

distributions to estimate the sought distributions MB
(
x, y

)
and MC

(
x, y

)
(Figure 1G).

Experiments and Evaluation
To evaluate plausibility of the image correction, the slices of
the image stack (see section “Imaging and Image Data”) were
evenly divided into 4 × 4 = 16 regions (see Figures 2A–D):
four center regions (C1 to C4), eight edge regions (E1 to E8),
and four angle regions (A1 to A4). If a vignetting effect exists,
the comparison of neuronal activity derived for the different
regions shows a significant bias, by which the center regions
have high activity, which decreases radially (i.e., highest activity
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differences between the C and the A regions). Correspondingly,
after successful correction of the vignetting effect, the bias should
be significantly reduced. The slices were further grouped into four
laminar compartments: layer II/III slices (95 slices in our selected
stack), layer IV slices (41 slices), layer V slices (94 slices), and layer
VI slices (97 slices). The layers were assigned manually.

Motivated by functional neuroimaging studies (O’Donovan
et al., 1993; Svoboda et al., 1997; Wachowiak and Cohen, 2001;
Stosiek et al., 2003; Barth et al., 2004; Wang et al., 2006, 2019;
Barth, 2007; Xie et al., 2014; Bunting et al., 2016; Birkner et al.,
2017; Moeyaert et al., 2018; Tischbirek et al., 2019; Yildirim
et al., 2019), we considered the following measures to analyze the
impact of the vignetting effect and the reduction thereof:

• Neural activity: Based on the segmentation of the neurons
(see Sec. “Imaging and Image Data”), the activity Xl of
the l-th detected neuron (l = 1, . . . , nl) is computed as the
intensity of the center pixel of the segmentation mask.
• Absolute changes of neural activity over time: Neural

activity measurements were available for two different days,
denoted as day1 and day0, with an intervening interval of
5 days. In addition to the neural activity, we also evaluated
the absolute activity changes 1Xl = Xl(day1)− Xl (day0).
• Relative changes of neural activity: In addition, we

evaluated the relative neural activity changes δXl =

[Xl(day1)− Xl(day0)]/[Xl(day1)+ Xl(day0)].

The three measures Xl, 1Xl and δXl were separately evaluated
for the 16 regions (C1-C4, E1-E8, A1-A4) and the four laminar
compartments (II/III, IV, V, VI) before and after vignetting
correction. Results are given as mean and standard deviation
(STD) of the measures for the individual regions and laminar
compartments. Significant differences between the measures
of two different regions were evaluated separately for the
different laminar compartments, applying t-tests with Bonferroni
correction of the p-values. Moreover, for each pair of regions,
the relative difference δSTD of the standard deviations of the
considered measure values within the individual regions was
computed for the different laminar compartments. Thus, for
each laminar compartment, in total nc = 6 center-center (C-
C) comparisons, nc = 28 edge-edge (E-E) comparisons, nc =
6 angle-angle (A-A) comparisons, nc = 32 center-edge (C-E)
comparisons, nc = 32 edge-angle (E-A) comparisons, and nc =
16 center-angle (C-A) comparisons were performed.

To obtain further insights into a potential vignetting-
associated center-to-periphery bias before image correction,
we also evaluated the fraction of region pairs with non-
significant differences (p ≥ 0.01 after Bonferroni correction) for
the different measures on a region-type level (i.e., focusing
on all C-C, E-E, A-A, C-A, C-E, etc. comparisons). Let cp =
nc(p≥0.01)/nc denote the fraction of the total number of region
type-specific comparisons (e.g., nc = 16 for C-A comparisons)
and the number nc(p≥0.01) of corresponding non-significant
comparisons. Then, the ratio 1C = cp/〈cp〉same was computed,
with 〈cp〉same as the average value of cp values of the C-C, E-E, and
A-A comparisons. The hypothesis was that, in the presence of a
vignetting effect, 1C values for, for example, the C-E and C-A

comparisons are considerably smaller than one; after successful
correction, the values should become closer to one. In particular,
we assumed the comparison of 1C values for C-A and E-E
comparisons before and after correction to indicate presence and
successful correction of the vignetting effect.

Similar to 1C, we also evaluated differences of the relative
standard deviations δSTD on a region-type level. With δSTD as
average δSTD value for all pairs of two of the region types C, E
or A for a specific layer compartment, we computed 1STD =
δSTD/〈δSTD〉same, with 〈δSTD〉same denoting the average value of
δSTD for C-C, E-E, and A-A comparisons. A correction of a
vignetting effect would, for instance, lead to significant reduction
of 1STD for C-A comparisons, especially when compared to
1STD for E-E comparisons.

All measures were evaluated for the original image data as
well as after vignetting correction according to Equation 1. In
addition, we also applied a brightness-only correction, using

I
(
x, y

)
= I0

(
x, y

)
−MB

(
x, y

)
+ BT (2)

as well as a contrast-only correction,

I
(
x, y

)
= CT

I0
(
x, y

)
−MB

(
x, y

)
MC

(
x, y

) +MB
(
x, y

)
, (3)

to illustrate the respective effects.

RESULTS

Subsequent results are based on automatically segmented 14.662
neurons. Within each region of the laminar compartments, on
average 229 (STD: 78; range: 50–376) neurons were segmented.
An example of an image slice before and after vignetting
correction is shown in Figures 1B,H, respectively. In the original
data, a strong image intensity decrease from the center toward
the periphery can be seen. This gradient, in turn, leads to a larger
number of significant differences of the measures derived for the
different regions and region-types, indicated by blue and green
fields in the lower triangles of Figure 2E (focusing on neural
activity Xl itself), Supplementary Figure 1 (absolute changes
1Xl of the neural activity), and Supplementary Figure 2 (relative
changes δXl of neural activity), respectively, for the layers II/III
of the considered VISp area. Corresponding representations for
layers IV, V, and VI are shown in Supplementary Figures 3–17.
Analogously, large δSTD values are present for the original data
(see lower triangle of Figure 1F and Supplementary Figures 1–
17). In particular, the C-A comparisons exhibit a larger number
of significant differences and larger δSTD values than the “within-
type” comparisons, that is, the C-C, E-E, and A-A comparisons.
Corresponding C-E and E-A values are somewhere in between.
This finding clearly indicates the existence of vignetting effects in
the original data.

After applying the proposed image correction procedure,
the abovementioned effects are substantially diminished: The
number of significant region-to-region differences of the
evaluated measures is considerably reduced; similarly, the δSTD
values are more consistent between the regions of different types
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(e.g., C-A and E-A; see upper triangle in Figures 1E,F and
Supplementary Figures 1–11). This effect, however, is much less
pronounced if only an intensity or only a contrast correction is
applied (Supplementary Figures 12–17).

In line with these observations and the hypothesis described
in section “Experiments and Evaluation,” before the vignetting
effect correction, the 1C values for the C-A comparisons are
significantly lower (p < 0.01) and the 1STD values significantly
higher than corresponding values for E-E comparisons (p <
0.001). After image correction, the differences are no longer
significant, associated with a significant increase of 1C and
decrease of 1STD (both p < 0.001), due to the C-A values after
image modification (Figures 3A,B).

Figures 3C–F further reveal (similar to Supplementary
Figures 12–17) that brightness-only or contrast-only correction
does not sufficiently correct for the vignetting effect. If only a
brightness correction is applied, 1C values are, for instance,
still significantly lower for C-A comparisons than for E-E
comparisons. If only a contrast correction is applied, the C-A
1STD values are still significantly higher compared to the E-E
values (p < 0.05).

DISCUSSION

Center-Periphery Bias and Data
Rationality
Correction of uneven illumination, and in particular a correction
of the vignetting effect, has become a standard procedure in
structural neural microscopy image processing (Brasko et al.,
2018; Gao et al., 2019). In contrast, the application of such
corrections to corresponding functional neural microscopy
images is rarely reported, and the influence and effects of
respective procedures remain unclear so far. This lack of studies
may, in part, be due to a lack of ground truth data that could be
used for evaluation purposes. However, we hypothesize that the
intrinsic consistency and plausibility of the data is an appropriate
indicator for the existence and the success of a correction of
vignetting effects. While neural microscopy data and commonly
derived measures, such as neural activity and absolute or relative
activity, change over time and certainly exhibit spatially varying
distributions, there is no convincing physiological explanation
for the existence of a distribution of the measures with a center-
periphery bias—that is, a vignetting effect. A reduction, and
ideally the elimination, of a center-periphery bias can, therefore,
be studied to assess the success of a correction in functional
microscopic neural images.

In this work, we implemented a straightforward single image-
based correction method, and used IEG 2-photon microscopic
neural image data of the mouse brain to demonstrate that such
data are affected by vignetting effects (see Figure 1B), and that the
proposed method corrects for the resulting center-periphery bias
of the image intensity and derived measures (see, e.g., Figure 2).
We further illustrated that the most effective correction of the
vignetting effect requires correction of both the brightness and
the contrast of the image background. The corresponding code is

publicly available to allow re-use of the proposed solutions (see
section “Data Availability Statement”).

Effect of Patch Size
The patch size is a key parameter of the proposed vignetting
correction protocol. The individual patches should contain a
sufficient number of background pixels to allow for histogram
fitting of sufficient quality (as evaluated by the Shapiro-Wilk test).
The patches should, however, be sufficiently small and compared
to the entire slice to guarantee existence of appropriate sampling
points for the subsequent 2D Gaussian fitting and estimation of
MB

(
x, y

)
and MC

(
x, y

)
, respectively.

Thus, the selection of the patch size is a trade-off and
depending on the size of the entire slice. Correction results with
different patch sizes are illustrated in Figure 4 (Figure 4A: patch
size 32× 32 pixels; Figure 4B, 64× 64 pixels; Figure 4C, 128×
128 pixels; and Figure 4D: raw image). Figures 4E–G illustrate
the influence of the patch size selection on the data analysis.
Throughout this work, including the example in Figure 4, the
Shapiro-Wilk test threshold was always set to 0.98, and the
slice size was always 512× 512 pixels. For these parameters, a
patch size of 32× 32 pixels appeared visually sufficient for the
correction process and the vignetting effect significantly reduced
(see Figures 4A,D). A smaller patch size of 16× 16 pixels usually
led to failure of the Shapiro-Wilk test. A patch size of 64× 64
pixels (Figure 4B) yielded very similar results to 32× 32 pixel
patches. However, for patch sizes of 128× 128 pixels and larger,
a residual vignetting effect is visible (Figure 4C).

These considerations may be particularly relevant in the
context of identifying highly active cells, which are used for the
definition of so-called memory traces (Xie et al., 2014). Examples
of such highly active cells (δXl larger than the mean activity values
plus three times the standard deviation) are given in the lower
panels of Figure 4. From those panels, it is easy to note that,
even with different, but proper patch sizes, the highly active cells
have very high overlaps (32× 32 pixels versus 64× 64 pixels).
In addition, we see in this example that the highly active cells
calculated from the corrected images with proper patch sizes
roughly constitute a subset of those apparent in raw images,
where the ones calculated from raw images include many false
positive cases (Figure 4H). This phenomenon may not always be
present, as it is sensitive to the mathematical definition of how
the highly active target cells are calculated, but it is conspicuous
enough to suggest the existence of false positive detections in
uncorrected images.

Multiple Image- vs. Single Image-Based
Correction
As described in the Introduction, vignetting correction
approaches can be divided into two main groups: multiple
image-based vs. single image-based correction. A prerequisite
of multiple image-based vignetting correction is, obviously,
the availability of multiple images. Multiple image correction
is often considered more reliable than single image correction,
but also comes with some potential disadvantages. One aspect
is that multiple image-based correction typically exploits the
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FIGURE 3 | 1C and 1STD values for the original (RAW) and corresponding values after vignetting correction. (A,B) Represent the effect if performing brightness and
contrast correction. In (C,D) (right sides), only brightness was corrected. Similarly, (E,F) show the data for contrast-only correction. The shown data are averaged
over the obtained normalized data for the three studied measures (neural activity, absolute differences of neural activity, relative differences) and the different layer
compartments. 1p > 0.05, *p < 0.05; **p < 0.01, ***p < 0.001, t-test.

intensity distribution of pixels at the same spatial position but in
different images. This relationship, in turn, implicitly assumes
and induces a (potentially artificial) correlation between the
images that are processed. The artificial correlation may not be of
utmost relevance when processing structural microscopy data. In
functional microscopy neural data analysis, however, existence
or absence of a correlation of signals from different images is
often at the core of the given research question (Xie et al., 2014;
Wang et al., 2019). Thus, it has to be ensured that the observed
correlations are of a biological nature, rather than artificial.

This requirement, in turn, renders single image-based image
correction particularly useful for functional microscopic neural
data analysis; it is applicable even if the exact form of the
vignetting effects varies day-by-day. For functional neural

microscopy imaging, such day-by-day variations exist due to
several reasons. For instance, one such reason is that blood
vessel volume and throughput can vary, with a substantial
impact on light intensity (Shih et al., 2012). It is, in principle,
technically possible to modify the craniofacial light intensities
to a certain degree by adjusting the laser parameters, but
this adjustment only eliminates the effects caused by vessels
over the brain surface. Since there are far more unpredictable
components influencing the light intensities inside the brain,
for instance., the irregular distribution of blood vessels and
dynamic locations of glia or immune cells, it is hardly possible
to pre-set proper parameters at different depths to unify the
intensities across days for both the superficial and deeper slices
at the same time. In addition, daily shifts of the position of
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FIGURE 4 | Effect of patch size. Upper panels show the same example slice (in layers II/III) with different patch sizes for vignetting correction: (A) Patch size 32× 32
pixels (denoted as p32); (B) 64× 64 pixels (p64); (C) 128× 128 pixels (p128); and (D) raw images without vignetting correction. In (E–G), the blue dots show the
projections of all highly active cells (δX l is larger than the mean value plus three times the standard deviation) in layers II/III on the x-y plane, calculated based on p32,
p64, and p128, respectively, and the red diamonds represent the highly active cells calculated based on the raw images. (H) Shows the overlap rates (

∣∣Hi ∩ Hj
∣∣ / |Hi |)

of highly active cells between any pair of the aforementioned images, where Hi denotes the set of highly active cells from the reference image, Hj from the image
used for comparison, and | · | denotes the cardinality of the set.

the mouse brain in the microscope induce additional sources
of error. The errors are corrected by slightly rotating the
images after scanning, but this inevitably also changes the
appearance of the vignetting effects. Moreover, the optical
pathways of the laser cannot be guaranteed to be sufficiently
stable on long time scales. If the experiments last too long,
this may also be a reason for daily variations of observed
vignetting effects.

Furthermore, from a methodical perspective, underlying
mechanisms of multiple and single image-based correction
approaches are often, to a certain degree, similar. For example,
Smith et al. (2015) simultaneously modified image brightness
and contrast, similar to our proposed approach. For both
approaches, the image modification is based on the analysis
and transformation of a pixel intensity distribution—with the
difference that Smith et al. (2015) determined the distribution
of pixels from different images, but at the same spatial position.
In contrast, we focus on patch pixels of a single image; in
addition, we exclude bright objects (here: mainly pixels of high
activity) to ensure an unbiased estimation of the background
intensity distributions.

Thus, for single image-based vignetting correction, the
multiple image-based prior information is essentially replaced
by the hypothesis that the image background intensity and
the image contrast distribution can be approximated by
two-dimensional Gaussian distributions. The two-dimensional
Gaussian fitting to the image background for single image-
based vignetting correction was already proposed by Leong

et al. (2003). In the present work, their idea was extended by
additional consideration of the image background contrast. The
described results indicated that both brightness and contrast
correction appear essential. In addition, high R2 values for
the fitting reveal appropriateness of the underlying assumption
(R2 values of 0.9 and 0.75 for brightness and contrast fitting,
respectively, for more than approximately 170 valid patches; see
Supplementary Figure 18).

Unifying the Brightness and Contrast in
Superior-Inferior Direction
The constants BT and CT can, in principle, be chosen arbitrarily
and can be used to unify the mean background intensity and
contrast across slices of a three-dimensional image stack, that is,
along the superior-inferior direction, which is also considered
important for analysis of respective data (Gaffling et al., 2014;
Yayon et al., 2018). In our experiments, we indeed did so and
set the constants to identical values for all slices. It should,
however, be noted that one should be careful not to over-
interpret the actual intensity levels in terms of neuroscientific
conclusions, for instance, by comparison of absolute intensity
values across cortical layers. Similar to the explanation of the
existence of potential daily variations of the vignetting effect,
the amount of synapses, glia cells, vessels, etc. and, thus, the
light intensity for the different slices also varies. In turn, due
the similar cellular composition of slices within a specific layer
compartment, it appears reasonable to compare the intensity
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values within a laminar compartment. For a reliable comparison
across laminar compartment borders, there is, however, a lack of
supporting evidence.

Application to Calcium Imaging Data
The present approach may also be relevant for further imaging
techniques such as Ca2+ imaging (O’Donovan et al., 1993;
Svoboda et al., 1997; Wachowiak and Cohen, 2001; Stosiek et al.,
2003; Birkner et al., 2017; Tischbirek et al., 2019; Yildirim et al.,
2019; Chen et al., 2020). Compared to IEG-based images, which
were used for illustration in this work, the application of the
proposed vignetting correction protocol to calcium indicator-
based imaging will face several challenges. Factors like a different
signal-to-noise ratio and the spatial position of the vignetting
center have theoretically little impact on the applicability of
the protocol. However, an irregular spatial distribution of
background noise represents a major obstacle. Unfortunately,
using current calcium imaging techniques, with only a few
exceptions (Chen et al., 2020), the background noise is disturbed
by irregularly distributed axons and dendrites. In addition,
the increased computational time required for processing large
calcium imaging data sets has to be kept in mind when applying
the proposed correction protocol to such data. Nonetheless, there
may be potential for the current image correction approach in a
variety of further structural and functional imaging techniques
(Kherlopian et al., 2008; Yao and Wang, 2014).
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