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Specifications table 

Subject Area Psychology 

More specific subject area 

Method name Bayesian statistics 

Name and reference of the original method Hamiltonian MCMC 

Resource availability R statistical software: https://www.r-project.org/ 

Bayesvl R package: https://cran.r-project.org/web/packages/bayesvl/index.html 

Data: https://github.com/sshpa/bayesvl/tree/master/data 

Method details 

In social sciences, the persistence of ’stargazing’, p-hacking, and HARKing issues has currently led 

to a severe reproducibility crisis in which 70% of researchers have failed to reproduce the experiments

of other scientists [1–4] . The crisis forces the academia to react with rigorous study design and

preregistration procedures, more careful use of statistical analysis, and interpretation of statistical 

results [5–7] . In this article, we propose that the Bayesian inference approach [8 , 9] , with its natural

properties, seemingly offers a solution for analyzing social data. In the following section, we will

briefly explain a dataset of Vietnamese folktales that we are going to use as an example to illustrate

the method. 

The analysis was done using the bayesvl R package (version 0.8.5) in the R statistical software

(version 3.6.2) [10] . Similar applications of Bayesian statistics in social data analysis can be found in

[11–14] . 

Data in brief 

Hereafter, we use one of our latest research studies as an example for performing Bayesian

multilevel analysis with social data [14] . The study explores the association between the outcome and

the behaviors of lying and violence of main characters under the influence of religious teachings in

selected Vietnamese folktales. The dataset consists of binary variables encoded from 307 Vietnamese 

folktales. The dataset is stored in the bayesvl repository and can be loaded with the following

commands: 

R > data(Legends345) 

R > data1 < - Legends345 

R > head(data1) 

Even though there are 25 binary variables, of which only eight variables are employed in this

article: 

"Lie": whether the main character lies 

"Viol": whether the main character employs violence 

"VB": whether the main characters’ behaviors express the value of Buddhism 

"VC": whether the main characters’ behaviors reflect the value of Confucianism 

"VT": whether the main characters’ behaviors express the value of Taoism 

"Int1": whether there are interventions from the supernatural world 

"Int2": whether there are interventions from the human world 

"Out": whether the outcome of a story is favorable for its main characters 

Data analysis with Bayesian statistics 

Step 1. model construction 

First, we establish three different directed acyclic graphs (DAGs), or so-called "relationship trees," 

from simple to more complex ones, based on the dataset mentioned above. 

http://https://github.com/sshpa/bayesvl/tree/master/data
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Fig. 1. The "relationship tree" of model 1. 
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odel 1. Multiple regression analysis 

The first and the most straightforward "relationship tree" exemplified examines the determinants

f the behaviors of lying and violence on the outcome of the main character (see Fig. 1 ). 

To construct the "relationship tree" in Fig. 1 , one needs to initially create the model and load

he variables – represented by nodes – into the model by employing the function bayesvl() and

vl_addNode(), respectively as follows: 

R > library(bayesvl) 

R > model1 < - bayesvl() 

R > model1 < - bvl_addNode(model1, "O", "binom") 

R > model1 < - bvl_addNode(model1, "Lie", "binom") 

R > model1 < - bvl_addNode(model1, "Viol", "binom") 

Because the statistical distribution of all employed variables is binomial, we set "binom" in

he function. Besides binomial distribution, the package also provides various types of statistical

istribution for the types of data, namely: normal distribution – "norm", categorical distribution –

cat", Bernoulli distribution – "bern", Student’s t-distribution – "student", Poisson distribution – "pois",

nd so on. 

After loading all the variables into the "relationship tree", the next step is to grant the regression

ype to the connection between the independent variables "Lie" and "Viol" and the dependent variable

O" by employing the function bvl_addArc(). The model can be set as the fixed effect type by adding

 "slope" into the command: 

R > model1 < - bvl_addArc(model1, "Viol", "O", "slope") 

R > model1 < - bvl_addArc(model1, "Lie", "O", "slope") 

In Bayesian inference, the posterior probability is estimated from a prior probability and a

likelihood function" derived from a statistical model for the observed data. Therefore, setting prior

istribution is critical before fitting the model. The prior distribution can be determined based on

revious empirical findings, researcher’s past experience and personal intuition, or expert opinion

8 , 15] . Nonetheless, preceding empirical works and knowledge do not always exist, so determining

rior distribution by researcher’s experience or personal intuition might be criticized as intentional

ubjectivity. In such circumstances, setting prior distribution as “uninformative” or “know nothing

riors” can be a prominent alternative, because it can mitigate the criticism of intentional subjectivity

nd help users fit a new model without firm empirical findings [15] . The package developers utilize

ninformative prior distribution with mean 0 and standard deviation 10 (or 100 for alpha) as default.

he prior distribution of each relationship in the "relationship tree" is always given at the time the

ath between two nodes is created employing the function bvl_addArc(), but if the prior distribution

s not set, the package will use the default prior distribution. The prior distribution setting method
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Fig. 2. The "relationship tree" of model 1 generated by the package. 

 

 

 

 

 

will be clearly explained when constructing model 3 below. One can check the prior distribution of

coefficients in model 1 by typing: 

R > bvl_stanPriors(model1) 

a_O ~ normal(0,100) 

b_Viol_O ~ normal(0, 10) 

b_Lie_O ~ normal(0, 10) 

Since the prior distribution was not set in bvl_addArc(model1, "Viol", "O", "slope"), the package

automatically set prior distribution of b_Viol_O as default distribution which is normal(0, 10). 

Eventually, the function bvl_bnPlot can help produce the graphical network of the constructed model 

(see Fig. 2 ). 

R > bvl_bnPlot(model1) 

To check the structure and mathematical form of the model, one can use the function summary: 

R > summary(model1) 

Model Info: 

nodes: 3 

arcs: 2 

scores: NA 

formula: O ~ a_ O + b _Lie_O 

∗ Lie + b _Viol_O 

∗ Viol 

Estimates: 

model is not estimated. 

Model 2. multiple regression analysis with interaction variables 

The second "relationship tree" is designed to estimate the impact of violent behavior and its

interaction effect with religious values on the outcome of the main character (see Fig. 3 ). Similar

to the first "relationship tree", a model and variables are created and inserted into the model using

two functions bayesvl() and bvl_addNode(), respectively: 

R > model2 < - bayesvl() 

R > model2 < - bvl_addNode(model2, "O", "binom") 

R > model2 < - bvl_addNode(model2, "Viol", "binom") 

R > model2 < - bvl_addNode(model2, "VB", "binom") 

R > model2 < - bvl_addNode(model2, "VC", "binom") 

R > model2 < - bvl_addNode(model2, "VT", "binom") 

R > model2 < - bvl_addNode(model2, "B_and_Viol", "trans") 
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Fig. 3. The "relationship tree" of model 2. 
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R > model2 < - bvl_addNode(model2, "C_and_Viol", "trans") 

R > model2 < - bvl_addNode(model2, "T_and_Viol", "trans") 

The variables "B_and_Viol", "C_and_Viol", and "T_and_Viol" are the interaction variables between

he act of violence and the value of Buddhism, Confucianism, and Taoism, respectively. The

ndependent interaction variables, represented by the green nodes, can be subsequently created

rom two normal independent variables, represented by the blue nodes. Unlike the normal

ariable "Viol" defined as "binom", or binomial, the interaction variables are defined as "trans",

r interaction/transformed. It is noteworthy that the "trans" variable does not have a particular

istribution but depends on the interaction of two normal variables through applying " ∗ " or " + "

perator. To standardize, we call normal independent variables as observation data and interaction

ariables as transformed data from now on. 

The dash-line arrow demonstrates the relation between the transformed data and the observation

ata (see Fig. 3 ). The values of transformed data are generated from the values of two observation

ata through the mathematical operator " ∗ ". The value of "B_and_Viol" is generated from the

ultiplication between the values of "VB" and "Viol" by using the function bvl_addArc(). One can

se a similar function to give the transformed value to "C_and_Viol" and "T_and_Viol". 

R > model2 < - bvl_addArc(model2, "VB", "B_and_Viol", " ∗") 

R > model2 < - bvl_addArc(model2, "Viol", "B_and_Viol"," ∗") 

The model can be set as the fixed effect type by adding "slope" into the command: 

R > model2 < - bvl_addArc(model2, "Viol", "O", "slope") 

R > model2 < - bvl_addArc(model2, "B_and_Viol", "O", "slope") 

R > model2 < - bvl_addArc(model2, "C_and_Viol", "O", "slope") 

R > model2 < - bvl_addArc(model2, "T_and_Viol", "O", "slope") 

The prior distributions of model 2 are also set as default: 

a_O ~ normal(0,100) 

b_Viol_O ~ normal(0, 10) 

b_B_and_Viol_O ~ normal(0, 10) 

b_C_and_Viol_O ~ normal(0, 10) 

b_T_and_Viol_O ~ normal(0, 10) 
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Fig. 4. The "relationship tree" of model 2 generated by the package. 

 

 

 

 

Eventually, the function bvl_bnPlot() and summary() can help produce the graphical network (see 

Fig. 4 ) and the mathematical form of the constructed model, respectively. 

R > bvl_bnPlot(model2) 

R > summary(model2) 

Model Info: 

nodes: 8 

arcs: 9 

scores: NA 

formula: O ~ a_ O + b _B_and_Viol_O 

∗ VB 

∗Viol + b _C_and_Viol_O 

∗ VC 

∗Viol + b _T_and_Viol_O 

∗

Viol ∗VT 

Estimates: 

model is not estimated. 

Model 3. multilevel regression analysis 

One can create a much more complex model of multilevel regression analysis, while only following

a similar procedure with two models mentioned above and employing some additional functions. The 

primary purpose of the third exemplary "relationship tree" is to explore the impacts of lying and

violence behaviors, their interaction with religious values, and intervention from the supernatural or 

human world on the outcome of the main character (see Fig. 5 ). 

To construct the "relationship tree" illustrated in Fig. 5 , the functions bayesvl(), bvl_addNode(),

and bvl_addArc() are used comparably similar to model 1 and model 2 above. Notably, to conduct

the multilevel regression analysis between the outcome "O" and the transformed data "Int1_or_Int2", 

things become a little more complicated. The transformed data "Int1_or_Int2" is generated from 

observational data "Int1" and "Int2" applying the following conditional algorithm: 

Int1_or_Int2 = (Int1 + Int2 > 0 ? 1: 0) 
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Fig. 5. The "relationship tree" of model 3. 
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Therefore, the command to create the node of "Int1_or_Int2" is augmented as follows: 

R > model3 < - bvl_addNode(model3, "Int1_or_Int2", "trans", 

+ fun = "({0} > 0 ? 1: 0)", out_type = "int", lower = 0, test = c(0, 1)) 

un = "({0} > 0 ? 1: 0)" is equivalent to the conditional algorithm shown above, while out_type

tands for the property of the output, such as "int" (integer) and "real" (real number). The parameter

est = c(0, 1) helps to insert the code computing “fixed predicted outcome” when Int1_or_Int2 = 0

nd Int1_or_Int2 = 1. The value of transformed data "Int1_or_Int2" is defined based on the values of

bservational data "Int1" and "Int2" through the mathematical operator " + ": 

R > model3 < - bvl_addArc(model3, "Int1", "Int1_or_Int2", " + ") 

R > model3 < - bvl_addArc(model3, "Int2", "Int1_or_Int2", " + ") 

For completing the "relationship tree" construction, the last step is to connect two observational

ata "Lie" and "Viol" as well as other transformed data to the outcome "O". Like previous commands,

he function bvl_addArc() is used, but "trans" is replaced by "slope" (fixed effect) or "varint" (varying

ntercept), to convert the relationships between "O" and other nodes into regression relationships.

here are four fundamental types of statistical model integrated in the bayesvl package: fixed-effect
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model ("slope"), varying-intercept model ("varint"), varying-slope model ("varslope"), and mixed- 

effect model ("varpars"). 

R > model3 < - bvl_addArc(model3, "Viol", "O", "slope") 

R > model3 < - bvl_addArc(model3, "B_and_Viol", "O", "slope") 

R > model3 < - bvl_addArc(model3, "Int1_or_Int2", "O", "varint", 

+ priors = c ("a0_ ~ normal(0,5)", "sigma_ ~ normal(0,5)")) 

The first and second commands are to create the regression relationships of the outcome with

observational and transformed data, respectively, employing a fixed-effect model, while the third 

command is to create the regression relationship between the outcome and transformed data 

employing a varying-intercept model. In model 3, the prior distribution of all the paths from

observational and transformed nodes to the outcome node is set as default, except for the path

from "Int1_or_Int2" to "O". The prior distributions of the relationship between "Int1_or_Int2" and 

"O" is set by adding the code priors = c ("a0_ ~ normal(0,5)", "sigma_ ~ normal(0,5)") into the

function bvl_addArc(). Similarly, this method can be applied to change the prior distribution of 

other relationships by using the prefix a0_, b_, or sigma_, depending on the relationship type.

Besides normal distribution, other kinds of distribution can also be implemented for setting up prior

distribution by replacing "normal" by the name of the designated distribution (e.g. binomial and beta,

etc.). The prior distribution of each path can be checked by typing: 

R > bvl_stanPriors(model3) 

b_B_and_Viol_O ~ normal(0, 10) 

b_C_and_Viol_O ~ normal(0, 10) 

b_T_and_Viol_O ~ normal(0, 10) 

b_Viol_O ~ normal(0, 10) 

b_B_and_Lie_O ~ normal(0, 10) 

b_C_and_Lie_O ~ normal(0, 10) 

b_T_and_Lie_O ~ normal(0, 10) 

b_Lie_O ~ normal(0, 10) 

a0_Int1_or_Int2 ~ normal(0,5) 

sigma_Int1_or_Int2 ~ normal(0,5) 

u_Int1_or_Int2 ~ normal(0, sigma_Int1_or_Int2) 

Eventually, the function bvl_bnPlot() can help produce the graphical network of the constructed 

model (see Fig. 6 ). 

R > bvl_bnPlot(model3) 

One can also check the mathematical construct of each transformed data in the "relationship tree"

above by using the function bvl_formula(), like the following examples: 

R > bvl_formula(model3, "B_and_Lie") 

B_and_Lie ~ VB 

∗Lie 

R > bvl_formula(model3, "Int1_or_Int2") 

Int1_or_Int2 ~ (Int1 + Int2 > 0 ? 1: 0) 

To check the structure and mathematical form of the model, one can use the function summary():

R > summary(model3) 

Model Info: 

nodes: 15 

arcs: 23 

scores: NA 

formula: O ~ b_B_and_Viol_O 

∗ VB 

∗Viol + b _C_and_Viol_O 

∗ VC 

∗Viol + b _T_and_Viol_O 

∗ VT ∗Viol + b _Viol_O 

∗ Viol + b _B_and_Lie_O 

∗ VB 

∗Lie + b _C_and_Lie_O 

∗

VC 

∗Lie + b _T_and_Lie_O 

∗ VT ∗Lie + b _Lie_O 

∗ Lie + a _Int1_or_Int2[(I nt 1 + I nt 2 > 0 ? 1:

0)] 

Estimates: model is not estimated! 
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Fig. 6. The "relationship tree" of model 3 generated by the package. 
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tep 2. Fitting the model 

Before fitting the model using MCMC simulation, one needs to generate the Stan code in R.

ecause the bayesvl package provides an automatic generation of Stan code, one can use the following

ommands: 

R > model_string < - bvl_model2Stan(model3) 

R > cat(model_string) 

The model created from the "relationship tree" can be fitted with MCMC simulation using

he function bvl_modelFit(). The structure of the function bvl_modelFit() is partly dissimilar with

ther currently existent Bayesian analysis packages because it does not require users to construct

onventional mathematical relationships among variables as well as set up the prior distribution for

ach relationship. One only need to input the name of constructed "relationship tree", the dataset,

nd mandatory set-up for MCMC simulation. As the bayesvl package was coded utilizing the No-

-Turn Sampler (NUTS) sampler [16] , the effective sample size per iteration is usually higher than

hat utilizing other samplers. However, the simulation is more computationally intensive and time-

onsuming. Thus, it should be aware that the model specified with a high number of iterations, chains,

nd cores might monopolize computing power for a substantial time, especially for less powerful

achines The command for model fit in the current exemplary case is shown below: 

R > model3 < - bvl_modelFit(model3, data1, warmup = 20 0 0, iter = 50 0 0, chains = 4, cores = 4) 

R > summary(model3) 

Model Info: 

nodes: 15 

arcs: 23 
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scores: NA 

formula: O ~ b_B_and_Viol_O 

∗ VB 

∗Viol + b _C_and_Viol_O 

∗ VC 

∗Viol + b _T_and_Viol_O 

∗VT ∗Viol 

+ b _Viol_O 

∗ Viol + b _B_and_Lie_O 

∗ VB 

∗Lie + b _C_and_Lie_O 

∗ VC 

∗Lie + b _T_and_Lie_O 

∗ VT ∗Lie 

+ b _Lie_O 

∗ Lie + a _Int1_or_Int2[(I nt 1 + I nt 2 > 0 ? 1: 0)] 

Estimates: 

Inference for Stan model: d4bbc50738c6da1b2c8e7cfedb604d80. 

4 chains, each with iter = 50 0 0; warmup = 20 0 0; thin = 1; 

post-warmup draws per chain = 30 0 0, total post-warmup draws = 12,0 0 0. 

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

b_B_and_Viol_O 2.55 0.05 1.46 0.13 1.50 2.41 3.42 5.73 915 1.01 

b_C_and_Viol_O –0.28 0.01 0.61 –1.46 –0.68 –0.31 0.13 0.93 6689 1.00 

b_T_and_Viol_O –0.96 0.01 1.09 –3.21 –1.65 –0.91 –0.26 1.14 6820 1.00 

b_Viol_O –0.62 0.01 0.42 –1.43 –0.90 –0.62 –0.35 0.23 5892 1.00 

b_B_and_Lie_O 0.70 0.02 1.44 –1.78 –0.28 0.56 1.52 4.03 6546 1.00 

b_C_and_Lie_O 1.47 0.02 0.68 0.21 0.97 1.45 1.94 2.86 1676 1.01 

b_T_and_Lie_O 2.23 0.02 1.59 –0.41 1.10 2.06 3.16 5.85 4523 1.00 

b_Lie_O –1.05 0.01 0.37 –1.77 –1.30 –1.05 –0.81 –0.32 3984 1.00 

a_Int1_or_Int2[1] 1.20 0.00 0.21 0.78 1.05 1.20 1.33 1.62 7767 1.00 

a_Int1_or_Int2[2] 1.35 0.00 0.19 0.99 1.23 1.35 1.48 1.73 3512 1.00 

a0_Int1_or_Int2 1.18 0.04 1.34 –1.91 0.87 1.25 1.57 3.83 1353 1.00 

sigma_Int1_or_Int2 1.49 0.04 1.82 0.04 0.28 0.78 1.98 6.67 1759 1.00 

The model is fitted using four chains, each with 50 0 0 iterations of which the first 20 0 0 are

for warmup, resulting in a total of 12,0 0 0 post-warmup posterior samples. In general, the model’s

simulated results show a good convergence based on two standard diagnostics of MCMC simulation, 

n_eff, and Rhat. The n_eff represents the effective sample size, which is the number of iterations

needed for effective independent samples [8] . If the value is greater than 10 0 0, it is a good signal of a

strong correlation between the dependent and independent variables. Rhat value – also known as the 

Gelman shrink factor and the potential scale reduction factor, shows the convergence of the logarithm

[17] . If the value is higher than 1.1, the model is not convergent. The Rhat value is computed using

the following mathematical formula [18] : 

ˆ R = 

√ 

ˆ V 

W 

Where ˆ R represents the Rhat value, ˆ V is the estimated posterior variance, and W is the within-

sequence variance. 

Step 3. Model visual diagnostics 

One can aesthetically visualize the convergence diagnostics, posterior distribution, and estimated 

results. The function bvl_plotTrace() can generate the trace plots of the constructed model. 

R > bvl_plotTrace(model3) 

Fig. 7 displays the trace plot of each parameter in the model, which is a standard visual diagnostic 

for MCMC work. The first 20 0 0 samples mark the warmup (adaptation, or burn-in) period. During

this period, the Markov chains learn to sample more efficiently from the posterior distribution, so

samples in the warmup period are not reliable and representative for inference. It should be noted

that the trace plot plotted by the function bvl_plotTrace() only shows the samples after the warmup

phase. In order to be identified as "clean, healthy" after the warmup period, the Markov chain needs

to meet two primary characteristics: stationarity and good mixing. The chain in Fig. 7 is formed from

four component chains, each of which obtains 30 0 0 iterations after the warmup period. Visually, if all

lines (or paths) stick around a very stable central tendency, the Markov chain can be considered as

stationary, while the rapid zig-zag motions of each line can be seen as the signal for a well-mixing

chain. In general, no divergent chains are found, which suggests that the autocorrelation function dies



Q.-H. Vuong, V.-P. La and M.-H. Nguyen et al. / MethodsX 7 (2020) 100924 11 

Fig. 7. Trace plots of MCMC draws of coefficients in model 3. 
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ut quickly, and the Markov property is satisfactory with the data distribution at hand. Because the

CMC algorithm produces autocorrelated samples, the function bvl_plotAcfs() is another command

o check whether the autocorrelation is eliminated (to 0) after certain finite steps. One can visually

iagnose the autocorrelation of the model by the following command, which will generate the results

n 4 rows and three columns: 

R > bvl_plotAcfs(model3, NULL, 4, 3) 

The mathematical formula for the autocorrelation parameter for lag = L is displayed below: 

AC F L = 

(
T 

T − L 

)∑ T −L 
t=1 ( x t − x̄ ) ( x t+ L − x̄ ) ∑ T 

t=1 ( x t − x̄ ) 
2 

here x t is the sampled value of x at iteration t, T represents the total number of sampled values, and

¯ is the mean of sampled values. From Fig. 8 , we can see that the effective sample size (ESS), which is

ll above 10 0 0, reduces quickly to 0 before lag 3. This tendency satisfies the Markov property of the

hains and, consequentially, ensure computing efficiency. The Gelman Shrink Factor or the Rhat value

stimated above can also be visualized by using the function bvl_plotGelmans(): 

R > bvl_plotGelmans (model3) 

Measuring how much variance there is between chains relative to how much variance there is

ithin chains is another idea to check the convergence. If the average difference between chains

s similar to average difference within chains (when Rhat = 1.0), the chains are well convergent.

evertheless, the relative value might increase (when Rhat > 1.0) and indicates the less convergent

endency between chains, if there appears at least on orphaned or stuck chain [19] . Fig. 9 illustrates
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Fig. 8. Autocorrelation function plots of coefficients in model 3. 

 

 

 

 

 

the mean value of potential scale reduction factor for each variable and parameter at 97.5% as well as

the shrink factor suggested by Gelman and Rubin [20] . Overall, all the shrink factors get to 1.0 rapidly

during the warmup period, which meets the standard of MCMC simulation. 

Step 4. Result of visual presentation 

Besides the mean and standard deviation of the posterior distribution summarized in the model 

fit above, one can visually present the estimated posterior distribution of every variable coefficient 

through histograms. The visualization can be made using the function bvl_plotParams(). We visualize 

the estimated posterior distribution of every variable in the constructed model in four rows and three

columns with the Highest Posterior Distribution Intervals (HPDI) at 89% (see Fig. 10 ). The default HPDI

is at 89%; therefore, to adjust the HPDI to 95%, one can simply change the credibility range (credMass)

from 0.89 to 0.95. 

R > bvl_plotParams (model3, row = 4, col = 3, credMass = 0.89, params = NULL) 

There are also other built-in alternatives to visually present the estimated results after simulation, 

such as bvl_plotIntervals() and bvl_plotDensity(). The bvl_plotIntervals() function helps visualize the 



Q.-H. Vuong, V.-P. La and M.-H. Nguyen et al. / MethodsX 7 (2020) 100924 13 

Fig. 9. Gelman shrink factor plots of coefficients in model 3. 

c  

d  

f  

f  

I  

"

 

f

oefficients and their interval, while the bvl_plotDensity() function helps plot the posterior probability

ensity of coefficients. The results can be plotted "all-in-one" or selectively by both functions. The

ollowing commands are to visualize the interval (see Fig. 11 ) and the density (see Fig. 12 ) of

our coefficients ("b_B_and_Lie_O", "b_C_and_Lie_O", "b_T_and_Lie_O", and "b_Lie_O", respectively).

f one wants to plot the results by “all-in-one” style, he/she can simply omit c("b_B_and_Lie_O",

b_C_and_Lie_O", "b_T_and_Lie_O", "b_Lie_O"). 

R > bvl_plotIntervals(model3, 

+ c("b_B_and_Lie_O", "b_C_and_Lie_O", "b_T_and_Lie_O", "b_Lie_O")) 

R > bvl_plotDensity(model3, 

+ c("b_B_and_Lie_O", "b_C_and_Lie_O", "b_T_and_Lie_O", "b_Lie_O")) 

The comparison between two different coefficients’ distribution of posteriors can be plotted by the

ollowing code (see Fig. 13 ): 

R > bvl_plotDensity2d(model3, "b_Lie_O","b_Viol_O", color_scheme = "red") 
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Fig. 10. Posterior distribution interval plots of coefficients in model 3. 
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Fig. 11. Interval plots of coefficients in model 3. 

Fig. 12. Density plots of coefficients in model 3. 
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Fig. 13. Comparative densities between two "b_Lie_O" and "b_Viol_O". 

 

 

 

 

 

 

Conclusion 

Recently, the reproducibility crisis and the problems of ’stargazing’, p-hacking, or HARKing in 

statistical analysis have required the scientific community to be more rigorous in conducting research 

and find solutions for the persistent statistical issues. Thus, the method paper proposes Bayesian

analysis as a substitution for the conventional frequentist approach. Bayesian statistics have the 

advantages of treating all unknown quantities probabilistically and incorporating prior knowledge or 

belief of scientists into the model as an alternative approach for frequentist analysis in social sciences.

The usage of the bayesvl R package for social data analysis also provides the opportunity to construct a

"relationship tree" among variables intuitively and graphically visualize simulated posterior, especially 

in the age of Big Data [21] . 
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