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SUMMARY
Excess liver fat, called hepatic steatosis, is a leading risk factor for end-stage liver disease and cardiometa-
bolic diseases but often remains undiagnosed in clinical practice because of the need for direct imaging as-
sessments. We developed an abdominal MRI-based machine-learning algorithm to accurately estimate liver
fat (correlation coefficients, 0.97–0.99) from a truth dataset of 4,511 middle-aged UK Biobank participants,
enabling quantification in 32,192 additional individuals. 17% of participants had predicted liver fat levels
indicative of steatosis, and liver fat could not have been reliably estimated based on clinical factors such
as BMI. A genome-wide association study of common genetic variants and liver fat replicated three known
associations and identified five newly associated variants in or near theMTARC1,ADH1B, TRIB1,GPAM, and
MAST3 genes (p < 3 3 10�8). A polygenic score integrating these eight genetic variants was strongly asso-
ciated with future risk of chronic liver disease (hazard ratio > 1.32 per SD score, p < 93 10�17). Rare inactivat-
ing variants in the APOB or MTTP genes were identified in 0.8% of individuals with steatosis and conferred
more than 6-fold risk (p < 2 3 10�5), highlighting a molecular subtype of hepatic steatosis characterized by
defective secretion of apolipoprotein B-containing lipoproteins. We demonstrate that our imaging-based
machine-learning model accurately estimates liver fat and may be useful in epidemiological and genetic
studies of hepatic steatosis.
INTRODUCTION

Hepatic steatosis, a condition defined by liver fat content of

more than 5.5%, is a leading risk factor for chronic liver disease

and is strongly associated with a range of cardiometabolic con-

ditions.1–4 Recent studies have suggested a prevalence of up to

25% across global populations, with rates rapidly increasing in

step with the global epidemics of obesity and diabetes.5,6

Although the condition is frequently undiagnosed in clinical

practice, previous evidence indicates that avoidance of exces-

sive alcohol intake, weight loss strategies including bariatric

surgery, and emerging pharmacologic therapies can reduce
Ce
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liver fat and prevent progression to more advanced liver

disease.7

Previous studies of hepatic steatosis suggest that systematic

quantification in large cohorts may provide new biologic insights

or improve clinical care but suffer from important limitations.

First, the traditional approach dichotomizes individuals with he-

patic steatosis into nonalcoholic fatty liver disease (NAFLD) or

alcoholic fatty liver disease according to largely arbitrary thresh-

olds.7,8 Second, studies of the clinical significance of hepatic

steatosis have often been based on non-quantitative ultrasound

assessments or physician diagnosis codes, which are known to

introduce imprecision into downstream analyses.9–11Third,
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Figure 1. Machine learning enables liver fat quantification and clinical and genetic analyses

We developed a machine-learning model using a training set of 4,511 individuals with previously quantified liver fat from the UK Biobank. We applied this to

estimate liver fat in an additional 32,192 individuals in the UK Biobank. Of the 36,703 total individuals with liver fat quantified, 17% met criteria for hepatic

steatosis, defined as liver fat content greater than 5.5%. 1.6% of individuals had liver fat greater than 20% (not shown in the density plot). A common variant

GWAS identified eight loci associated at genome-wide significance (p < 5.03 10�8), of which five are newly identified relative to previous studies (top Manhattan

plot). None of these newly associated variants were identified in a common variant association study of those with liver fat quantified previously (bottom

Manhattan plot). An RVAS identified inactivating variants in APOB and MTTP significantly (p < 1.2 3 10�5) associated with liver fat and steatosis.
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genome-wide association studies (GWAS) of common variants

for liver fat have been limited, hampered by time-consuming

quantification of liver fat from abdominal computed tomography

(CT) or MRI images and, thus, have analyzed only up to 16,492

individuals.12–15 By comparison, a recent GWAS of BMI, a quan-

titative trait easily measured in clinical practice, analyzed

681,275 individuals.16

Based on these prior results, three key areas of uncertainty

remain. First, the extent to which a machine-learning algorithm

can be trained to accurately quantify liver fat in a large group

of individuals warrants additional study. Second, the association

of clinical risk factors with hepatic steatosis, as well as the ability

to predict liver fat content without direct imaging, have not been

fully characterized in large studies of individuals not ascertained

for any specific clinical indication. Third, whether an expanded

set of individuals with precise liver fat quantification can enable

new genetic discoveries using GWAS or a rare variant associa-

tion study (RVAS) is largely unknown.

Here we address these areas of uncertainty by studying

36,703 middle-aged UK Biobank participants with extensive

linked imaging, genetic, and clinical data (Figure 1). We develop

a machine-learning algorithm that precisely quantifies liver fat

using raw abdominal MRI images, achieving correlation coeffi-

cients of 0.97 and 0.99 in hold-out testing datasets. Using these

data, we quantify significantly increased rates of hepatic steato-

sis among key subgroups, such as those with obesity or dia-

betes. Genetic analysis identified 8 common genetic variants

associated at genome-wide levels of statistical significance, 5

of which are newly associated, and rare inactivating variants in

the genes encoding apolipoprotein B (APOB) and microsomal
2 Cell Genomics 1, 100066, December 8, 2021
triglyceride transfer protein (MTTP) that associate with signifi-

cantly increased liver fat and steatosis.

RESULTS

A machine-learning model for quantification of hepatic
fat
To study liver fat in 36,703 UK Biobank participants, we first

developed a machine-learning algorithm that allowed precise

quantification based on raw abdominal MRI data. We processed

available images within a cloud-based computational environ-

ment, leveraging a subset of 4,511 participants with liver fat

quantified previously by Perspectum Diagnostics.17 Using a

two-stage method with deep convolutional neural networks

(see STARMethods for details), we trained an algorithm to quan-

tify liver fat that achieved highly accurate quantification: in hold-

out testing datasets, correlation coefficients were 0.97 and 0.99,

and mean absolute errors were 0.50% and 0.41% in the two

stages, with comparable performance in self-reported European

and non-European study participants (Figure S1). As expected,

the ability to quantify liver fat using direct imaging data was sub-

stantially higher than using clinical data alone. For example,

within the hold-out testing dataset of 1,214 individuals, the cor-

relation between BMI and liver fat was 0.42, improving to 0.58 in

a model that incorporated 24 additional clinical factors and

biomarker data, including liver-related biomarkers such as

alanine aminotransferase (Figure S3). Having trained and vali-

dated the machine-learning algorithm, we next applied this

model to quantify liver fat in the remaining 32,192 UK Biobank

participants with raw MRI images available.
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Figure 2. Associations of clinical parameters

with liver fat and hepatic steatosis in 36,703

individuals

(A–C) The distribution of liver fat and prevalence of

hepatic steatosis according to the presence of (A)

electronic health record diagnosis of nonalcoholic

fatty liver disease (NAFLD), (B) high waist-to-hip ra-

tio, and (C) clinical categories of obesity. Hepatic

steatosis was defined as liver fat greater than

5.5%.17Highwaist-to-hip ratiowasdefinedat timeof

imaging as greater than 0.9 when male and greater

than 0.85 when female.18 Weight categories were

defined usingBMI at time of imaging:19 underweight,

BMI < 18.5 kg/m2; normal, 18.5 % BMI < 25 kg/m2;

overweight, 25 % BMI < 30 kg/m2; obese, 30 %

BMI < 40 kg/m2; severely obese, BMI R 40 kg/m2.

Forboxplots, boxes indicate interquartile range (IQR;

25th–75th percentiles), and whiskers indicate dis-

tancesof 1.5 IQRs frombox limits. Forbarplots, error

bars indicate upper bounds of 95% CI.
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Liver fat is strongly associated with cardiometabolic
diseases
Across all 36,703 participants studied, median liver fat was

2.2%, and 6,250 (17.0%) had liver fat greater than 5.5%, consis-

tent with hepatic steatosis. Mean age at time of imaging was 64

years (range, 45–82), and 52% were female (Table S1). Liver fat

was significantly (p value threshold = 0.05) increased in male

versus female participants (median, 2.7 versus 2.0%; p = 5.6 3

10�220), those who reported alcohol consumption in excess of

current United States clinical guidelines7 (median, 2.6 versus

2.2%; p = 3.13 10�14), and those with diagnosed diabetes (me-

dian, 4.9 versus 2.2%; p = 2.7 3 10�13). As expected, median

liver fat was significantly higher among 93 individuals with a diag-

nosis of NAFLD in the electronic health record comparedwith the

remainder of the population (median, 8.6 versus 2.2%, respec-

tively; p = 8.4 3 10�14; Figure 2). 56 of 93 (60.2%) of those

diagnosed with NAFLD met imaging-based criteria for hepatic

steatosis versus 6,194 of 36,610 (16.9%) in the remainder of

the population, corresponding to an adjusted odds ratio of

7.65 (95% confidence interval [CI], 5.02–11.67; p = 3.23 10�21).

By stratifying individuals according to presence of hepatic stea-

tosis, we observed significant (p value threshold = 0.05) enrich-

ment of cardiometabolic risk factors in those with high liver fat

(Table 1). For example, 13.8% of those with steatosis had been

diagnosed with diabetes compared with 3.6% of those in

the remainder (adjusted odds ratio, 4.21; 95% CI, 3.83–4.64; p =

1.1 3 10�189), and 45.1% of those with steatosis had been diag-

nosed with hypertension compared with 27.1% in the remainder

(adjusted odds ratio, 2.24; 95% CI, 2.11–2.37; p = 6.1 3 10�161).
Ce
We also examined the association of liver

fat with circulating biomarkers collected at

timeof enrollment, noting that circulating tri-

glycerides, liver-associated aminotransfer-

ases and glycemic indices were all signifi-

cantly increased in those with steatosis.

Despite the correlation of liver fat with

cardiometabolic risk factors, clinicians
would not be able to reliably estimate liver fat without direct im-

aging assessment. For example, a broad range of values was

observed across BMI categorizations used in clinical practice

(Figure 2). In thosewith severe obesity (BMIR 40 kg/m2), median

liver fat was 9.8%, and 254 of 361 (70.4%) met criteria for stea-

tosis, but measured liver fat varied greatly from 0.5%–31.5%.

Even among those with normal weight in whom median liver fat

was 1.6%, 470 of 14,307 (3.3%) still had imaging evidence of he-

patic steatosis. Similarly, only 4,854 of 17,730 (27.3%) with an

elevated waist-to-hip ratio, a measure of central adiposity, had

hepatic steatosis.

GWAS identifies 5 newly associated loci
We first confirmed prior studies noting a significant inherited

component to liver fat,12,23,24 estimating that up to 30% of the

observed variance is explained by measured genetic variants

when considered in aggregate using the BOLT-REMLmethod.25

To identify the specific variants most strongly contributing to this

heritability, we performed a common variant GWAS, assessing

the relationship of each of 9.8 million common (minor allele fre-

quency > 1%) genetic variants and liver fat percentage using

the BOLT-LMM algorithm.26 Given that 97% of individuals with

liver fat quantified were self-reported European (Table S1) and

the potential for small numbers of individuals of distinct ances-

tries to introduce confounding by population stratification, we

restricted these analyses to 32,974 individuals of European an-

cestries selected by genetic principal-component analysis27 of

self-reported ethnicity (STAR Methods). Minimal evidence of

test statistic inflation was observed, with l = 1.10 and LD
ll Genomics 1, 100066, December 8, 2021 3



Table 1. Baselinecharacteristics of 36,703UKBiobankparticipantswithquantified liver fat, stratifiedbypresenceof hepatic steatosis

Steatosis absent (n = 30,453) Steatosis present (n = 6,250) p value

Female 16,540 (54.3%) 2,509 (40.1%) 1.07 3 10�92

Age at enrollment, years 54.9 (7.51) 54.7 (7.23) 0.004

Age at imaging, years 64.3 (7.62) 63.8 (7.23) 9.0 3 10�7

Self-reported ethnicity

White 29,527 (97.0%) 6,045 (96.7%) 0.36

Black 185 (0.6%) 29 (0.5%) 0.18

South Asian 239 (0.8%) 74 (1.2%) 0.002

Other Asian 138 (0.5%) 27 (0.4%) 0.82

Multiple, other or not provided 364 (1.2%) 75 (1.2%) 0.98

Coronary artery diseasea 1,030 (3.4%) 253 (4.0%) 0.009

Diabetesa 1,094 (3.6%) 862 (13.8%) 1.6 3 10�234

Hypertensiona 8,264 (27.1%) 2,821 (45.1%) 2.5 3 10�175

Obesity 3,964 (13.0%) 2,531 (40.5%) <1 3 10�300

Medications

Anti-hypertensive therapy 3,555 (11.7%) 1,385 (22.2%) 1.8 3 10�108

Lipid-lowering therapy 4,287 (14.1%) 1,265 (20.2%) 3.1 3 10�35

Anthropometric data

Weight, kg 74.7 (13.8) 86.6 (15.3) <1 3 10�300

Waist-to-hip ratio 0.85 (0.08) 0.91 (0.08) <1 3 10�300

BMI, kg/m2 25.9 (3.8) 29.7 (4.4) <1 3 10�300

Body fat, % 29.4 (8.1) 32.6 (8.1) 3.1 3 10�136

Estimated untreated systolic blood

pressure, mmHg

136 (19.2) 136 (19.2) 143 (18.8)

Alcohol consumption

Weekly drinks, United States standard 5.4 (6.1) 5.9 (7.7) 0.02

Weekly drinks, United Kingdom standard 9.4 (10.6) 10.4 (13.6) 0.02

Excessive alcohol intake, United States 1,559 (5.1%) 456 (7.3%) 5.9 3 10�12

Excessive alcohol intake, United

Kingdom

7,417 (24.4%) 1,649 (26.4%) 7.1 3 10�4

Liver-associated biomarker concentrations

Alanine aminotransferase, IU/L 21.3 (12.0) 31.4 (18.9) <1 3 10�300

Aspartate aminotransferase, IU/L 25.2 (9.9) 28.7 (12.9) 8.7 3 10�174

Gamma glutamyltransferase, IU/L 31.3 (31.3) 45.6 (42.6) <1 3 10�300

Estimated untreated lipid concentrations

Total cholesterol, mg/dL 226 (40.3) 230 (42.3) 1.5 3 10�11

LDL cholesterol, mg/dL 143 (31.7) 150 (32.8) 9.2 3 10�65

HDL cholesterol, mg/dL 58.5 (14.6) 49.5 (11.6) <1 3 10�300

Triglycerides, mg/dL 117 [85–169] 176 [129–249] <1 3 10�300

Glycemic biomarker concentrations

Glycated hemoglobin, % 5.3 (0.4) 5.5 (0.6) 1.4 3 10�128

Glucose, mg/dL 89.2 (16.0) 93.4 (23.1) 6.1 3 10�45

Liver fat, % 2.0 [1.5–2.9] 9.9 [7.1–14.2] <1 3 10�300

Liver fat was quantified in 36,703 UK Biobank participants from machine learning of MRI data using previous commercial vendor measurements in a

subset of 4,511 individuals. Columns show participants grouped according to whether they had evidence of hepatic steatosis, defined as liver fat

greater then 5.5%.17 Rows show measurements at the initial UK Biobank assessment visit, with values corresponding to number (%), mean (SD),

or median [IQR]. p values correspond to unadjusted comparisons between presence or absence of steatosis, assessed via chi-square test orWilcoxon

rank-sum test (for categorical and continuous variables, respectively). Obesity was defined as BMI of 30 kg/m or greater.2,19 Excessive alcohol intake,

United States was defined as alcohol intake exceeding American Association for the Study of Liver Disease guidelines for NAFLD definition.7 Excessive

alcohol intake, United Kingdomwas defined as alcohol intake exceeding the UKChief Medical Officers’ recommendations.20 Estimated untreated lipid

measurements and blood pressure were according to adjustments described previously.21,22 See also Tables S1 and S2.
aDisease status assessed at time of MRI imaging visit.
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Figure 3. Common variant GWAS of liver fat in 32,974 individuals

identifies eight loci

Associations of 9.8 million common (alternate allele frequency > 1%) genetic

variants with inverse normal transformed liver fat, quantified from MRI data

using machine learning, in 32,974 individuals from the UK Biobank were as-

sessed using linear mixed models. Results of each variant association are

shownwith chromosome and base pair position of the variant on the x axis and

�log10(p value) of the association with liver fat on the y axis. The lead variants

at each of 8 genome-wide significant loci are indicated by orange points. A

gray line indicates the genome-wide significance threshold (p = 53 10�8). See

also Figure S4.
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(linkage disequilibrium) score regression intercept,28 a measure

of inflation that accounts for polygenicity, of 1.02 (Figure S4).

Given the highly right-skewed distribution of measured liver

fat, we applied an inverse-normal transformation to liver fat re-

siduals to meet standard GWAS algorithm assumptions of nor-

mally distributed phenotype residuals. This resulted in a

Gaussian distribution with mean of zero and SD of 1 (Figure S5).

Beta coefficients derived from regression models of this trans-

formed and standardized phenotype with SD units are reported.

To improve clinical interpretability, we also provide effect esti-

mates in units of absolute liver fat percentage points and odds

ratios for hepatic steatosis.

The GWAS identified eight loci in which common genetic var-

iants were significantly associated with increased liver fat at a p

value threshold of less than 5.03 10�8, including five not identi-

fied previously at genome-wide levels of statistical significance

(Figure 3; Table 2). The two most significantly associated vari-

ants confirm known associations13,29 of the p.I148M missense

variant in the gene encoding patatin-like phospholipase

domain-containing protein 3 (PNPLA3) and the p.E167K

missense variant in the gene encoding transmembrane 6 super-

family member 2 (TM6SF2). In our study, the effect size of the

TM6SF2 variant (beta = 0.29 SD, p = 2.83 10�85) was somewhat

larger than that of the PNPLA3 variant (beta = 0.19 SD, p = 5.63

10�95), consistent with a previous study of UK Biobank partici-

pants14 but distinct from other studies of liver fat measured via

CT15 or NAFLD diagnosed via liver biopsy,30 where the PNPLA3

variant had a larger effect size than that of TM6SF2. Further ge-

netic studies across diverse populations and NAFLD-related

phenotypes are needed to quantify the relative effect of these
two variants. More recently, two studies reported the p.R130C

variant in the gene encoding apolipoprotein E (APOE) associated

with increased liver fat,14,15 with this same variant subsequently

linked to end-stage liver disease (cirrhosis) as well.31 This variant

was similarly associated with increased liver fat in our analysis

(beta = 0.12 SD, p = 1.5 x 10�29), corresponding to an increase

in liver fat of 0.51 percentage points and an odds ratio for stea-

tosis of 1.40. For each of these three variants, application of

the recently described PolyFun fine-mapping algorithm32 pro-

vided support for the theory that the missense variants are likely

to be causal, with a posterior inclusion probability (PIP) of 94%or

greater for each (Table S3).

Beyond replicating previous liver fat results, our GWAS iden-

tified five associated common variants not identified previously

at genome-wide levels of statistical significance. Among these

five newly associated genetic variants, the effect on liver fat

percentage ranged from 0.18–0.51 percentage points, and the

odds ratio for hepatic steatosis per allele ranged from

1.09–1.37 (Table 2). First, a variant in the gene encoding mito-

chondrial amidoxime reducing component 1 (MTARC1) was

associated with an increase in liver fat (beta = 0.05 SD, p =

1.73 10�9, corresponding to 0.22 percentage points), with Pol-

yFun fine-mapping supporting the p.T165A missense variant as

causal (PIP = 0.91). We and others similarly identified this variant

as associated with an increased risk of cirrhosis.33–37 Second,

the p.H48R missense variant (PIP > 0.99) in the gene encoding

alcohol dehydrogenase 1B (class I), beta polypeptide (ADH1B),

was associated with a 0.51 percentage point increase in liver fat

(beta = 0.16 SD, p = 7.0 3 10�10). ADH1B plays a key role in

oxidation of ethanol to acetaldehyde, with this variant linked

previously to decreased rates of alcohol aversion, increased

alcohol consumption, and increased rates of liver fibrosis.38–41

Third, an intergenic variant near the gene encoding tribbles

pseudokinase 1 (TRIB1) was associated with a 0.19 percentage

point increase in liver fat (beta = 0.05 SD, p = 3.8 3 10�10), with

fine-mapping nominating a set of three variants 30–60 kb down-

stream of the gene in the 95% credible set (Table S3). Variants

near this gene have been associated previously with circulating

triglyceride concentrations, with functional studies suggesting a

role in regulating hepatic lipogenesis.42–45 Fourth, an intronic

variant in the gene encoding glycerol-3-phosphate acyltransfer-

ase, mitochondrial (GPAM) was associated with a 0.24 percent-

age point increase in liver fat (beta = 0.05 SD, p = 1.4 3 10�9).

Fine-mapping highlighted 17 variants in or near GPAM within

the 95% credible set, including the p.V43I missense variant

with the highest PIP (0.26). This gene was associated previously

with liver triglyceride content in murine overexpression and

knockout experiments.46,47 Fifth, an intronic variant in the

gene encoding microtubule-associated serine/threonine kinase

3 (MAST3) was associated with a 0.18 percentage point in-

crease in liver fat (beta = 0.05 SD, p = 2.73 10�8). Fine-mapping

failed to resolve the causal variant at this locus, with nine vari-

ants included in the 95% credible set: seven intronic variants

in MAST3, a gene linked to inflammatory bowel disease48 but

with an unknown role in liver fat metabolism, and two missense

variants (PIP 0.03 and 0.02) in MPV17 mitochondrial inner mem-

brane protein-like 2 (MPV17L2) and IFI30 lysosomal thiol reduc-

tase (IFI30), respectively.
Cell Genomics 1, 100066, December 8, 2021 5



Table 2. Eight common genetic variants associated with increased liver fat indices

Lead variant Chr.

Position

(hg19)

Nearest

gene Consequence

Effect

allele

Other

allele

Effect

allele freq.

Effect on liver fat,

beta (95% CI) p value

Effect on liver fat,

% (95% CI) p value

Effect on hepatic

steatosis, OR (95% CI)

p value

Newly associated variants

rs2642438 1 220970028 MTARC1 missense

(p.T165A)

G A 0.70 0.05 (0.04–0.07)

p = 2 3 10�9

0.22 (0.14–0.29)

p = 3 3 10�9

1.17 (1.11–1.22)

p = 6 3 10�11

rs1229984 4 100239319 ADH1B missense

(p.H48R)

C T 0.98 0.16 (0.11–0.21)

p = 7 3 10�10

0.51 (0.29–0.72)

p = 3 3 10�6

1.37 (1.18–1.59)

p = 3 3 10�5

rs112875651 8 126506694 TRIB1 intergenic G A 0.61 0.05 (0.03–0.07)

p = 4 3 10�10

0.19 (0.13–0.26)

p = 2 3 10�8

1.10 (1.06–1.15)

p = 9 3 10�6

rs2250802 10 113921354 GPAM intronic G A 0.27 0.05 (0.04–0.07)

p = 1 3 10�9

0.24 (0.17–0.31)

p = 1 3 10�10

1.13 (1.08–1.18)

p = 1 3 10�7

rs56252442 19 18229208 MAST3 intronic T G 0.25 0.05 (0.03–0.07)

p = 3 3 10�8

0.18 (0.1–0.25)

p = 3 3 10�6

1.09 (1.04–1.14)

p = 3 3 10�4

Previously associated variants

rs58542926 19 19379549 TM6SF2 missense

(p.E167K)

T C 0.07 0.29 (0.26–0.32)

p = 3 3 10�85

1.37 (1.25–1.49)

p = 1 3 10�104

1.90 (1.78–2.04)

p = 1 3 10�75

rs429358 19 45411941 APOE missense

(p.R130C)

T C 0.85 0.12 (0.10–0.14)

p = 2 3 10�29

0.51 (0.42–0.60)

p = 2 3 10�28

1.40 (1.32–1.49)

p = 2 3 10�26

rs738409a 22 44324727 PNPLA3 missense

(p.I148M)

G C 0.21 0.19 (0.18–0.21)

p = 6 3 10�95

0.88 (0.81–0.96)

p = 1 3 10�106

1.59 (1.52–1.66)

p = 7 3 10�83

A common variant genome-wide association study (GWAS) was performed to measure associations of 9.8 million common (alternate allele frequency > 1%) genetic variants with liver fat, quan-

tified from MRI data using machine learning, in 32,974 individuals from the UK Biobank. Rows show the variant with the smallest p value (lead variant) at each of 8 loci associated with liver fat

below the genome-wide significance threshold p value of 5 3 10�8 assessed using inverse normal transformed liver fat. ‘‘Newly associated’’ indicates variants not reported previously to be

associated with liver fat at genome-wide significance. ‘‘Previously associated’’ indicates previously reported variants.13,14,29 The first 8 columns show information on each lead variant, including

position, frequency, and consequence. ‘‘Effect on liver fat, beta’’ shows the effect of each variant on inverse normal transformed liver fat in SD units, assessed using a linear mixed model. For

clinical interpretability, ‘‘Effect on liver fat,%’’ shows the effect of each variant in units of absolute liver fat percentage points, and ‘‘Effect on hepatic steatosis, OR’’ shows the effect of each variant

on the risk of hepatic steatosis (liver fat > 5.5%)17 in odds ratio units, assessed using linear and logistic regression, respectively, in the same 32,974 individuals.
ars738409, the known causal variant in the PNPLA3 gene region,29 is in near-perfect linkage disequilibrium (inherited together, R2 = 0.999) with the lead variant in our study, rs738408. Chr.,

chromosome; freq., frequency; OR, odds ratio. See also Tables S3–S9.
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Our machine-learning imaging-based analyses expanded the

number of individuals with liver fat quantification from 4,040 to

32,974, providing increased power to enable the GWAS discov-

ery effort. Taking the most strongly associated variant, the

p.I148Mmissense variant in PNPLA3, as an example, the p value

for association decreased from 2.3 3 10�20 when performing a

GWAS in only 4,040 individuals to 5.6 3 10�95 when using

32,974 participants (Table S4). Moreover, although each of the

five newly identified variants had directionally consistent evi-

dence of association in the GWAS limited to 4,040 individuals

with previously quantified liver fat (p values ranging from 0.16–

3.6 3 10�4), none met the standard threshold for genome-wide

statistical significance of p < 5 3 10�8 (Table S4).

We next sought to replicate additional variants reported previ-

ously to affect liver fat or risk of NAFLD (Table S5). A missense

variant in the gene encoding the glucokinase regulator

(GCKR)12,14,15,23 showed a suggestive association with liver fat

below the threshold for genome-wide statistical significance (p =

4.1 3 10�7), as did a variant near the gene encoding membrane

bound O-acyltransferase domain-containing 7 (MBOAT7;49–51

p = 8.8 3 10�6). Consistent with prior reports suggesting that an

inactivating variant in the gene encoding hydroxysteroid 17-beta

dehydrogenase13 (HSD17B13) relatesmorestrongly toadvanced

forms of liver disease,52–54 we did not observe an association with

liver fat in our study population (p = 0.40).

Given a known important role of alcohol intake on liver fat, we

performed two sets of sensitivity analyses. First, we repeated the

GWAS after exclusion of individuals who reported having

stopped drinking alcohol or who reported alcohol consumption

in excess of United States NAFLD or United Kingdom guidelines.

Second, we repeated the GWAS, adjusting for self-reported

number of alcoholic drinks consumed per week. In both cases,

results for the 8 variants identified were largely similar, suggest-

ing that these variants have a consistent effect on liver fat inde-

pendent of alcohol consumption (Table S6). For the p.H48R

missense variant in ADH1B, the effect size was somewhat

reduced, but an association with increased liver fat remained

in all sensitivity analyses (p = 5.3 3 10�5 to 3.4 3 10�9). This

observation for the ADH1B variant is consistent with a recent

study focused on nonalcoholic steatohepatitis (NASH), a more

advanced form of fatty liver disease that also includes significant

liver inflammation.41 Additional studies that probe the interplay of

this variant, alcohol consumption, and liver disease are needed

to understand the mechanistic basis of this relationship.

To test for replication of the GWAS associations in indepen-

dent cohorts, we analyzed liver fat, as assessed by an alternate

imaging modality (CT), in 3,284 participants of the Framingham

Heart Study Offspring and Third Generation cohorts and 4,195

participants of the Multi-Ethnic Study of Atherosclerosis

(MESA) study. In the Framingham Heart Study cohorts, the

average age at time of imaging was 52, and 48% were female;

in MESA, the average age was 61, and 51% were female.

Although the CT measures of hepatic fat based on liver attenua-

tion cannot be directly converted to units of liver fat percentage,

7 of 8 variants’ associations were directionally consistent, and 5

were nominally significant (p < 0.05; Table S7).

Beyond association with liver fat indices, we sought additional

validation of the variants identified by GWAS using liver bio-
markers assessed at time of study enrollment and clinical diag-

nosis in the medical record. In UK Biobank, we analyzed up to

362,910 UK Biobank participants, excluding those included in

the abdominal MRI substudy. We first determined associations

with the liver-associated biomarkers alanine aminotransferase

(ALT) and aspartate aminotransferase (AST). All eight variants

were robustly (p value threshold = 0.00625 = 0.05/8 variants)

associated with increased ALT (p = 0.0002 to <1 3 10�300),

and 7 of the 8 variants were associated with increased AST at

nominal levels of statistical significance (p < 0.05; Table S8).

We next examined association of the GWAS variants with a re-

corded clinical diagnosis of NAFLD or NASH in the UK Biobank

and the Mass General Brigham Biobank, a hospital-based bio-

repository.55 2,225 of 362,910 participants in the UK Biobank

and 4,129 of 30,573 participants of the Mass General Brigham

Biobank had been diagnosed with NAFLD or NASH. In a meta-

analysis of these two studies, 7 of the 8 variants were strongly

(p value threshold = 0.00625) associated with increased risk,

with odds ratios ranging from 1.08–1.43 (p = 0.0003–3.1 x

10�23; Table S9). The remaining variant, rs56252442 near

MAST3, was directionally consistent but did not achieve statisti-

cal significance (p = 0.32).

Polygenic score associated with chronic liver diseases
Recognizing that each of the 8 common variants individually are

estimated to have a modest effect on liver fat percentage or risk

of steatosis, we next combined information from each into a

weighted polygenic score. Within the discovery study population

of 32,974 UKBiobank individuals, this polygenic score explained

3.5% of the observed variance in liver fat percentage. To deter-

mine the relationship of the polygenic score to chronic liver dis-

eases, we calculated it in 361,852 UK Biobank participants who

were not included in the liver fat imaging substudy and had not

been diagnosed with liver disease at time of enrollment. Over a

median follow-up of 8.6 years, the polygenic score was strongly

associated with a new diagnosis code of NAFLD entered into the

medical record during follow-up, with a hazard ratio (HR) per SD

score increment (HR/SD) of 1.33 (95% CI, 1.27–1.39, p = 5.6 3

10�36; Figure 4). Individuals who developed NAFLD had a me-

dian polygenic score in the 62nd percentile of the distribution

compared with the 50th percentile for the remainder of the pop-

ulation. The polygenic score significantly improved discrimina-

tion when added to a baseline model comprised of age, age

squared, sex, genotyping array, and the first 10 principal compo-

nents of genetic variation, with C-statistic increasing from 0.55 to

0.60 (p = 4.43 10�34). Beyond NAFLD, the polygenic score was

also associated with an increased risk of more advanced forms

of liver disease: NASH (HR/SD, 1.67; p = 1.1 3 10�17), cirrhosis

(HR/SD, 1.41; p = 1.6 3 10�32), and hepatocellular carcinoma

(HR/SD, 1.72; p = 8.43 10�17), with each showing improvement

in C-statistic over the baseline model (p < 2.6 3 10�15; Table

S10). Based on prior observations of an association between

liver disease risk-increasing alleles of variants in the PNPLA3

and TM6SF2 genes and decreased cholesterol,13,56 we deter-

mined the relationship of the polygenic score to estimated un-

treated low-density lipoprotein (LDL) cholesterol concentrations.

Each SD increment in the score was associated with a 1.9mg/dL

(95% CI, 1.7–2.0; p = 6.4 x 10�245) decrease in LDL cholesterol
Cell Genomics 1, 100066, December 8, 2021 7
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Figure 4. Polygenic score comprised of eight common genetic variants associated with risk of liver disease

A single polygenic score for each individual was calculated by additively combining the 8 common lead genome-wide association study (GWAS) variants

identified in Figure 3 via the number of liver-fat-increasing variants present in each individual, each weighted by their GWAS effect size estimate.

(A) Associations between the polygenic score and incident disease occurrence after UK Biobank enrollment were assessed using a Cox proportional hazards

model in 361,852 individuals who were not included in the discovery GWAS of imaging data and who did not have prevalent liver disease at time of enrollment,

adjusting for age at enrollment, age at enrollment squared, sex, the first 10 principal components of genetic variation, and genotyping array. Hazard ratios (HRs) of

incident disease per SD increase in the polygenic score are shown; error bars represent 95% confidence interval (CI).

(B) Rates of incident disease in each decile of the polygenic score are shown; error bars represent 95% CI.

See also Table S10.
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concentrations, illustrating a tradeoff rooted in rates of hepatic

lipid secretion with potentially important implications for drug

development.

Rare inactivating variants in APOB and MTTP

For the subset of 18,013 UK Biobank participants with liver fat

quantified and exome sequencing available, we next investi-

gated whether rare inactivating DNA variants might affect liver

fat or risk of steatosis. Observed variants were included in this

analysis based on a minor allele frequency of less than 0.1%

and a prediction to cause premature truncation of a protein

(nonsense), insertions or deletions that scramble protein transla-

tion (frameshift), or disruption of the messenger RNA splicing

process (splice site), as annotated by the LOFTEE (loss-of-func-

tion transcript effect estimator) algorithm.57 Because such vari-

ants do not occur with adequate frequency to detect individual

variant-phenotype relationships, we performed a ‘‘collapsing

burden’’ RVAS. In this approach, the observed liver fat residuals

for carriers of any inactivating variant for a given gene are

compared with individuals without inactivating variants in this

gene. This analysis was restricted to 4,156 genes with at least

10 carriers of inactivating variants observed, resulting in an

exome-wide Bonferroni-corrected p value for statistical signifi-

cance of 1.2 3 10�5 (0.05/4,156).

Inactivating variants in the genes encoding apolipoprotein B

(APOB) or microsomal triglyceride transfer protein (MTTP),

both known to play key roles in lipid homeostasis, were associ-
8 Cell Genomics 1, 100066, December 8, 2021
atedwith significantly increased liver fat. Among 23 carriers of in-

activating variants in APOB, liver fat was substantially increased

compared with 17,990 individuals without such a variant (beta =

1.15 SD; p = 1.41 3 10�7). This corresponded to a median liver

fat of 8.3% versus 2.2% for carriers and noncarriers, respec-

tively, and an odds ratio for hepatic steatosis in carriers of 6.3

(95% CI, 2.7–14.5; p = 1.80 3 10�5; Figure 5). Consistent with

RVAS providing complementary and often non-overlapping in-

formation to GWAS, no common variant in the APOB gene was

associated with increased liver fat (p > 0.001 for all).

Significant prior genetic and pharmacologic data implicate

APOB in hepatic fat accumulation. Apolipoprotein B is an integral

component of lipoprotein particles that export fat out of the

liver.58 Individuals with two copies of inactivating variants in

APOB (human knockouts) suffer from the Mendelian condition

homozygous familial hypobetalipoproteinemia, characterized

by near-absent levels of circulating apolipoprotein B and LDL

cholesterol but significantly increased rates of hepatic

steatosis.59,60 Similarly, prior studies of individuals with hetero-

zygous familial hypobetalipoproteinemia, carrying one copy of

an inactivating variant in APOB, suggest an increased risk of

steatosis, albeit with variable penetrance.61–64 More recently, a

candidate gene-based analysis suggested enrichment of patho-

genic APOB variants in individuals with NAFLD-associated he-

patocellular carcinoma.65 Pharmacologic knockdown of the

APOB gene via the antisense oligonucleotide mipomersen is

approved for treatment of severe hypercholesterolemia but is
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Figure 5. RVAS of liver fat in 18,013 individuals
18,013 unrelated individuals with exome sequencing data and liver fat estimation available were grouped according to whether they carried any rare variant

predicted to inactivate a given gene (carriers) or not (noncarriers). Rare inactivating variants were defined as predicted to cause premature truncation of a protein

(nonsense), insertions or deletions that scramble protein translation (frameshift), or disruption of themessenger RNA splicing process (splice site) with an alternate

allele frequency of less than 0.1%. Association of carrier status for each gene with inverse normal transformed liver fat, quantified from MRI data using machine

learning, was assessed using linear regression. Genes with fewer than 10 inactivating variant carriers were excluded to increase the likelihood of having sufficient

statistical power to detect an effect, resulting in 4,156 genes in the analysis and a significance threshold of p = 1.2 3 10�5 (0.05/4,156 genes tested).

(A) Quantile-quantile (QQ) plot with expected p values of each gene from a uniform distribution are shown on the x axis and corresponding observed p values of

each gene on the y axis. A gray line indicates the significance threshold (observed p = 1.20 3 10�5).

(B) Liver fat distribution in carriers and noncarriers of inactivating variants in the APOB orMTTP genes. A gray line indicates the hepatic steatosis threshold (liver

fat = 5.5%).

(C) Prevalence of hepatic steatosis in carriers and noncarriers of inactivating variants inAPOB orMTTP. For boxplots, boxes indicate IQR (25th–75th percentiles),

and whiskers indicate distances of 1.5 IQRs from box limits. For bar plots, error bars indicate upper bounds of 95% CI.

See also Tables S11 and S12.
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infrequently used in clinical practice because of high rates of he-

patic steatosis in clinical trials.66

Inactivating variants in the MTTP gene were also significantly

associated with increased liver fat (beta = 1.17 SD, p = 1.0 3

10�6) among 19 carriers of inactivating variants versus 17,994 in-

dividuals without such a variant. This corresponded to a median

liver fat percentage of 6.9% versus 2.2% for carriers and noncar-

riers, respectively, and an odds ratio for hepatic steatosis of 11.0

(95% CI, 3.9–30.9; p = 4.8 3 10�6) for carriers (Figure 5). A post

hoc analysis of GWAS results noted a commonmissense variant

inMTTP, p.I128T (previously associated with LDL cholesterol56),

associated with increased liver fat at subthreshold statistical sig-

nificance (beta = 0.04 SD, p = 3.703 10�5). No relationship was

observed between this common variant and the presence of an

inactivating variant in MTTP (R2 < 0.01).

The association of inactivating variants inMTTPwith liver fat is

also highly consistent with known biology. MTTP plays a central

role in secretion of apolipoprotein B-containing lipoproteins from

the liver. Individuals with two inactivating MTTP variants suffer

from the Mendelian disorder abetalipoproteinemia, character-

ized by absence of circulating apolipoprotein B and increased

rates of hepatic steatosis.67,68 Similar to APOB inhibition, a phar-

macologic inhibitor of MTTP activity is approved for treatment of

severe hypercholesterolemia, but clinical use is limited by

increased hepatic fat with its use.69

To further determine the phenotypic consequences of inacti-

vating variants in APOB and MTTP, we analyzed an expanded

set of 168,600 UK Biobank participants with exome sequencing
data available (regardless of availability of abdominal MRI data).

Of these 168,600 individuals, 130 (0.08%) had an inactivating

variant in APOB. Liver-related biomarker concentrations were

increased in these individuals: 35% higher ALT and 14% higher

AST; p = 9.63 10�13 and 1.73 10�5, respectively (Table S11). In

contrast to higher values of aminotransferases, carriers of inac-

tivating APOB variants had markedly lower levels of circulating

lipoproteins: 38% lower apolipoprotein B, 44% lower LDL

cholesterol, and 45% lower triglycerides (p = 7.8 3 10�18 to

3.7 3 10�113). This was associated with a 74% reduction in

risk of coronary artery disease (p = 0.04), consistent with our

recent report in an expanded dataset.70 Similar to prior data

suggesting that inactivating MTTP variants affect circulating

biomarkers only when both copies are affected via recessive in-

heritance,59 no differences in liver-related biomarkers or lipid

concentrations were noted when comparing 90 heterozygous

carriers of MTTP variants with 168,510 noncarriers (Table S11).

These RVAS results highlight a discrete molecular subtype of

hepatic steatosis driven by rare genetic variation. 13 of 3,273

(0.4%) of individuals with steatosis on imaging had an inactivat-

ing variant in APOB, characterized by 6-fold increased risk of

steatosis but markedly lower circulating lipid concentrations

and reduced risk of coronary artery disease. Similarly, 14 of

3,273 (0.4%) of individuals with steatosis had an inactivating

variant inMTTP, characterized by 11-fold increased risk of stea-

tosis in the context of defects in apolipoprotein B secretion. Of

note, 0 of the 27 individuals with steatosis and an APOB or

MTTP inactivating variant reported alcohol intake in excess of
Cell Genomics 1, 100066, December 8, 2021 9
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United States guidelines compared with 7% in the remainder of

individuals with steatosis, and only 22% were obese compared

with 40% in the remainder of individuals with steatosis (Table

S12). Although these observations were not statistically signifi-

cant in the context of small sample sizes and warrant investiga-

tion in larger studies, they are consistent with a disproportionate

genetic rather than environmental predisposition among these

individuals.

DISCUSSION

Our analysis describing quantification of liver fat in 36,703 mid-

dle-aged participants in the UK Biobank, the majority of whom

were of European ancestry, using a machine-learning algorithm

trained on a small subset with previously quantified values has

several implications for biologic discovery and clinical medicine.

First, the highly accurate estimation of liver fat enabled by a

high-throughput machine-learning algorithm extends prior ef-

forts and is likely to be broadly generalizable across a diverse

spectrum of important phenotypes. In hold-out testing datasets,

our model-based liver fat assessment was highly correlated with

liver fat quantified previously by a commercial vendor, with

correlation coefficients of 0.97 and 0.99. Previous efforts have

similarly shown feasibility of using a convolutional neural net

framework to automate liver fat quantification using CT or MRI

images in clinical practice.71 Such efforts may be of particular

value for liver fat because, in routine clinical practice, liver fat

noted from ultrasound or CT imaging is typically reported in qual-

itative rather than quantitative terms that lack precision and

accuracy.11 Beyond the liver, we recently validated a machine-

learningmodel to quantify the diameter of the aorta using cardiac

MRI data, enabling discovery of 93 associated genetic vari-

ants.72 These and other studies73,74 suggest that machine-

learning approaches to rapidly quantify phenotypes in rich

imaging datasets are likely to yield important new scientific in-

sights, particularly when extended to complex features derived

from dynamic tissues, such as a beating heart, or latent pheno-

types not currently measured in clinical practice.

Second, we demonstrate that, although correlated with many

cardiometabolic traits, liver fat cannot be readily predicted using

information available in clinical practice. Our large-scale study

confirmed significantly increased liver fat in important clinical

groups, such as thosewith diabetes or severe obesity. These ob-

servations suggest that future research might validate clinical

prediction tools, potentially including a polygenic score, that

identify subgroups of individuals in whom screening for hepatic

steatosis is warranted or those with known steatosis who are

most likely to progress to cirrhosis.75 Outside of focused

screening, abdominal imaging is very common across a wide

range of clinical indications. Application of a machine-learning

algorithm to alert ordering clinicians of an incidental finding of

hepatic steatosismay enablemeasures that prevent progression

to more advanced liver disease, such as treatment of hepatitis C

infection, alcohol avoidance, dietary interventions, or bariatric

surgery in those with severe obesity.7 This approach has proven

useful in identifying individuals with subclinical atherosclerosis

on chest CT imaging, and reporting this atherosclerosis as an

incidental finding is now recommended in clinical guidelines.76,77
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Third, our common variant GWAS using our estimated liver fat

dataset identified eight significantly associated genetic variants.

None of the five newly associated variants were identified using

the subset of 4,040 individuals with liver fat quantified without

machine learning. Variants identified were largely overlapping

with recent analyses of UK Biobank imaging data using a com-

plementary automated segmentation U-net approach or quanti-

fication by a different commercial vendor published during

review of this manuscript.78,79 We note compelling biology un-

derlying most of the associated variants and provide proof of

concept that a polygenic score composed of the eight variants

was associated with risk of liver diseases. Additional studies

are needed to develop absolute risk estimators for NAFLD and

related diseases, ideally integrating clinical risk factors, a poly-

genic score, and rare predisposing variants.

Fourth, an RVAS, despite a relatively small sample size of

18,013 individualswith liver fat andexomesequencingdata avail-

able, identified associations of inactivating variants in APOB and

MTTP with liver fat. These observations recapitulate results

observed in pharmacologic studies of APOB or MTTP inhibition

as a treatment for hypercholesterolemia: those with inactivating

variants in APOB had strikingly lower lipid concentrations, but

this came at the expense of increased aminotransferase concen-

trations andamore than6.3-fold increase in rates of hepatic stea-

tosis. Given that elevated liver biomarkers or increased hepatic

fat are commonly observed adverse reactions to novel drug

candidates, in many cases leading to termination of drug devel-

opment programs, our approach to using genetics to predict

hepatotoxicity may prove valuable. Moreover, our results sug-

gest that a subset of candidate treatments for hepatic steatosis

may have adverse effects by increasing circulating lipids. Thus,

prioritization of drug targets, such as MTARC1, where genetic

studies suggest inhibition will protect against liver disease

without increasing cholesterol concentrations or risk of cardio-

vascular disease,33,37 may be warranted.

Limitations of the study
Our results should be interpreted in the context of several poten-

tial limitations. First, participants of the UK Biobank imaging

study tend to be healthier than the general population, and

97% were of self-reported European ancestry. Although our al-

gorithm for liver fat estimation appeared to perform comparably

well in non-European participants (Figure S1), additional

research is needed to investigate generalizability and trans-

ancestry portability. Second, diagnostic codes entered into the

electronic health record were used to study the relationship be-

tween a clinical diagnosis of NAFLD and liver fat based on imag-

ing. Because such codes are known to be imperfect, future

studies involving biopsy-confirmed cases of NAFLD are war-

ranted. Third, because imaging of UK Biobank participants

occurred recently and not at time of enrollment, we were not

able to directly compare the predictive power of liver fat versus

other clinical or biomarker predictors with respect to future risk

of cardiometabolic or liver diseases.

We applied a machine-learning algorithm to quantify liver fat in

36,703 participants in the UK Biobank, identifying 17% of the

population with evidence of hepatic steatosis despite lack of a

recorded clinical diagnosis of fatty liver disease, enabling new
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genetic discoveries with potential implications for new mecha-

nistic pathways underlying risk for liver disease in humans.
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48. Labbé, C., Goyette, P., Lefebvre, C., Stevens, C., Green, T., Tello-Ruiz,

M.K., Cao, Z., Landry, A.L., Stempak, J., Annese, V., et al. (2008).
MAST3: a novel IBD risk factor that modulates TLR4 signaling. Genes Im-

mun. 9, 602–612.
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et al. (2012). FTO genotype is associated with phenotypic variability of

body mass index. Nature 490, 267–272.
Cell Genomics 1, 100066, December 8, 2021 15

http://refhub.elsevier.com/S2666-979X(21)00082-3/sref87
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref87
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref87
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref87
https://apps.who.int/gho/data/view.main.56470
https://apps.who.int/gho/data/view.main.56470
https://www.nice.org.uk/guidance/cg115
https://www.nice.org.uk/guidance/cg115
https://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref94
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref94
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref95
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref96
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref96
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref96
http://refhub.elsevier.com/S2666-979X(21)00082-3/sref96


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank, including previously quantified liver fat

and liver fat quantified via machine learning

17,80; this paper https://www.ukbiobank.ac.uk/; df-22402

Liver fat common variant genome-wide association

study summary statistics

This paper https://www.ebi.ac.uk/gwas/ Study: GCST90029073

Liver fat previously quantified in Framingham Heart

Study

81–83 https://www.ncbi.nlm.nih.gov/gap/; Dataset:

pht005157.v3.p13

Liver fat previously quantified in Multi-Ethnic Study of

Atherosclerosis

84,85 https://www.ncbi.nlm.nih.gov/gap/; Dataset:

pht002104.v2.p3

Software and algorithms

BOLT-LMM version 2.3.4 26 https://alkesgroup.broadinstitute.org/BOLT-LMM/

BOLT-LMM_manual.html

BOLT-REML in BOLT-LMM version 2.3.4 25 https://alkesgroup.broadinstitute.org/BOLT-LMM/

BOLT-LMM_manual.html

R statistical software version 3.5 86 http://www.R-project.org/

Michigan Imputation Server version 1.1 87 http://imputationserver.sph.umich.edu/index.html

Liver fat machine learning algorithm architecture and

weights

This paper https://github.com/broadinstitute/ml4h

(liver_fat_from_mri_ukb in model zoo)

PolyFun version 1.0.0 32 https://github.com/omerwe/polyfun

SuSiE version 0.9.53 88 https://stephenslab.github.io/susie-paper/

Ensembl Variant Effect Predictor (VEP) version 96 89 https://uswest.ensembl.org/info/docs/tools/vep/

index.html

LOFTEE 57 https://uswest.ensembl.org/info/docs/tools/vep/

index.html

Python 3 90 https://www.python.org/

tensorflow version 2.1 91 https://www.tensorflow.org/

ML4H version 0.0.1 92 https://github.com/broadinstitute/ml4h
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Amit

Khera (avkhera@mgh.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Summary statistics for the liver fat GWAS have been deposited in the GWAS Catalog at https://www.ebi.ac.uk/gwas/ and are

publicly available under accession number GCST90029073. The machine learning model architectures and weights have been

deposited in the ML4H GitHub at https://github.com/broadinstitute/ml4h repository and are publicly available in the ML4H

model zoo under the name liver_fat_from_mri_ukb. Liver fat quantification data has been returned to the UK Biobank and

can be accessed via application to the UK Biobank at https://www.ukbiobank.ac.uk/. DOIs and accession numbers are listed

in the Key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts
UK Biobank

The UK Biobank is a prospective cohort study that enrolled 502,617 individuals aged 40-69 years of age from across the United

Kingdom between 2006 and 2010.80 As part of the study protocol, a subset of individuals underwent detailed imaging including

abdominal MRI93 between 2014 and 2019, an average of 9.3 years after enrollment visit. Participants who underwent imaging tended

to be healthier than those who did not, as reflected by lower rates of obesity, coronary artery disease, and diabetes (Table S1).

Framingham Heart Study

The Framingham Heart Study is a multigenerational prospective cohort study that enrolled individuals free of cardiovascular disease

beginning in 1948. Here, we analyze 3,284 individuals in the Offspring and Third Generation cohorts (enrollment beginning in 1971

and 2002, respectively)81,82 with genotype data available who underwent multidetector abdominal CT for liver fat quantification as

previously described.83

Multi-Ethnic Study of Atherosclerosis (MESA)

The Multi-Ethnic Study of Atherosclerosis (MESA) study is a prospective cohort that enrolled individuals free of cardiovascular dis-

ease between 2000 and 2002.84 4,195 individuals who underwent multidetector CT for liver fat quantification85 and had genetic data

available and were used in analyses described below.

Mass General Brigham Biobank

MassGeneral BrighamBiobank is a hospital-based biorepository with genetic data linked to clinical records.55 Patients were defined

as having NAFLD or NASH according to diagnosis codes in the electronic health care record (Table S2) and were compared to con-

trols without such diagnoses as described below.

Informed Consent and Study Approval
The UK Biobank study was approved by the Research Ethics Committee (reference 16/NW/0274) and informed consent was obtained

fromall participants. Analysis of UKBiobank datawas conducted under application 7089 andwas approved by theMassGeneral Brig-

ham institutional reviewboard.FraminghamHeartStudyandMESAgenotypeandphenotypedatawere retrieved for analysis fromNCBI

dbGAP under procedures approved by the Mass General Brigham institutional review board. Mass General Brigham Biobank partici-

pants each provided written informed consent and analysis was approved by the Mass General Brigham institutional review board.

METHOD DETAILS

Sample inclusion
Liver fat quantification in UK Biobank

We first quantified liver fat in UK Biobank participants with abdominal MRI imaging available. The UK Biobank abdominal imaging

protocol was first performed with gradient echo imaging; a subset of participants had liver fat quantified by Perspectum Diagnostics

as previously described.17 Beginning in 2018, imaging was switched to the ‘‘iterative decomposition of water and fat with echo asym-

metry and least-squares estimation’’ (IDEAL) protocol. A subset of participants underwent both imaging protocols.

To determine liver fat percentage from abdominal MRI images, we used 2DConvolutional Neural Networks (CNNs) to estimate liver

fat percentage from abdominal MRI in 38,706 individuals. The imaging protocol in UK Biobank was switched from gradient echo to

IDEAL mid-study, and liver fat was previously quantified by Perspectum Diagnostics only in individuals imaged using the gradient

echo protocol.17 To be able to infer liver fat from both protocols, we therefore used a two-model approach with ‘‘teacher-student’’

models. The ‘‘teacher’’ model was a 2D CNN trained on individuals who underwent the gradient echo imaging protocol. The gradient

echo protocol consisted of acquiring 10 images;17 to avoid potential errors in estimation that could arise from using a different num-

ber of images, we restricted the participants used for model training to individuals who had 10 images, resulting in 3,210 used for

model training and 1,215 held out for model testing. The truth data for this model were liver fat values previously quantified by Per-

spectum Diagnostics from gradient echo imaging protocols which were made available to UK Biobank researchers. Liver fat values

for the remaining 5,496 participants with gradient echo imaging and 10 images were estimated using this model.

To estimate liver fat in participants imaged using the IDEAL protocol, we also trained a 2DCNN ‘‘student’’ model in the participants

who had undergone both the gradient echo and IDEAL imaging protocols. The IDEAL protocol included 36 images with largest image

pixel value < 1024; of the 1,441 individuals who had both imaging protocols and these 36 images, 1,057 were used for training and

384 were held out for testing. The truth data for this model was liver fat in the gradient echo protocol, which was inferred from the

‘‘teacher’’ model. Liver fat values for the remaining 28,595 participants with IDEAL imaging and 36 images were inferred using

this model. In total, we estimated liver fat for 34,091 participants with these two models. For both models, model prediction of liver

fat < 0.1%was set to missing. Two participants in the testing datasets – one in the teacher model and one in the student model – had

missing predictions, resulting in final testing datasets of 1,214 and 383 participants respectively.

To combine the previously-quantified liver fat and results of the two models, we first used the previously-quantified liver fat esti-

mates provided by the UK Biobank where available. When previously-quantified liver fat was unavailable, we preferentially used the

liver fat estimates from the teacher model. When teacher model liver fat estimates were unavailable, we used the liver fat estimates
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from the student model. For subsequent analyses of liver fat, we filtered to 36,703 individuals in UK Biobank with genetic data and

liver imaging available. Final sources of liver fat were: n = 4,511 previously-quantified, n = 4,971 estimated from gradient echo pro-

tocol, n = 27,221 estimated from IDEAL protocol.

Common variant association studies

We next performed a common variant genome-wide association study (GWAS) of liver fat on a subset of 32,974 UK Biobank partic-

ipants. We excluded samples that had no imputed genetic data, a genotyping call rate < 0.98, a mismatch between submitted and

inferred sex, sex chromosome aneuploidy, exclusion from kinship inference, excessive third-degree relatives, or that were outliers in

heterozygosity or genotype missingness rates, all of which were previously defined centrally by the UK Biobank.27 Due to the small

percentage of non-European samples (Table S1), to avoid artifacts from population stratification we restricted our GWAS to a subset

of samples of European ancestries, selected by self-reported British, Irish, or ‘Any other white’ ethnic background with removal of

individuals whowere outliers based on principal components of genetic variation analysis (PCA), identified using the R package aber-

rant as previously described.94 We did not remove related individuals from this analysis, but rather used a linear mixed model able to

account for cryptic relatedness in common variant association studies.26

To further validate the common variants associated with liver fat in the GWAS, we studied association of single variants as well as a

composite 8-variant polygenic score with liver disease and/or blood biomarkers alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) in individuals in the UK Biobank who did not undergo imaging and therefore were not part of the discovery

cohort. Sample quality control was performed by excluding samples that had no imputed genetic data, a genotyping call rate < 0.95,

amismatch between submitted and inferred sex, sex chromosome aneuploidy, exclusion from kinship inference, excessive third-de-

gree relatives, and outliers in heterozygosity or genotype missingness rates, and restricting to the PCA-selected European subset.

We also removed one of each pair of related individuals (2nd degree or closer, KING coefficient > 0.0884), and those which were part

of the liver fat GWAS to avoid sample overlap, resulting in up to 362,910 individuals available for analysis. For associations of poly-

genic score with liver diseases or LDL cholesterol, we additionally excluded individuals who had any of the four diseases investigated

or hepatitis B or C infection documented by time of enrollment, resulting in 361,852 participants in the analysis.

Rare variant association study

To assess the relationship of rare inactivating variants with liver fat and related traits, we studied the subset of 168,600 UK Biobank

participants with whole exome sequencing data available. Sample quality control was performed by excluding samples that had no

imputed genetic data, a genotyping call rate < 0.95, a mismatch between submitted and inferred sex, sex chromosome aneuploidy,

exclusion from kinship inference, excessive third-degree relatives, or that were outliers in heterozygosity or genotype missingness

rates, and restricting to the PCA-selected European subset as well as removing one of each pair of related individuals (2nd degree or

closer, KING coefficient > 0.0884). We first analyzed the relationship between rare inactivating variants and liver fat in 18,013 indi-

viduals with both whole exome sequencing and abdominal MRI imaging data available. Next, to understand the relationship between

inactivating variants in two genes, APOB and MTTP, and related biomarkers and disease states, we analyzed the full set of up to

(depending on biomarker availability) 168,600 participants with exome sequencing data available.

UK Biobank phenotypes
Baseline characteristics of the 36,703 UK Biobank participants are shown in Table S1. Owing to discrepant definitions of a standard

drink between U.S. and UK guidelines, we report two sets of numbers. First, we report number of drinks according to the U.S. defi-

nition, where 1 drink = 14 g ethanol,7,95 according to the following conversions: red or white wine, 0.84 drinks/glass; beer, 1.29 drinks/

pint; liquor, 0.68 drinks/measure; fortified wine, 0.7 drinks/glass; other alcohol, 1 drink/glass. For participants who reported

consuming alcohol monthly rather than weekly, monthly alcohol consumption was converted to weekly by multiplying by 0.23.

For U.S. guidelines, excessive alcohol intake was defined according to the U.S. American Association for the Study of Liver Diseases

(AASLD) guidelines for NAFLD – greater than 14 weekly drinks if female or greater than 21 weekly drinks if male.7 Second, we report

alcohol intake according to the UK definition, where 1 drink = 8 g of ethanol.95,96 For UK consumption, excessive alcohol intake was

defined according to the UK Chief Medical Officers guideline – greater than 14 weekly drinks regardless of gender.20

Physician diagnosis of NAFLD and other diseases were defined using ICD codes, and self-report and procedure codes where

applicable (Table S2). Hepatic steatosis was defined as liver fat > 5.5%, as determined previously for UK Biobank using the original

previously-quantified liver fat values.17 High waist-to-hip ratio was defined as greater than 0.9 if male and greater than 0.85 if fe-

male.18 Weight categories were defined using BMI: underweight, BMI < 18.5 kg/m2; normal, 18.5 £ BMI < 25 kg/m2; overweight,

25 £ BMI < 30 kg/m2; obese, 30 £ BMI < 40 kg/m2; severely obese, BMI 3 40 kg/m2 as previously defined.19 Body fat percentage

was estimated using bioelectrical impedance analysis. Untreated blood lipid measurements and blood pressure were estimated

by adjusting for lipid-lowering medication use or anti-hypertensive medication use, respectively, as previously described.21,22 Vari-

ables with > 3% difference in proportion of missing data between compared groups are indicated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Liver fat quantification in UK Biobank participants using a new machine learning algorithm
Input MRI images were prepared by stacking each time slice from the abdominal MRI according to their instance number into a 3D

tensor. Images were normalized per individual to have a mean of 0 and a standard deviation of 1 for each MRI. The teacher model for
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the gradient echomodality had 10 channels corresponding to the 10 instances in the gradient echo protocol with height and width of

160 pixels, while the student model for the IDEAL protocol had input images of 36 channels, height of 256 and width of 232 pixels.

The 2D CNNs were optimized with backpropagation and Adaptive Moment stochastic gradient descent (ADAM). We used a batch

size of 5 for the student model and 8 for the teacher model, a learning rate of 2e-4, and the ADAM variant of stochastic gradient

descent in our analysis as outlined previously.97 The models were implemented in tensorflow version 2.191 using the ML4Hmodeling

framework.92 The python package hyperopt90 was used for Bayesian hyperparameter optimization of the model architecture to

select the width, depth, activation function, and the size of each residual block in the CNN. The final architecture consisted of two

layers of convolution followed by three residual blocks of 2 convolutions in parallel whose outputs are concatenated andmax-pooled

reducing the size of the representation by a factor of 4 after each block. To explore the extent to which our trained models focused on

the liver tissue, we assembled saliency maps on 100 test set MRIs. As expected, the model was highly attuned to liver parenchyma

tissue and attention layering was thus deferred. The output of the final convolutional block is flattened and processed by two fully-

connected layers and finally fed to the output regression neuron. All non-linear activations functions in the model are rectified linear

units.

Performance on the held-out testing sets was assessed based on Pearson correlation coefficient andmean absolute error for each

model (Figure S1). To determine whether our model was prone to overfitting, we generated learning curves that show model’s loss

parameters according to epoch on the training set and on a held-out set of dataset of images distinct from the final test set. Each

epoch was defined as a full pass over the training set MRIs. By the end of training, we noted consistent loss in the training and vali-

dation dataset, suggestive of no evidence of overfitting (Figure S2). As an additional sensitivity analysis, we performed 10-fold cross

validation within subsets of the training datasets, noting nearly identical performance in the held-out testing dataset as for the model

developed using the full training datasets. For the teacher model, we observed amean Pearson correlation coefficient across each of

10-folds of 0.975 (values in each fold: 0.970, 0.976, 0.976, 0.976, 0.976, 0.977, 0.976, 0.976, 0.974, 0.976) and an average mean ab-

solute error across each of 10-folds of 0.50% (values in each fold: 0.57%, 0.49%, 0.53%, 0.46%, 0.50%, 0.49%, 0.48%, 0.50%,

0.52%, 0.51%). For the student model, we observed a mean Pearson correlation coefficient across each of 10-folds of 0.983 (values

in each fold: 0.985, 0.985, 0.978, 0.974, 0.984, 0.982, 0.981, 0.986, 0.985, 0.987) and an average mean absolute error of 0.58%

(values in each fold: 0.53%, 0.54%, 0.69%, 0.65%, 0.56%, 0.58%, 0.62%, 0.56%, 0.52%, 0.52%).

To compare the performance of our machine learning, image-based model for liver fat quantification to an approach using clinical

and anthropometric factors, we developed and tested a multivariable regression model. A beta distribution was selected based on

effective modeling of liver fat percentages as a series of proportions in the interval (0,1).98We therefore constructed a beta regression

model of liver fat using clinical and anthropometric factors in the same derivation and testing sets used to develop the machine

learning model. We selected available anthropometrics, biomarkers associated with metabolic function and liver function or injury,

as well as measurements of total body or abdominal fat available in UK Biobank. Only traits which were nominally (p value < 0.05)

associated with liver fat in univariable analysis were included in the beta regression model. Variables which were not associated

with liver fat and were therefore excluded from the beta regression model were: total bilirubin, direct bilirubin and indirect bilirubin.

Final variables included in themodel were: body-mass index, waist circumference, hip circumference, total body fat mass, total body

fat percent, age at baseline, sex, height, weight, trunk fatmass, trunk fat percent, waist-to-hip ratio, LDL cholesterol, total cholesterol,

HDL cholesterol, triglycerides, systolic blood pressure, alkaline phosphatase, alanine aminotransferase (ALT), aspartate aminotrans-

ferase (AST), ALT/AST, gamma glutamyltransferase, hemoglobin A1c, random glucose, and C-reactive protein. Lipid measures were

adjusted for lipid-lowering medication use and blood pressure was adjusted for anti-hypertensive medication use, as previously

described.21,22 Measurements at time of imaging assessment were available for BMI, height, weight, waist circumference, hip

circumference, waist-to-hip ratio and systolic blood pressure and preferentially used in this regression analysis, while the remainder

of predictors were measured at time of study enrollment. Missing values were imputed using the aregImpute function in the R pack-

ageHmisc. We constructed a variable dispersion beta regression model using 3,210 individuals with liver fat previously quantified by

PerspectumDiagnostics.17 Thismodel was constructed using the betareg package in R, optimizing themean and precision link func-

tions to cloglog and log, respectively, using AIC & BIC comparisons. Performance of the model was evaluated by the Pearson cor-

relation between previously quantified liver fat and predicted liver fat in the held-out testing dataset of 1,214 individuals (Figure S3).

Association of liver fat with clinical characteristics
To determine the relationship between clinical/anthropometric characteristics (sex, excessive alcohol consumption, physician diag-

nosis of NAFLD, physician diagnosis of diabetes) onmedian liver fat, or the effects of hepatic steatosis on triglyceride concentrations,

we performed median regression. Similarly, we used logistic regression to evaluate the effects of physician diagnosis of NAFLD on

hepatic steatosis, and hepatic steatosis on diabetes or hypertension diagnosis. In both median and logistic regression, we included

sex, birth year, age at imaging, age at imaging squared and MRI machine serial number as covariates.

Genetic analyses
UK Biobank genotyping and variant quality control

UK Biobank samples were genotyped on either the UK BiLEVE or UK Biobank Axiom arrays, then imputed into the Haplotype Refer-

ence Consortium and UK10K + 1000 Genomes panels. We excluded genotyped variants with call rate < 0.95, imputed variants

with INFO score < 0.3, and imputed or genotyped variants with minor allele frequency < 1% in the UK Biobank population. Variant
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positions were denoted in GRCh37/hg19 coordinates. Principal components of genetic variation were calculated centrally by UKBio-

bank in all participants as previously described.27

Phenotype transformation

Because liver fat is not normally distributed and nor are its residuals with respect to clinical covariates, we transformed the input liver

fat phenotype to a rank-based output for the GWAS and RVAS analyses. This approach has commonly used in previous GWAS of

quantitative traits with skewed distributions, including body-mass index, a previous study of liver fat, and lipid concentra-

tions.12,56,99,100 First, we took the residuals of liver fat in a linear model that included sex, year of birth, age at time of MRI, age at

time of MRI squared, genotyping array, MRI device serial number, and the first ten principal components of genetic variation.

Then, we performed the inverse normal transform on the residuals from this model, yielding a standardized output with mean

0 and standard deviation of 1. Results using this transformation of the liver fat phenotype are reported as ‘Betas’ and have a unit

of standard deviations.

Common variant genome-wide association study

We performed a GWAS of the inverse normal transformed liver fat residuals in 32,974 individuals, applying linear mixed models with

BOLT-LMM (version 2.3.4) to account for ancestry, cryptic population structure, and sample relatedness.26 The default European

linkage disequilibrium panel provided with BOLT was used and the first ten principal components of genetic variation were included

as covariates. We measured heritability in the same samples using BOLT-REML (BOLT-LMM version 2.3.4 with the –reml flag). Var-

iants with BOLT-LMMp value < 53 10�8 were considered to be genome-wide significant. Loci were defined by 2MBwindows (1MB

distance from the most-significant variant in either direction). The most strongly associated variant at each locus is referred to as the

lead variant. We determined the effects of each of the eight lead variants on liver fat % and presence of hepatic steatosis (liver fat >

5.5%) using linear and logistic regression, respectively, in the same 32,974 individuals in the GWAS, adjusting for sex, year of birth,

age at time of MRI, age at time of MRI squared, genotyping array, MRI device serial number, and the first ten principal components of

genetic variation. We repeated the GWAS in the subset of 4,040 individuals with previously-quantified liver fat who passed the GWAS

sample quality control.

We applied the PolyFun (functionally-informed fine-mapping) algorithm32 to fine map the 8 genome-wide significant loci discov-

ered in the GWAS. We mapped a window surrounding the lead variant at each locus based on visual inspection of the region as

sufficiently large enough to cover all possible associated signals while excluding overlapping associations from nearby independent

regions. For these 8 regions, we independently applied the PolyFun algorithm for fine-mapping of causal variant(s) with functional

enrichment priors estimated from the baseline-LF 2.2.UKB annotations (pre-computed from PolyFun). This is a broad set of coding,

conserved, regulatory, and LD-related annotations and has �19 million UK Biobank imputed SNPs with minor allele frequency >

0.1%.32 We used SuSiE as the underlying fine-mapping method,88 set the maximum number of causal variants of 10, and used

in-sample linkage disequilibrium information from individuals in the GWAS.

GWAS replication. We replicated the GWAS findings in the Framingham Heart Study and theMulti-Ethnic Study of Atherosclerosis

(MESA). In the Framingham cohort (Offspring Cohort and Third Generation Cohort), we examined whether the 8 variants associate

with hepatic steatosis on CT imaging. Genotyping was imputed to the HapRef consortium using the Michigan Imputation Server.87

After imputation, variants with allele frequency < 0.01% and those with an imputation score < 0.3 were excluded from analysis. Liver

fat was assessed by computing the liver-to-phantom ratio of the average Hounsfield units of three liver measurements to average

Hounsfield units of three phantom measurements (to correct for inter-individual differences in penetration), as previously

described.83 This liver fat phenotype was inverse normal rank transformed prior to genetic analysis. We tested the association of

all 8 variants with liver-to-phantom ratio adjusting for age, sex and ten principal components of genetic variationusing a linear mixed

model (BOLT-LMM) to control for relatedness among individuals.

In theMulti-Ethnic Study of Atherosclerosis cohort (MESA), genotypes were imputed to the HapRef consortium using theMichigan

Imputation Server.87 After imputation, variants with allele frequency < 0.01% and those with an INFO score < 0.3 were excluded from

analysis. Liver fat was measured as the mean of three attenuation measurements, two in the right lobe of the liver and one in the left

lobe,85 without use of phantom measurement normalization. Liver fat measurements were inverse normal rank transformed prior to

analysis. We tested the association of the top GWAS variants with mean liver attenuation with adjustment for age, sex and five prin-

cipal components of genetic variation.

Individuals with higher liver fat have lower liver-to-phantom ratios and liver attenuation measurements. To increase interpretability

and for consistency with UK Biobank results, we therefore report beta estimates in the Framingham study and MESA where positive

values correspond to increased liver fat. Effect estimates from the Framingham study and MESA were combined via fixed-effect

meta-analysis; heterogeneity was assessed and random-effects models were used when evidence of heterogeneity was noted

(phet < 0.05).

Association of GWAS variants with liver biomarkers and disease. We examined the association of the top GWAS variants with blood

biomarkers assessed at time of study enrollment alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in UK Bio-

bank using linear regression of each biomarker (in U/L) adjusting for sex, year of birth, age at enrollment and age at enrollment

squared, genotyping array and the first ten principal components of genetic variation.

We also examined the association of the top GWAS variants with physician diagnosis of NAFLD/NASH in UK Biobank and Mass

General Brigham Biobank. Disease definitions are provided in Table S2. In UK Biobank, association of each top GWAS variant

was assessed using logistic regression of disease status with sex, year of birth, age at enrollment and age at enrollment squared,
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genotyping array and the first ten principal components of genetic variationas covariates. In theMassGeneral BrighamBiobank, gen-

otyping was performed using an Illumina MEGA array. Variants were imputed to the HapRef consortium using the Michigan Impu-

tation Server. Variants with multinucleotide alleles and those with call rate less than 90% were excluded prior to imputation. After

imputation, variants with allele frequency < 0.01% and those with an INFO score < 0.3 were excluded from analysis. Association

of each top GWAS variant was assessed using logistic regression of disease status with age, sex and five principal components

of genetic variationas covariates. Effect estimates from UK Biobank and Mass General Brigham Biobank were combined via

fixed-effect meta-analysis; heterogeneity was assessed and random-effects models were used when nominal heterogeneity was

noted (phet < 0.05).

Polygenic score analysis. We constructed a single polygenic score for each individual by additively combining the 8 lead GWAS

variants based on number of liver-fat increasing variants present in each individual, each weighted by their GWAS effect size

estimate.

We tested for association between the score and incident disease occurrence after UK Biobank enrollment using a Cox model in

the same set of individuals used to test associations between single GWAS variants and NAFLD/NASH.We excluded individuals who

had any of the four diseases investigated or hepatitis B or C infection documented at time of enrollment, resulting in 361,852 partic-

ipants in the analysis. We focused on the association of the score with liver diseases; given previously reported association of liver fat

variants with circulating lipids,56 we also examined association of the score with circulating LDL cholesterol using linear regression.

LDL cholesterol was adjusted for lipid-lowering medication to estimate untreated values as above;22 liver disease definitions are

listed in Table S2. All polygenic score analyses were adjusted for age at enrollment, age at enrollment squared, sex, the first ten prin-

cipal components of genetic variation, and genotyping array. We also quantified the proportion of individuals who developed each

disease during study follow-up stratified by PRS decile. C statistics were calculated for a baseline model (age at enrollment, age at

enrollment squared, sex, the first ten principal components of ancestry, and genotyping array) and a baseline plus polygenic score

model; a likelihood ratio test was used to assess whether the two models were significantly different.

Rare variant association study

In the subset of individuals with whole exome sequencing available, we identified rare (minor allele frequency < 0.1%) inactivating

variants in each gene. Sequencing data from the ‘‘Functionally Equivalent’’ gene sequencing dataset was annotated using the

LOFTEE plugin for the Ensembl Variant Effect Predictor (VEP) software (version 96.0).89 LOFTEE applies a set of filters to identify

high-confidence inactivating variants based on predicted impact on the resulting transcript.57 High-confidence inactivating variants

include those predicted to cause premature truncation of a protein (nonsense), insertions or deletions (indels) of DNA that scramble

protein translation beyond the variant site (frameshift) and point mutations at sites of pre-messenger ribonucleic acid splicing that

alter the splicing process (splice-site).

We aggregated the inactivating variants identified within each gene into a rare variant burden analysis: individuals were considered

as an inactivating variant carrier for a particular gene if they had one or more inactivating variants in the gene, and a non-carrier other-

wise. We tested the association of inactivating variant carrier status for each gene with inverse normal transformed liver fat as

described above (see Phenotype Transformation) using linear regression with the first ten principal components of genetic variation

as covariates. We removed genes with fewer than 10 inactivating variant carriers to increase the likelihood of having sufficient sta-

tistical power to detect an effect, leaving 4,156 genes in the analysis. To determine the effects of APOB orMTTP inactivating variants

on blood biomarkers or disease outcomes, we used linear or logistic regression, respectively, adjusting for sex, year of birth, age at

enrollment and age at enrollment squared, genotyping array and the first ten principal components of genetic variation. LDL choles-

terol and triglycerides were adjusted for lipid-lowering medication to estimate untreated values as previously described.22

Statistical analyses were conducted using R version 3.5 software.86
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