
RESEARCH ARTICLE

Delay-aware distributed program caching for

IoT-edge networks

Chang Kyung Kim1, TaeYoung Kim1, SuKyoung LeeID
1*, Seungkyun Lee1, Anna Cho1,

Mun-Suk Kim2

1 Yonsei University, Seoul, Republic of Korea, 2 Sejong University, Seoul, Republic of Korea

* sklee@yonsei.ac.kr

Abstract

Edge computing is a novel network architecture that is in proximity to the end devices in an

Internet of Things (IoT). As the IoT becoming a major factor in our daily life, provisioning a

low response time of the services to IoT users through edge computing is an important prob-

lem. Caching necessary program data for the task in an edge node effectively reduces the

response time of the computation task. However, due to the increase of IoT users and

devices, it is noteworthy that limited-resource edge nodes would receive a number of tasks,

having a heavy burden of processing the requests. Therefore, the limited resource and

caching space at cloudlet need the careful design of the caching algorithm to utilize the

space of multiple edge nodes and relieve the burden of computations. In this paper, we pro-

pose a cooperative program caching system that makes different edge nodes cooperatively

store program data and cache the replicas of the data requested frequently to handle a num-

ber of requests from IoT users. In particular, we develop a cooperative caching algorithm

that caches the appropriate number of data replicas depending on the number of requests

on each cloudlet and the popularity of the data to minimize the response time. The simula-

tion results show that the proposed cooperative caching algorithm can effectively reduce the

response time for IoT users compared to other existing algorithms.

1 Introduction

The realization of Internet-of-Things (IoT) envisions ubiquitous connectivity among billions

of smart devices over the future Internet. The IoT is being assimilated into human lives from

healthcare, smart homes, intelligent transportation, and industrial manufacturing to smart cit-

ies [1, 2]. However, a proliferation of modern wireless applications demanding high-perfor-

mance computation and the limited computing capabilities of IoT devices bring great

challenges. To overcome these challenges, cloud computing has emerged for IoT applications

with its rich computing capacity and storage. Although such a heavy computing task can be

processed by the existing cloud paradigm, it is not suitable for the pervasive IoT system, due to

long communication delay between IoT users and the cloud and this makes delay-sensitive

applications impossible to implement (e.g. industrial IoT and Virtual Reality games) [1, 3]. To

address this problem, processing the task at the network edge (referred to as ‘cloudlet’ in this

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim CK, Kim T, Lee S, Lee S, Cho A, Kim

M-S (2022) Delay-aware distributed program

caching for IoT-edge networks. PLoS ONE 17(7):

e0270183. https://doi.org/10.1371/journal.

pone.0270183

Editor: Chakchai So-In, Khon Kaen University,

THAILAND

Received: June 9, 2021

Accepted: June 7, 2022

Published: July 19, 2022

Copyright: © 2022 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This work has supported by the National

Research Foundation of Korea(NRF) grant

funded by the Korea government(MSIT)

(No.2022R1A2B5B01001683). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3497-3295
https://doi.org/10.1371/journal.pone.0270183
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270183&domain=pdf&date_stamp=2022-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270183&domain=pdf&date_stamp=2022-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270183&domain=pdf&date_stamp=2022-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270183&domain=pdf&date_stamp=2022-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270183&domain=pdf&date_stamp=2022-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270183&domain=pdf&date_stamp=2022-07-19
https://doi.org/10.1371/journal.pone.0270183
https://doi.org/10.1371/journal.pone.0270183
http://creativecommons.org/licenses/by/4.0/

paper) has been considered as a promising solution [1, 3, 4]. Specifically, IoT users can access

the cloudlets through the low-latency wireless network, then they can request the computation

task to the cloudlets or the cloud.

Computing a task not only requires the input data but also needs the program/library data.

For instance, when smart glasses send an image of a human face as input for face recognition

to the cloudlet, it has to load all the necessary program/libraries and user-specific code for exe-

cution (e.g. library for human recognition) [5, 6]. We refer to caching these data as program
data caching. It may take seconds to load all necessary programs from the cloud. Hence, cach-

ing program data in the cloudlets can reduce the delay caused by loading the program from

the cloud. That is, the popular program data is cached at the cloudlet and then, there is no

need to load the program if the task is executed at the cloudlet which caches the program data.

We refer to the caching input and output data of computation tasks as content caching. How-

ever, the input and output data are hardly reused in the IoT scenario having short life time of

the input and output data [7].

Since cloudlets are deployed near IoT users, they can serve the task with lower task response

time due to low transmission time. However, cloudlet has the limited caching storage so that

cloudlet can only cache the limited number of the data. To overcome this problem [8–11] sug-

gested the cooperative caching strategy, where the neighbor cloudlet can forward the requested

data if the cloudlet, which first receives the request from IoT user, does not cache the requested

data. Even if [8–11] suggested the cooperative caching algorithm, these works only focus on

the content caching. In these works, they did not consider the program data caching. With an

explosive increase of IoT users and the limited computing capacity of the cloudlet, it is notewor-

thy that a cloudlet would receive a large number of task requests, having a heavy burden of pro-

cessing the requests [12]. Accordingly, if the multiple IoT users request numerous computation

tasks requiring the same program data and there is only one cloudlet caches that program data,

then the cloudlet needs to handle all of these massive task requests. In this case, the IoT user

get the result with longer total response time due to the long waiting time of the requests at the

cloudlet [13]. [14–16] consider the program data caching with the cooperative network, but

they didn’t consider the waiting time which is caused by the numerous task requests from the

IoT users. Therefore, in this paper, we employ a cooperative edge caching strategy that caches

the replicas of popular program data, which are frequently used, into multiple cloudlets.

Specifically, we formulate the problem of selecting which cloudlet to cache each program

data and replica for minimizing the total response time experienced by the IoT user. Since the

service time at the cloudlet can be different depending on the computing workload of the task,

we analyze the total response time of the task with the waiting time based on the M/G/1 queu-

ing model for the problem formulation [17, 18]. Since the formulated problem is known to

be NP-complete, we propose a heuristic caching algorithm to solve the total response time

minimization problem. We also designed the distributed task protocol to provide the low

response time in the cache-enabled IoT-edge networks by choosing the best destination cloud-

let to process the incoming requests. We finally conducted simulations to evaluate the perfor-

mance of our proposed algorithm in comparison to the existing cooperative caching strategy.

The main contributions of this paper are summarized as follows:

• We propose a cooperative edge caching strategy to handle a number of tasks from IoT users

that are requested to be processed at a cloudlet. In the proposed strategy, program data are

cached in different cloudlets and the task requests can be forwarded to the further cloudlet if

the cloudlet near the IoT user does not cache the required program data. Moreover, replicas

of the popular program data are cached in multiple cloudlets so that the tasks requiring the

same data can be forwarded to the multiple cloudlets.

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 2 / 20

https://doi.org/10.1371/journal.pone.0270183

• We formulate the caching problem with the objective to minimize the total response time of

the task. For the problem formulation, we not only investigate the transmission time of the

task request in the cooperative network, but also model the waiting time of task request at

the edge cloudlet as an M/G/1 queuing system. Then, the waiting time is incorporated into

the total response time.

• We propose the heuristic algorithm to solve the problem formulation which is NP-complete.

The proposed algorithm caches more than one same data into multiple cloudlets depending

on the number of requests and popularity.

• We implement the proposed caching algorithm and evaluate its performance, compared to

the existing cooperative caching strategy in terms of the total response time. It is demon-

strated via the simulation results that our algorithm improves the total response time.

The remainder of this paper is organized as follows. In Section 2, we review some related

work on caching for IoT system. Section 3 gives the system architecture considered for our

caching algorithm. In Section 4 and 5, we formulate the caching problem and then provide

the heuristic caching algorithm to solve the problem. We evaluate our algorithm and compare

with other existing caching algorithms in Section 6. Finally, Section 7 concludes the paper with

some discussions.

2 Related works

2.1 Edge computing in IoT system

Recently, IoT data analytics play an important role in predicting the status of our surround-

ings by processing and computing collected from a huge number of IoT users [1, 2].

Use cases benefiting such IoT data analytics include smart city video analytics, smart

manufacturing, health care, etc [2, 3]. Nevertheless, many IoT devices have limited comput-

ing resources and storage to cache diverse data and locally execute the heavy computation

task. Therefore, cloud computing has been adopted to provide IoT users with sufficient stor-

age and processing capability through data centers in the cloud. That is, a massive amount of

multi-modal data collected from numerous heterogeneous IoT users have to be transferred

to the cloud for storage, computation, and decision-making. However, the cloud platform is

usually located physically far from the IoT users causing slow response times. Users can no

longer tolerate such slow responses of cloud-based computing when using IoT applications

such as self-driving cars, and voice recognition. More recently, therefore, edge computing,

which brings resources close to the end-users, has been recognized as a solution to reduce

the response time for IoT applications [4, 19, 20]. [20] shows that the edge paradigm will

reduce the latency and distribute network traffic in computation offloading. [19] propose the

smart-edge algorithm for the joint optimization of computation, caching, and communica-

tion to address the disadvantages of traditional cloud computing in terms of communication

delay and network load.

2.2 Data caching in IoT-edge system

There have been some efforts aimed at reducing the total response time of the computation

task for supporting a number of IoT applications via edge caching [6, 8, 21, 22]. Recent work

has applied content caching to IoT-edge systems to reduce redundant computations, delay,

and energy consumption. Especially, an edge node caches the output data of the task [9] and

intermediate task results that may use for future task executions [21]. While previous studies

show that the computation content caching can minimize the total response time, the

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 3 / 20

https://doi.org/10.1371/journal.pone.0270183

fundamental assumption on reusing the same task input, output, or intermediate data may not

hold for many IoT applications [6].

Program data caching, on the other hand, caches the library/program data for processing

IoT applications. Caching program at edge nodes is an effective way to relieve the burden of

the backhaul network and to reduce the delay caused by initializing necessary program data or

task migration due to the absence of the program [5, 6]. There have been some research related

to task offloading and the program caching [6, 23, 24]. [23] jointly considering the access net-

work selection and program placement to improve the response time for edge applications. [6]

minimize the computation delay and energy consumption of the edge node by jointly consider

the program data caching placement, computation offloading decisions, and system resource

allocation. The previous works have shown that the program data caching can reduce the total

response time of the task. In particular, it can reduce the initialization of an application such as

loading required libraries and initializing user-specific code. However, previous works [6, 23]

did not consider the cooperative edge to overcome the limited storage and computing

resources caching less diverse data in the system.

2.3 Cooperative caching

Compared to the cloud, the storage capacity at the edge is relatively limited [25]. Unfortu-

nately, as the volume of content keeps increasing, the caching capacity at the edge nodes gets

more limited [9]. Thus, there have been some studies on cooperative caching to efficiently uti-

lize the storage resources as well as to improve the hit ratio and data retrieval time in the edge-

enabled networks [8, 26]. [26] suggests a dynamic cache replacement algorithm which consid-

ers in the tree network topology. The strategy calculates the node access frequency to achieve

better cache placement performance. [8, 9] suggest a spatially caching strategy to construct

cooperative networks of edge servers. For maximizing the storage efficiency of edge servers,

each edge server does not cache the data which have been cached by its nearest edge server.

Despite their meaningful works in content caching, the fundamental assumption on reusing

task input and intermediate data may not suitable for many IoT applications. Similar to con-

tent caching, there have been also many cooperative systems in program caching to improve

the storage efficiency and the computing delay [14, 21, 26]. [14] proposes an online edge ser-

vice caching algorithm to reduce the traffic sent to the cloud by utilizing the cooperative fea-

tures of base stations in mobile edge cloud. In [21], the author studies how to edge servers

cooperatively process the data of multiple applications via the heuristic greedy method and

caching strategy.

2.4 Motivation

The previous works [8, 9, 26] have shown that cooperative caching is effective in managing the

network traffic and storage of edge servers in the edge-enabled computing system. In particu-

lar, cooperative caching can increase the diversity of cached data, leading to a high hit ratio.

However, these previous works did not consider the waiting time of the user requests for data

because they focused on content caching, where no computation is needed but only sending

the requested data. Although [9, 14, 15] suggested the cooperative caching algorithms in pro-
gram data caching, they have not considered the waiting time of the requests in the cloudlet

due to numerous task requests from the IoT users.

It is addressed in [12, 27] that the long waiting time can be caused by numerous task

requests from IoT users. Specifically, since the program is required to execute the task in the

cloudlet, the waiting time on a cloudlet can be increased if there is only one cloudlet that

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 4 / 20

https://doi.org/10.1371/journal.pone.0270183

caches the high demanded program data and multiple IoT users send the task requests that

require the same program data. Yet, in these works [12, 27], when a cloudlet receives a request

and does not cache the related program data, it can forward its request only to the cloudlet

that is directly connected to itself. As a result, the options of the cloudlets to which the requests

can be forwarded are limited.

Therefore, in this study, we propose the cooperative edge caching strategy to handle a large

number of computation tasks requested by IoT users, requiring the same program data. Specif-

ically, in the proposed caching strategy, replicas of the high demanded program data are

cached into the multiple cloudlets based on the number of requests and data popularity.

Hence, if the cloudlet that received the task requests from IoT users does not cache the

required program data, then the requests can be forwarded to the multiple cloudlets, leading

to lower response times of the tasks.

3 Cache-enabled IoT-edge system

In this section, we first introduce our network elements of the cache-enabled IoT-edge caching

system. Then, we explain the caching protocol of the IoT-edge caching system.

3.1 Overall system architecture

The overall architecture of the IoT-Edge system is depicted in Fig 1. We consider a particular

region that can be defined based on its features (e.g., residential district, business district) as

IoT users will request the computing task related to these features [27, 28]. Each region con-

sists of a Coordinator Server (CS), cloudlets, and IoT users. The role of each system element is

defined as follows:

• Coordinator Server: CS is introduced to make a caching decision as a control server of our

caching system. In each region, CS is installed as in [29, 30], while it may be replicated

Fig 1. Cached-enabled IoT-edge system architecture.

https://doi.org/10.1371/journal.pone.0270183.g001

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 5 / 20

https://doi.org/10.1371/journal.pone.0270183.g001
https://doi.org/10.1371/journal.pone.0270183

for different geographical regions. At the time when the CS is deployed, it retains the IP

addresses of the cloudlets and RTT among the cloudlets in its region [27, 31].

In the proposed system, CS mainly has the following two components:

• Clustering Agent (CA): Since cloudlets are limited in the computing resources and caching

space, CA forms clusters (referred to as ‘cooperative edge network’ in this paper) of cloud-

lets in edge networks [32]. Cloudlets in the same cooperative network can cache replicas of

program data, so the tasks requiring the same program data can be distributed into multi-

ple cloudlets. CS clusters the cloudlets when they are first deployed or later when a new

cloudlet is additionally deployed in the region.

• Caching Decision Agent (CDA): CDA is in charge of making a caching decision. CDA

performs the caching decision when it receives the average number of task requests from

the cloudlets of the region. After caching decision is finished, the CS sends the informa-

tion of which cloudlet caches which program data as well as the estimated waiting time of

each cloudlet to the cloudlets in its region. The waiting time refers to the time taken to fin-

ish executing task at the cloudlet. The process to calculate the waiting time of each cloud-

let is explained in Section 5.

• Cloudlet: Cloudlet aims to bring computing capabilities and servers to the network edge

and closer to users. Cloudlet is co-located with base station (BS) and deployed near IoT

users to provide computing resources [28, 33]. In addition, cloudlets are usually deployed

at some important sites, such as factories and schools [28, 32]. In these applications, it is

necessary to optimize the task response delay of users. Recently, IoT applications such as

augmented reality and natural language processing requires computation-intensive,

resource-limited IoT users can send a task request to the cloudlets [28]. The main objective

of using cloudlet is to process most of the data at the network edge and send less traffic

toward the cloud, resulting in low data storage requirements and low total response time

[33].

If the cloudlet that receives a task from an IoT user does not cache the required program

data for the task, the cloudlet can forward the task to another cloudlet in the same

cooperative edge network. In the proposed system, each cloudlet has the following two

components:

• Reachability table: Each cloudlet contains the reachability table that has the waiting time

and IP addresses of cloudlets in the same cooperative network, and the information of

what program data each cloudlet has [27, 30]. The reachability table is updated after the

caching decision is finished by the CS.

• Monitoring Agent (MA): MA monitors the incoming task requests and stores the number

of incoming requests for each program data during a certain period of time (e.g. a day)

[34]. MA sends the stored information to CDA for caching decision.

• IoT users: IoT users are smart devices such as smart phones, wearable computing devices

and self-driving cars [35]. To efficiently provision the real-time services for the applications,

IoT users request the task with their collected data to one of near cloudlets.

3.2 Procedure of processing task requests

In this subsection, we describe how IoT user sends the task to the cloudlet and gets back a

result of that task. The process of requesting a task and getting the result corresponding to the

task work as follow:

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0270183

1. When the IoT user wants to send a computation request, it first sends a request to the BS.

BS finds the nearest cloudlet using the agent discovery process and forwards the request to

the found cloudlet [36].

2. The cloudlet that first received the request from the IoT user works as a proxy cloudlet. If

the proxy server contains the required data for the task, it executes the task and returns the

result to the IoT user.

3. Otherwise, using the reachability table in the proxy cloudlet, the proxy cloudlet selects the

cloudlet with the lowest waiting time among the cloudlets that has the required data for the

task. Then, the selected cloudlet will execute the task. After the cloudlet finished executing

the task, the cloudlet record what program data is used for the task using MA.

4. If none of the cloudlets can execute the task due to the absence of required program data,

the IoT user directly sends the task to the cloud.

4 Analysis of total response time & problem formulation

4.1 System model

We denote by I the set of cloudlets in the region, i 2 I. Let J and K be the sets of program data

and IoT users, respectively. The program data j, j 2 J, is required to process the computing

tasks at the cloudlet.

We denote sj as the size of the input data for the task requiring program j. For any program

data j, xij is used to indicate whether the data is cached at the cloudlet i

xij ¼
�

1; caches program data j
0; Otherwise

ð1Þ

We denote nij as the number of incoming requests requiring program data j to the cloudlet

i. MA measures nij during a certain period of time, and sends the measured value to CDA

in CS. Using the received nij, CDA can obtain the popularity of each data pj by calculating

pj ¼
P

i2I
nijP

i2I

P
j2J
nij

. Then, using the Exponential Weighted Moving Average (EWMA), CDA

obtains the average popularity �pj for data j at cloudlet i as [37]:

�pj ¼ ð1 � sÞ�p�j þ spj; 8j 2 J ð2Þ

where σ 2 [0, 1] is a weight and �p�j is the average popularity obtained in the previous period.

Using the average popularity, �pj obtained from Eq 3 we can get the hit ratio of the system

(denoted by h). The hit ratio is defined as the probability of finding the program required for

the task in the cache of cloudlets. We then can express the hit ratio as:

h ¼
X

j2J

�pj 1 �
Y

i2I

ð1 � xijÞ

 !

ð3Þ

The above equation means the probability of finding of at least one cloudlet that caches the

required program data in the IoT edge. The last part of Eq 3, ∏i 2 I(1 − xij) becomes zero if one

of the cloudlets i 2 I caches the program data j. The binary variable xij is decided by CDA in

CS when it performs the caching decision. The details about the caching decision process will

be explained in Section 5.2.

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 7 / 20

https://doi.org/10.1371/journal.pone.0270183

4.2 Transmission time between IoT user and cloudlet

If an IoT user transmits the task to an optimal cloudlet i, the transmission time between IoT

users and the cloudlet i, tij can be expressed as:

Thit ¼
sj
ri

ð4Þ

where ri is the average transmission rate at the cloudlet i and sj is the size of input data of the

task that requires the program j. Since the size of the result is usually very small, the delay to

receive the result is negligible [15, 30]. Each IoT user k will be allocated to a bandwidth β for

transmitting its task. We denote Pik and cik as the transmit power of and channel gain from

IoT user k to i, respectively. Let σ is Gaussian noise, the transmission rate beteen rik achieved at

IoT user can be written as ri ¼ blog2 1þ
Pik�jcikj

2

s2þ
P

k02Knfkg
Pik0 �jcik0 j

2

� ��

.

Then, we now can get the total transmission time including the cases of the task is executed

in the cloudlet or the cloud, Tr
i :

Tr
i ¼ h � Thit þ ð1 � hÞTmiss ð5Þ

where Tmiss is the sum of total transmission time and execution time between IoT user and the

cloud when the task is executed in the cloud.

4.3 Waiting time

When the task requests arrive at the cloudlet, each cloudlet is supposed to process one task at a

time. A large number of task requests are sent to the cloudlet and so the tasks must be queued

[12]. We assume that the computation task requests are generated by IoT users in the region

according to a Poisson process. The time required to process the task depends on the comput-

ing workload of the task and the computing power of each cloudlet i. The tasks have different

computing workloads following the distribution of the general service rate. Hence, we model

the waiting time of requests at the cloudlet as an M/G/1 queuing system [17].

The multiple arrivals of task requests requiring program j can be distributed into multiple

cloudlets in our considered architecture. Hence, we can express the expected arrival rate of

task request requiring j to the cloudlet i, λij as:

lij ¼ l �
xij � �pj
Yj

ð6Þ

where Yj is the number of cloudlets that contain the data j in a cooperative network which is

given by Yj = ∑i 2 I xij. λ is the total arrival rate of task requests to the region (i.e λ = ∑i 2 I∑j 2 Jλij).
We then define the service time to process a task requiring program j at i as

1

mij
¼
cj
fi

ð7Þ

where cj and fi are the computational computing workload of request requiring program j and

the computing power of cloudlet i, respectively.

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0270183

Then we calculate the average number of task requests at i as:

E
1

mi

� �

¼

P
j2J

lij

mij
P

j2Jlij

ð8Þ

We use Pollaczek-Khinchine formula to get the average queue length and use Little’s law to

obtain the average waiting time of the request at the cloudlet i as:

Tw
i ¼

P
j2JlijE

1

mi

� �2
" #

2 1 �
P

j2JlijE
1

mi

� �� � ð9Þ

4.3.1 Minimization of total response time. Our main work is to make a caching decision

for the cloudlets to reach the minimum total response time. The total response time, which is

the interval between the moment when an IoT user sends a request and when it receives the

result, is a sum of the transmission time and the waiting delay at the cloudlet.

By considering the waiting time at the cloudlet with the transmission time, the total

response time of a task T̂ r
i can be rewritten as:

T̂ r
i ¼ Tr

i þ h � T
w
i ð10Þ

As RTTs (round-trip time) among cloudlets in the same cooperative network are set to be

small in the clustering process, the time taken for finding the optimal cloudlet is neglected

[35].

Denoting with bj the size of program data, we formulate the caching problem to decide

where to be cached (i.e., on which cloudlet) with the aim to minimize the total response time

of the system as:

min
xij

X

i2I

T̂ r
i ð11Þ

s:t: 0 <
X

j2J

bj xij � Si; xij 2 0; 1 ð12Þ

where the constraint Eq 13 indicates that a sum of cached data size cannot exceed the maxi-

mum capacity of the cloudlet i.
The main objective of 0–1 multiple knapsack problem is to maximize/minimize the func-

tion with respect to the decision variable that cannot exceed an upper bound. To prove that

our problem is same as 0–1 multiple knapsack problem, we expand the proposed problem for-

mulation as Eq 13 in below.

As shown in Eq 13, the problem objects to find the minimum value of total response time

by deciding the value of binary indicator xij under the constraint of the caching capacity of the

cloudlet. Hence, our minimization of the total response time problem is proven as a 0–1 multi-

ple knapsack problem, which is proven as NP-complete.

min
xij

X

i2I

T̂ r
i ¼ min

X

i2I

Tmiss þ ðThit þ T
w
i � TmissÞ

X

j2J

�pj
Y

i2I

ð1 � xijÞ

 !

ð13Þ

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0270183

To address the proposed problem, we not only suggests the process of executing task at the

optimal cloudlet but also introduce a distributed delay-aware caching algorithm in the follow-

ing section.

5 Distributed delay-aware caching algorithm

In this section, we design the details of our clustering process and heuristic caching algorithm

to minimize the total response time by caching appropriate number of same data into multiple

cloudlets.

5.1 Clustering process

To prevent the request is sent to a far cloudlet which can cause an unexpected long transmis-

sion time, CS groups the cloudlets into clusters based on the RTT among them. For collecting

RTT among cloudlets, CS sends lists of IP addresses to its cloudlets. Using the lists, cloudlets

measure the RTT (e.g. ping mechanism using IP) among themselves. Then cloudlets return

the measured RTT to the CS.

In the clustering algorithm, we introduce a control parameter, tcl to limit the size of the clus-

ter (i.e., the intra-cluster delay). The larger size of the cluster results in a higher Tr, but a greater

number of cloudlets. For the clustering process, CS performs the following process:

1. CS first finds a random cloudlet that is not included in any cluster, then makes this cloudlet

as a start of a new cluster

2. CS finds the cloudlet i that is connected to the cluster by 1 hop. Cloudlet i can be included inm
if it does not belong to any other cluster and if the RTT among cloudlet i and the other cloud-

lets in the cluster is less than tcl. Otherwise, the cloudlet i cannot be assigned to the cluster.

3. CS keeps expanding the cluster until there is no cloudlet that can be added to the cluster.

CS repeats the above process until there is no cloudlet that does not belong to any cluster.

The clustering algorithm occurs at a moment when a new cloudlet is deployed in the system.

After the clustering process is completed, CS starts caching data into its cluster using our pro-

posed caching algorithm.

Algorithm 1 Caching Algorithm
1: Input:

I, J, X: matrix of xij
2: Initialize:

Sort program data set of J in descending order based on pj
3: for each j 2 J do
4: Obtain i that has the largest S0i
5: xij 1
6: end for
7: Calculate Tw using Eq 10
8: minT̂w ¼ Tw

9: while S0i! ¼ 0, in i 2 I do
10: for each i 2 I do
11: for each j 2 J do
12: if all i 2 I is full then
13: Terminate the Caching Algorithm
14: else if sj > S0i then
15: xij = 1
16: end if
17: Calculate T̂w using Eq 10
18: if T̂w < minT̂w then

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 10 / 20

https://doi.org/10.1371/journal.pone.0270183

19: min T̂w ¼ T̂w

20: else
21: xij = 0
22: end if
23: end for
24: end for
25: if jTw � min T̂wj < y then
26: Terminate the Caching Algorithm
27: else
28: Tw ¼ minT̂w

29: end if
30: end while

5.2 Caching process

The 0–1 knapsack problem in Eq 12, can be solved using brute force, but the approach is not

scalable as the number of data and cloudlets increases. Instead, the problem can be solved

using the greedy algorithm by making a heuristic decision at each stage. Hence, we design the

heuristic caching algorithm. Moreover, we introduce the control parameter θ which is an

adjustable threshold to control the cache storage of cloudlets and the complexity of the algo-

rithm. The algorithm is terminated when the reduction of waiting time during the caching

process is less than θ. The larger value of θ may save the storage of cloudlets but caches less

number of replicas may lead to more waiting time.

The CDA component in CS executes the following caching algorithm:

1. For each data j 2 J, CS caches program data j into the cloudlet i which has the largest

remaining storage (S0i ¼ Si �
PJ

j¼1
xij � bj) (Line 3–6).

2. CS calculates the current waiting time Tw using Eq 10. (i.e. Tw ¼
P

i2IT
w
i) (Line 7).

3. For each data j 2 J and each cloudlet i 2 I, CS calculates the expected waiting time of the

cooperative network T̂w when additional data j is cached into the cloudlet i. Then CS selects

xij that leads to lowest T̂w when xij set to 1. (Denoted as minT̂w). However, The selected xij
has to satisfy constraint sj > S0i (Line 10–24).

4. The algorithm is terminated if none of cloudlet can cache the data j due to full of storage

(Line 12–13).

5. If the decrements of the total response time after caching selected data j into the cloudlet i is

less than θ (i.e., jTw � minT̂wj < y), caching process is terminated (Line 25–26). Then the

algorithm is repeated from Step 3.

After the caching decision is finished, CDA sends the information of which cloudlet caches

which program data and the estimated waiting time of each cloudlet to the cloudlets in the

region. The information is updated into the reachability table of each cloudlet and cloudlets

use the reachability table to select the cloudlet that executes the task.

6 Performance evaluation

6.1 Simulation settings

We consider the scenario in which 100 cloudlets are randomly distributed. The topology of the

cloudlets is generated randomly in each experiment using a random graph generator. Then

the RTTs among the cloudlets are uniformly distributed from 0.5 to 1.2 ms [27].

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 11 / 20

https://doi.org/10.1371/journal.pone.0270183

There are 50 types of program data, with the popularity of each program follows a Zipf-dis-

tribution with a shape parameter α = 7 and the popularity weight factor σ is set to 0.125 to

avoid high fluctuations in the estimation [22, 38, 39]. The transmission power of IoT user is set

from 0.2W to 0.3W [40, 41]. The bandwidth between cloudlets from users is 500 Mbps. Since

the task request has the input data and the computing workload to be completed, we set the

input data and output data size sj as an average of 2 MB [42]. Since the waiting time at the

cloudlet is designed as M/G/1 queuing, the computing workload of the request cj follows uni-

form distributions in [75 × 106, 200 × 106] cycles [43].

We set the cloud’s computation capability is set to 2 times of the cloudlet [24]. The delay

from users to the cloud is 0.3 s [36]. We initially set tcl as 0.015 s [24, 27, 36], which constructs

average of ten clusters in the entire simulation area. We simulate the algorithm by varying the

arrival rate from λi = 1 to 10 (requests/s) for each cloudlet assuming the IoT user requests a

task per second. The capacity of each cloudlet is set to range from 20—40% of the total size of

unique data in the system so that the storage capacity of the (e.g. when J = 50, each cloudlet

can store a maximum of 10 to 20 data) [12].

We compared our proposed algorithm to the other two methods. The first algorithm is the

cooperative caching algorithm where the popular data is cached into the one cloudlet for each

cooperative network (denoted as general cooperative caching (CC)). The second algorithm

caches one replica for the popular data in the cooperative network (denoted as replica caching

(RC)).

6.2 Simulation results

In Fig 2, we show the effect of the arrival rate λi on the total response time for each algorithm

with different Zipf parameters α: 0.3, 0.7, and 1.0. The proposed algorithm always outperforms

Fig 2. Total response time varying λi when the Zipf distribution parameter α = 0.3, 0.7 and 1.0.

https://doi.org/10.1371/journal.pone.0270183.g002

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 12 / 20

https://doi.org/10.1371/journal.pone.0270183.g002
https://doi.org/10.1371/journal.pone.0270183

the other two comparing algorithms for all the three values of α with respect to the total

response time. The delay difference among the three algorithms gets larger when α is increased

as shown in Fig 2, but the proposed algorithm relatively consistent because it adjusts the num-

ber of replicas depending on the popularity of the data. The smaller α implies the lower consis-

tency of the user’s preference for the popular data. In other words, when α is high (e.g α = 1.0),

the demand for tasks requests requiring popular data (i.e., the popularity is pj) is higher than

when α is low. Accordingly, the waiting time at the cloudlets that contain the popular data gets

higher. We thus can say that the proposed algorithm can achieve a relatively lower delay on

various values of α by caching multiple replicas of the data that have higher popularity and

arrival rate in the cluster.

We plot Fig 3 describing the total response time with the different values of β between IoT

users and cloudlet i to examine how transmission rate affects the total response time. The aver-

age delay of the three algorithms decreased with the higher transmission rate due to less trans-

mission delay between the. IoT user and cloudlet. We also observe that all the three algorithms

achieve higher response time with larger λi because the waiting time is increased due to the

increase in the number of requests. As shown in Fig 3, CC and RC are less tolerable to the

higher arrival rate compared to the proposed algorithm. Especially, the total response time of

the two comparing methods are highly increased when the arrival rate (λi) is bigger than 8.

This is because CC and RC cache the one or two data for each program data in the cooperative

network so that the requests requiring the same program data are concentrated to one or two

cloudlets leading to the long waiting time at the cloudlet.

In Fig 4, we compare the total response time on the different computing workloads of the

task. Our algorithm gets more effective when the task gets more complicated. We examined

the three algorithms with different computational workloads of the task (cj): 75 × 106 and

200 × 106 cycles. We see from Fig 4 that when cj is 75 × 106 cycles, the proposed algorithm still

shows a better total response time for all the different arrival rates. As shown in Fig 4, the total

Fig 3. Total response time varying λi when the bandwidth β = 300 and 500 Mbps.

https://doi.org/10.1371/journal.pone.0270183.g003

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 13 / 20

https://doi.org/10.1371/journal.pone.0270183.g003
https://doi.org/10.1371/journal.pone.0270183

response time of CC and RC is highly increased from λi = 7. When cj is increased to 200 × 106

cycles, our proposed algorithms shows average of 28% and 19% a better total delay than CC
and RC when λi is relatively low(i.e. λi� 7). Then the total response time of the proposed algo-

rithm significantly increases when λi gets larger than 7. As shown in Fig 4, while our algorithm

still has a stable delay on a larger request intensity, the delays of CC and RC are significantly

increased.

In Fig 5 (Left), the graph shows the total response time depending on the size of input data

sj. The proposed algorithm shows an average of 25% and 20% better total response time than

the CC and RC. The control of waiting time is also important to minimize the total response

time. Fig 5 (Right) shows the ratio of waiting time to total response time for three algorithms.

As shown in Fig 5, the ratio of waiting time is increased as λi increases since more requests are

held in each cloudlet. The ratio difference between the three algorithms shows that the waiting

time has a large effect on the total response time. The waiting time of the proposed algorithm

is relatively smaller than CC and RC also indicating that the waiting time can be reduced by

caching replicas into multiple cloudlets and distributing the task requests.

Fig 6 plots the total response time versus the number of cloudlets increasing from 30 to 150

when λi = 5, 7 and 10 requests per second. We set the number of clusters as 10. We observe

that as the number of cloudlets increases, the total response time decreases for all the three

methods, while the proposed algorithm outperforms the other two methods. This is because

the proposed algorithm can cache more program data in the cooperative network when there

are more cloudlets, resulting in the task requests being distributed to more cloudlets. As

shown in Fig 6 the differences in total response time between the proposed methods and the

other two methods gets smaller as the number of cloudlets increases, but the delay differences

between the proposed algorithms and the other two methods get larger when the arrival rate

increases.

Fig 4. Total response time varying λi when the the computation workload of the task cj = 75 and 200 cycles.

https://doi.org/10.1371/journal.pone.0270183.g004

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 14 / 20

https://doi.org/10.1371/journal.pone.0270183.g004
https://doi.org/10.1371/journal.pone.0270183

Fig 5. Total response time varying (left) the size of task data sj and (right) the ratio of waiting time in total response time varying λi.

https://doi.org/10.1371/journal.pone.0270183.g005

Fig 6. Total response time varying the number of cloudlets when λi = 5, 7 and 10.

https://doi.org/10.1371/journal.pone.0270183.g006

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 15 / 20

https://doi.org/10.1371/journal.pone.0270183.g005
https://doi.org/10.1371/journal.pone.0270183.g006
https://doi.org/10.1371/journal.pone.0270183

Fig 7 (Left) shows the total response time with the various number of clusters when the

number of cloudlets is 100. The total response time decreases when the number of clusters

increases from 1 to 10. When there are a fewer number of clusters, the size of each cluster gets

bigger than when more number of clusters are formed. Hence, when there is one cluster, the

task request is sent to the further cloudlet leading to a longer transmission time than when 5

and 10 clusters are formed. Interestingly, the total response time increases when the number

of clusters increases from 10 to 20. Although the request is sent to the further cloudlet for the

case of 10 clusters than for the case of 20 clusters, the difference in the number of cloudlets is

less than when the number of clusters is increased from 1 to 10, as shown in Table 1. There are

10 cloudlets with the average of 1.34 replicas in each cloudlet when 10 clusters are formed,

whereas only 5 cloudlets with an average of 1.08 replicas when 20 clusters are formed. There-

fore, the task requests can be executed in a fewer number of cloudlets for the case of 20 clusters,

compared to the case of 10 clusters, leading to a long waiting time. The proposed algorithm

improves the total response time up to 7% and 4% than CC and RC, respectively.

Fig 7 (Right) shows the total response time with the various caching capacity of the cloudlet.

As shown in Fig 7 (right), the difference in total response time between the proposed algorithm

and the two comparing methods gets larger when the capacity increases. Since the proposed

algorithm caches the replicas of the popular data, the total response time increases when the

Fig 7. Total response time varying (left) the number of clusters and (right) the caching capacity of the cloudlet.

https://doi.org/10.1371/journal.pone.0270183.g007

Table 1. The maximum number of cloudlets, the maximum and average number of replicas in each cluster for dif-

ferent number of clusters.

Number of clusters 1 5 10 15 20

Max. number of cloudlets 100 20 10 6 5

Max. number of replicas 8 6 5 4 3

Avg. number of replicas 2.12 1.78 1.34 1.16 1.08

https://doi.org/10.1371/journal.pone.0270183.t001

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 16 / 20

https://doi.org/10.1371/journal.pone.0270183.g007
https://doi.org/10.1371/journal.pone.0270183.t001
https://doi.org/10.1371/journal.pone.0270183

storage capacity of the cloudlet decreases. However, the other two comparing methods do not

overcome the proposed method even if the storage capacity of the cloudlet is less than 20% of

the total size of unique program data in the system.

7 Conclusion & future work

In this paper, we have considered the cached-enabled IoT-edge system architecture, where

the cloudlet can cache the program data for executing the task from IoT users. Caching the

program data effectively reduces the total response time caused by loading the necessary

program for the task. Considering the limited computation capacity and the storage of the

cloudlets, we studied the cooperative caching architecture to handle the numerous task

request from the IoT users. We then formulate the caching problem with the objective to

minimize the total response time. For the problem formulation, we model the waiting time

of task requests at the edge cloudlet as an M/G/1 queuing system. Based on the proposed

architecture, we suggest the caching algorithm that caches the replicas of the popular pro-

gram data into multiple cloudlets to reduce the total response time. Extensive simulation

shows that the proposed caching algorithm with the clustering process achieves a lower

response time compared to tje other two existing methods. Finally, we conclude the paper

with some future working directions for the program caching in the IoT-Edge system. It is

interesting to consider the task with various types of applications that have different dead-

lines. We also can consider using the machine learning method to predict the popularity of

the program data in the region.

Supporting information

S1 File.

(PDF)

Author Contributions

Conceptualization: Chang Kyung Kim, SuKyoung Lee, Seungkyun Lee, Anna Cho, Mun-Suk

Kim.

Formal analysis: Chang Kyung Kim, TaeYoung Kim.

Investigation: Chang Kyung Kim, TaeYoung Kim.

Methodology: Chang Kyung Kim, TaeYoung Kim.

Project administration: SuKyoung Lee.

Resources: SuKyoung Lee.

Software: TaeYoung Kim.

Supervision: SuKyoung Lee.

Validation: Chang Kyung Kim, SuKyoung Lee, Seungkyun Lee, Anna Cho, Mun-Suk Kim.

Visualization: Seungkyun Lee, Anna Cho.

Writing – original draft: Chang Kyung Kim, SuKyoung Lee.

Writing – review & editing: Chang Kyung Kim.

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270183.s001
https://doi.org/10.1371/journal.pone.0270183

References
1. Alnoman A., Sharma S. K., Ejaz W. and Anpalagan A. Emerging edge computing technologies for dis-

tributed IoT systems. IEEE Network, vol. 33, no. 6, pp. 140–147, 2019. https://doi.org/10.1109/MNET.

2019.1800543

2. Yang Y., Zheng X., Guo W., Liu X., Chang V. Privacy-preserving smart IoT-based healthcare big data

storage and self-adaptive access control system. Information Science, vol 479, pg. 567–592, 2019.

https://doi.org/10.1016/j.ins.2018.02.005

3. Fazio M., Ranjan R., Girolami M., Taheri J., Dustdar S. and Villari M. A note on the convergence of IoT,

edge, and cloud computing in smart cities. IEEE Cloud Computing, vol. 5, no. 5, pp. 22–24, 2018.

https://doi.org/10.1109/MCC.2018.053711663

4. Yao J. and Ansari N. Caching in dynamic IoT networks by deep reinforcement learning. IEEE Internet of

Things Journal, vol. 8, no. 5, pp. 3268–3275, 2021. https://doi.org/10.1109/JIOT.2020.3004394

5. E. Jonas, J. Smith, V. Sreekan, C. Tsai, A. Khan, Q. Pu, et al. Cloud programming simplified: a Berkeley

view on serverless computing. arXiv:1902.03383 [Preprint], 2019.

6. Bi S., Huang L. and Zhang Y. A. Joint optimization of service caching placement and computation off-

loading in mobile edge computing systems. IEEE Transactions on Wireless Communications, vol. 19,

no. 7, pp. 4947–4963, 2020. https://doi.org/10.1109/TWC.2020.2988386

7. Z. Zhang, C. -H. Lung, I. Lambadaris and M. St-Hilaire. IoT data lifetime-based cooperative caching

scheme for ICN-IoT networks. IEEE International Conference on Communications (ICC), pp. 1–7,

2018.

8. S. Zhang, W. Sun and J. Liu. An optimized spatially cooperative caching strategy for heterogeneous

caching network. 15th International Wireless Communications and Mobile Computing Conference

(IWCMC), pp. 1685–1689, 2019.

9. Piao Z., Peng M., Liu Y. and Daneshmand M. Recent advances of edge cache in radio access networks

for internet of things: techniques, performances, and challenges. IEEE Internet of Things Journal, vol.

6, no. 1, pp. 1010–1028, 2019. https://doi.org/10.1109/JIOT.2018.2866709

10. Sun X. and Ansari N. Dynamic resource caching in the IoT application layer for smart cities. IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 606–613, 2018. https://doi.org/10.1109/JIOT.2017.

2764418

11. Liu Y., Peng M., Shou G., Chen Y. and Chen S. Toward edge intelligence: multiaccess edge computing

for 5G and internet of things. IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6722–6747, 2020.

https://doi.org/10.1109/JIOT.2020.3004500

12. Xu X., Feng C., Shan S., Zhang T. and Loo J. Proactive edge caching in content-centric networks with

massive dynamic content requests. IEEE Access, vol. 8, pp. 59906–59921, 2020. https://doi.org/10.

1109/ACCESS.2020.2983068

13. Fang J. and Ma A. IoT application modules placement and dynamic task processing in edge-cloud com-

puting. IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12771–12781, 2021. https://doi.org/10.1109/

JIOT.2020.3007751

14. Q. Xie, Q. Wang, N. Yu, H. Huang and X. Jia. Dynamic service caching in mobile edge networks. IEEE

International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 73–79, 2018.

15. Zhang S., Guo S., Yu H., Wang Q. Cooperative service caching and computation offloading in multi-

access edge computing. Computer Networks, vol. 189, pp. 107916, 2021. https://doi.org/10.1016/j.

comnet.2021.107916

16. Velasquez K., Abreu D. P., Curado M. and Monteiro E. Service placement for latency reduction in the

fog using application profiles. IEEE Access, vol. 9, pp. 80821–80834, 2021. https://doi.org/10.1109/

ACCESS.2021.3085370

17. Li L. and Zhang H. Delay optimization strategy for service cache and task offloading in three-tier archi-

tecture mobile edge computing system. IEEE Access, vol. 8, pp. 170211–170224, 2020. https://doi.

org/10.1109/ACCESS.2020.3023771

18. Kes M., Rez M., Sep A. Delay-aware optimization of energy consumption for task offloading in fog envi-

ronments using metaheuristic algorithms. Cluster Computing, vol. 24, pp. 1825–1853, 2021. https://

doi.org/10.1007/s10586-020-03230-y

19. Hao Y., Miao Y., Hu L., Hossain M. S., Muhammad G. Smart edge CoCaCo: AI enabled smart edge

with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, vol. 33, no.

2, pp. 58–64, 2019. https://doi.org/10.1109/MNET.2019.1800235

20. Liu P., Xu G., Yang K., Wang K. and Meng X. Jointly optimized energy-minimal resource allocation in

cache-enhanced mobile edge computing systems. in IEEE Access, vol. 7, pp. 3336–3347, 2019.

https://doi.org/10.1109/ACCESS.2018.2889815

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 18 / 20

https://doi.org/10.1109/MNET.2019.1800543
https://doi.org/10.1109/MNET.2019.1800543
https://doi.org/10.1016/j.ins.2018.02.005
https://doi.org/10.1109/MCC.2018.053711663
https://doi.org/10.1109/JIOT.2020.3004394
https://doi.org/10.1109/TWC.2020.2988386
https://doi.org/10.1109/JIOT.2018.2866709
https://doi.org/10.1109/JIOT.2017.2764418
https://doi.org/10.1109/JIOT.2017.2764418
https://doi.org/10.1109/JIOT.2020.3004500
https://doi.org/10.1109/ACCESS.2020.2983068
https://doi.org/10.1109/ACCESS.2020.2983068
https://doi.org/10.1109/JIOT.2020.3007751
https://doi.org/10.1109/JIOT.2020.3007751
https://doi.org/10.1016/j.comnet.2021.107916
https://doi.org/10.1016/j.comnet.2021.107916
https://doi.org/10.1109/ACCESS.2021.3085370
https://doi.org/10.1109/ACCESS.2021.3085370
https://doi.org/10.1109/ACCESS.2020.3023771
https://doi.org/10.1109/ACCESS.2020.3023771
https://doi.org/10.1007/s10586-020-03230-y
https://doi.org/10.1007/s10586-020-03230-y
https://doi.org/10.1109/MNET.2019.1800235
https://doi.org/10.1109/ACCESS.2018.2889815
https://doi.org/10.1371/journal.pone.0270183

21. Li Q., Zhong J., Cao Z. and Li X. Optimizing streaming graph partitioning via a heuristic greedy method

and caching strategy. Optimization Methods and Software, vol. 35, pp. 1144–1159, 2020. https://doi.

org/10.1080/10556788.2018.1553971

22. Duan P., Jia Y., Liang L., Rodriguez J., Huq K. M. S. and Li G. Space-reserved cooperative caching in

5G heterogeneous networks for industrial IoT. IEEE Transactions on Industrial Informatics, vol. 14, no.

6, pp. 2715–2724. 2018. https://doi.org/10.1109/TII.2018.2794615

23. B. Gao, Z. Zhou, F. Liu and F. Xu. Winning at the starting line: joint network selection and service place-

ment for mobile edge computing. IEEE International Conference on Computing

Communications, pp. 1459–1467, 2019.

24. Z. Xu, L. Zhou, S. Chi-Kin Chau, W. Liang, Q. Xia and P. Zhou. Collaborate or separate? distributed ser-

vice caching in mobile edge clouds. IEEE Conference on Computer Communications, pp. 2066–2075,

2020.

25. Zhang C., Zhao H. and Deng S. A density-based offloading strategy for IoT devices in edge computing

systems. IEEE Access, vol. 6, pp. 73520–73530, 2018. https://doi.org/10.1109/ACCESS.2018.

2882452

26. Li C. and Jing Z. Dynamic cooperative caching strategy for delay-sensitive applications in edge comput-

ing environment. The Journal of Supercomputing, vol. 76, pp. 7594–7618, 2020. https://doi.org/10.

1007/s11227-020-03191-4

27. Yousefpour A., Ishigaki G., Gour R. and Jue J. P. On reducing IoT service delay via fog offloading. IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 998–1010, 2018. https://doi.org/10.1109/JIOT.2017.

2788802

28. Zhu X. and Zhou M. Multiobjective optimized cloudlet deployment and task offloading for mobile-edge

computing. IEEE Internet of Things Journal, vol. 8, no. 20, pp. 15582–15595, 2021. https://doi.org/10.

1109/JIOT.2021.3073113

29. Zhang S., He P., Suto K., Yang P., Zhao L. and Shen X. Cooperative edge caching in user-centric clus-

tered mobile networks. IEEE Transactions on Mobile Computing, vol. 17, no. 8, pp. 1791–1805, 2018.

https://doi.org/10.1109/TMC.2017.2780834

30. Abkenar F. S., Khan K. S. and Jamalipour A. Smart cluster-based distributed caching for fog-IoT net-

works. IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3875–3884, 2020. https://doi.org/10.1109/

JIOT.2020.3026322

31. Wang S., Li Q., Hou J., Meng S., Zhang B. and Zhou C. Active defense by mimic association transmis-

sion in edge computing. Mobile Networks and Applications, vol. 25, pp. 725–742, 2020. https://doi.org/

10.1007/s11036-019-01446-w

32. Lai S., Fan X., Ye Q., Tan Z., Zhang Y., He X. et al. FairEdge: A fairness-oriented task offloading

scheme for Iot applications in mobile cloudlet networks. IEEE Access, vol. 8, pp. 13516–13526, 2020.

https://doi.org/10.1109/ACCESS.2020.2965562

33. Babar M., Khan M. S., Ali F., Imran M. and Shoaib M. Cloudlet computing: recent advances, taxonomy,

and challenges. IEEE Access, vol. 9, pp. 29609–29622, 2021.

34. Yao J. and Ansari N. Joint content placement and storage allocation in C-RANs for IoT sensing service.

IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1060–1067, 2019. https://doi.org/10.1109/JIOT.2018.

2866947

35. Mukherjee A., De D. and Roy D. G. A power and latency aware cloudlet selection strategy for multi-

cloudlet enviornment. IEEE Transactions on Cloud Computing, vol. 7, no. 1, pp. 141–154, 2019.

https://doi.org/10.1109/TCC.2016.2586061

36. Wei H., Luo H., Sun Y. and Obaidat M. S. Cache-aware computation offloading in IoT systems. IEEE

Systems Journal, vol. 14, no. 1, pp. 61–72, 2019. https://doi.org/10.1109/JSYST.2019.2903293

37. Chen G., Wu J., Yang W., Bashir A. K., Li G. and Hammoudeh M. Leveraging graph convolutional-

LSTM for energy-efficient caching in blockchain-based green IoT. IEEE Transactions on Green Com-

munications and Networking, vol. 5, no. 3, pp. 1154–1164, 2021. https://doi.org/10.1109/TGCN.2021.

3069395

38. Lin P., Khan K. S., Song Q. and Jamalipour A. Caching in heterogeneous ultradense 5G networks.

IEEE Vehicular technology magazine, vol. 14, no. 2, pp. 22–32, 2019. https://doi.org/10.1109/MVT.

2019.2904748

39. M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro and G. Mangiullo. Caching popular and fresh IoT con-

tents at the edge via named data networking. IEEE Conference on Computer Communications

Workshops, pp. 610–615, 2020.

40. Samanta A., Esposito F. and Nguyen T. G. Fault-tolerant mechanism for edge-based IoT networks with

demand uncertainty. IEEE Internet of Things Journal, vol. 8, no. 23, pp. 16963–16971, 2021. https://

doi.org/10.1109/JIOT.2021.3075681

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 19 / 20

https://doi.org/10.1080/10556788.2018.1553971
https://doi.org/10.1080/10556788.2018.1553971
https://doi.org/10.1109/TII.2018.2794615
https://doi.org/10.1109/ACCESS.2018.2882452
https://doi.org/10.1109/ACCESS.2018.2882452
https://doi.org/10.1007/s11227-020-03191-4
https://doi.org/10.1007/s11227-020-03191-4
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1109/JIOT.2021.3073113
https://doi.org/10.1109/JIOT.2021.3073113
https://doi.org/10.1109/TMC.2017.2780834
https://doi.org/10.1109/JIOT.2020.3026322
https://doi.org/10.1109/JIOT.2020.3026322
https://doi.org/10.1007/s11036-019-01446-w
https://doi.org/10.1007/s11036-019-01446-w
https://doi.org/10.1109/ACCESS.2020.2965562
https://doi.org/10.1109/JIOT.2018.2866947
https://doi.org/10.1109/JIOT.2018.2866947
https://doi.org/10.1109/TCC.2016.2586061
https://doi.org/10.1109/JSYST.2019.2903293
https://doi.org/10.1109/TGCN.2021.3069395
https://doi.org/10.1109/TGCN.2021.3069395
https://doi.org/10.1109/MVT.2019.2904748
https://doi.org/10.1109/MVT.2019.2904748
https://doi.org/10.1109/JIOT.2021.3075681
https://doi.org/10.1109/JIOT.2021.3075681
https://doi.org/10.1371/journal.pone.0270183

41. Bhilwar H., Ranga V. and Gargi A. A critical power analysis for control path of a CAT-M based edge

device. International Journal of Information Technology, vol. 13, pp. 845–855, 2021. https://doi.org/10.

1007/s41870-021-00640-y

42. Yan J., Bi S. and Zhang Y. J. A. Offloading and resource allocation with general task graph in mobile

edge computing: a deep reinforcement learning approach. IEEE Transactions on Wireless Communica-

tions, vol. 19, no. 8, pp. 5404–5419, 2020. https://doi.org/10.1109/TWC.2019.2943563

43. Peng K., Nie J., Kumar N., Cai C., Kang J., Xiong Z., et al. Joint optimization of service chain caching

and task offloading in mobile edge computing. Applied Soft Computing Journal, vol. 103, pp. 107–142,

2021. https://doi.org/10.1016/j.asoc.2021.107142

PLOS ONE Delay-aware caching for IoT-edge

PLOS ONE | https://doi.org/10.1371/journal.pone.0270183 July 19, 2022 20 / 20

https://doi.org/10.1007/s41870-021-00640-y
https://doi.org/10.1007/s41870-021-00640-y
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1016/j.asoc.2021.107142
https://doi.org/10.1371/journal.pone.0270183

