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Abstract

This paper introduces a new swarm intelligence strategy, anti-coronavirus optimization (ACVO) algorithm. This algorithm
is a multi-agent strategy, in which each agent is a person that tries to stay healthy and slow down the spread of COVID-19
by observing the containment protocols. The algorithm composed of three main steps: social distancing, quarantine, and
isolation. In the social distancing phase, the algorithm attempts to maintain a safe physical distance between people and limit
close contacts. In the quarantine phase, the algorithm quarantines the suspected people to prevent the spread of disease. Some
people who have not followed the health protocols and infected by the virus should be taken care of to get a full recovery.
In the isolation phase, the algorithm cared for the infected people to recover their health. The algorithm iteratively applies
these operators on the population to find the fittest and healthiest person. The proposed algorithm is evaluated on standard
multi-variable single-objective optimization problems and compared with several counterpart algorithms. The results show
the superiority of ACVO on most test problems compared with its counterparts.
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1 Introduction

In recent years, optimization meta-heuristics have become
increasingly one of the most interesting topics in computer
science (Krause and Cordeiro 2013). A meta-heuristic algo-
rithm is a black-box optimizer system that gets a set of
problems’ variables that need to be tuned and even some con-
straints in the form of limitations. The optimizer modifies
the variables by running an updating process until reach-
ing the optimum value of an objective function. The output
is a near-optimal solution with the maximum/ minimum
value of the objective function. Meta-heuristics are efficient,
fairly simple, flexible, derivation free, and need limited prior
knowledge about problems (Mirjalili and Lewis 2016). They
have drawn inspiration from a biological, physical, or social
phenomenon. For example, the inspiration source of the
artificial bee colony (ABC) algorithm (Karaboga and Bas-
turk 2007) is the cooperation of honey bees in finding food
sources; and the motivation of the chaotic presidential elec-
tion (CPE) algorithm (Emami and Derakhshan 2015) is the
people’s democratic behavior in the presidential election.
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In general, the main objective of all meta-heuristics is to
obtain the best solutions with the minimum computational
complexity in a reasonable time. Meta-heuristics should
provide a proper trade-off between the exploration (diver-
sification) and exploitation (intensification). The objective
of diversification is to disperse the search agents around
the solution space to efficiently explore the promising areas,
while intensification ensures the algorithm searches around
the current best solutions (Yang and Deb 2009). The main
difference between meta-heuristics is the way they adopted
to achieve the best solutions. According to the search strategy
and source of inspiration, meta-heuristics are classified into
different groups. The most studied meta-heuristics are evolu-
tionary and swarm intelligence algorithms. Several thorough
surveys of recent meta-heuristics are given in Krause and
Cordeiro (2013); Abdel-Basset et al. (2018); Boussaid et al.
(2013).

Evolutionary algorithms are motivated by Darwin’s evo-
lutionary theory. They work with a collection of solutions
and generate increasingly better solutions over time using
reproduction operators. The success of evolutionary algo-
rithms is due to their ability in modeling the best features
in nature, particularly biological systems evolved over mil-
lions of years. Adaptation to the environment and selection
of the fittest individuals are two important characteristics of
the evolutionary algorithms (Emami and Derakhshan 2015).
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These algorithms can handle the problems with many vari-
ables. In the beginning, the mainstream of evolutionary
algorithms was the genetic algorithm (GA) (Haupt and Haupt
2004). In recent years, new algorithms have emerged and
achieved encouraging results. The GA algorithm is inspired
by natural selection and genetic variation. GA is a stochastic
search approach, which works with a randomly initialized
set of chromosomes. The quality of chromosomes is evalu-
ated using a fitness function. Chromosomes are combined to
generate offspring individuals through selection, crossover,
and mutation. The least-fit chromosomes are replaced with
offspring if they achieve better fitness. This process iter-
ates several times until the termination conditions are met.
Some distinguished evolutionary algorithms are differential
evolution (DE) (Storn and Price 1997), genetic program-
ming (GP) (Yao et al. 1999), gene expression programming
(GEP) (Ferreira 2001), covariance matrix adaptation evo-
lution strategy (CMA-ES) (Igel et al. 2007), self-adaptive
differential evolution (Qin and Suganthan 2005), evolution
strategy (ES) (Taylor et al. 2008), biogeography-based opti-
mization (BBO) (Simon 2008), granular agent evolutionary
(GAE) (Pan and Jiao 2011), cultural evolution algorithm
(CEA) (Kuo and Lin 2013), backtracking search optimization
algorithm (BSA) (Civicioglu 2013), symbiotic organisms
search (SOS) (Cheng and Prayogo 2014), strawberry plant
algorithm (SBA) (Yamato and Fujiwara 2019), forest opti-
mization algorithm (FOA) (Ghaemia and Feizi-Derakhshi
2014), and runner-root algorithm (RRA) (Merrikh-Bayat
2015).

Swarm intelligence algorithms mimic the intelligent
behavior of insects or groups of animals in nature to solve
real-world problems. These algorithms mainly depend on
the decentralization idea in which the individuals search the
solution space by extracting the useful information from
a group of individuals and the environment (Abdel-Basset
et al. 2018). Particle swarm optimization (PSO) (Kennedy
and Eberhart 1995) is a popular and oldest swarm intelligence
algorithm, which is widely used in different disciplines. PSO
models the cooperation of a flock of migrating birds attempt-
ing toreach destination. In PSO, each search agent in solution
space is called a particle. The particles explore the solution
space by sharing their own local experience and the best-
known experience of the others. This process iterates so that
the particles move toward the best solution. Some of the
well-known swarm intelligence algorithms are artificial bee
colony (ABC) (Karaboga and Basturk 2007), cuckoo search
algorithm (CSA) (Yang and Deb 2009), ant colony opti-
mization (ACO) (Dorigo et al. 2006), firefly algorithm (FA)
(Yang 2009), bat algorithm (BA) (Yang 2010), bacterial for-
aging optimization (BFO) (Passino and Ohio 2010), teaching
learning-based optimization (TLBO) (Rao et al. 2011), krill
herd (KH) (Gandomia and Alavi 2012), dolphin echoloca-
tion (DEL) (Kaveh and Farhoudi 2013), fruit fly optimization
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algorithm (FOA) (Pan 2012), grey wolf optimization (GWO)
(Mirjalili et al. 2014), animal migration optimization (AMO)
(Li et al. 2014), social spider optimization (SSO) (Yu and
Li 2015), group counseling optimization (GCO) (Eita and
Fahmy 2014), lion optimization algorithm (LOA) (Yazdani
and Jolai 2016), whale optimization algorithm (WOA) (Mir-
jalili and Lewis 2016), grasshopper optimization algorithm
(GOA) (Saremi et al. 2017), and salp swarm algorithm (SSA)
(Mirjalili et al. 2017).

A few recent algorithms are inspired by the behavior of
viruses that attack a living cell. An interesting algorithm in
this area is bacterial foraging optimization (BFO) algorithm
(Passino and Ohio 2010) that models the foraging behavior of
bacteria over a landscape of nutrients. This algorithm consists
of five phases that include population chemotaxis, swarming,
reproduction, elimination, and dispersal. Virus optimization
algorithm (VOA) (Liang and Cuevas Juarez 2020) models
the interaction between the harmless viruses and the immune
system. The viruses are classified into two groups: common
and strong. Common-type viruses are responsible to explore
promising areas of solution space. Strong viruses reproduce
at a higher rate to exploit points within target areas found by
common viruses. In (Liang and Cuevas Juarez 2020), a self-
adaptive virus optimization algorithm (SaVOA) is introduced
to solve the parameter initialization issue of VOA. Magne-
totactic bacteria optimization algorithm (MBOA) (Mo and
Xu 2013) models the moment of magnetosomes and energy
management and in magnetotactic bacteria. MBOA starts by
calculating the magnetic field of cells. Then, the distance
and interaction energy between cells is computed. Finally,
moments of magnetosomes are tuned by integrating with
cells to reach the minimum magnetostatic energy.

A particular algorithm may provide very well outcomes
on a set of problems, but not on others. This issue is consis-
tent with the no free lunch (NFL) theorem, which dictates
that there is no algorithm best suited for solving all prob-
lems (Wolpert and Macready 1997). Therefore, introducing
new meta-heuristics or enhancing the performance of exist-
ing ones is an active research field. In the literature, there is
no research, which models the containment measures needed
to control the transmission of coronavirus disease 2019
(COVID-19). This issue and the NFL theorem motivated our
attempt to mathematically model the COVID-19 mitigation
protocols, and propose a new swarm intelligence strategy,
which is called anti-coronavirus optimization (ACVO) algo-
rithm. ACVO simulates the protocols recommended by the
world health organization (WHO) to slow down the trans-
mission of COVID-19 diseases and improve public health.

COVID-19 is arecently discovered infectious disease that
spread throughout the world (Guan 2020). It is announced
as a serious pandemic by the WHO that needs international
concern (Maier and Brockmann 2020; Wu et al. 2020). So
far, no effective vaccine or drug has been identified for
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COVID-19. Only some mitigation policies have been taken
by the WHO and governments to COVID-19. These poli-
cies mainly include social distancing, quarantine, isolation,
personal hygiene, wearing plastic screens and face masks in
community, restricting the movement of people, and avoiding
public gatherings in large groups (Anderson et al. 2020). The
social distancing policy aims to keep a safe space between
individuals. In the quarantine phase, people with suspected
symptoms are separated from others and quarantined. In the
isolation step, treatment is carried out for people having the
disease to return them to normal conditions. These policies
hopefully improve the health of people. The ACVO attempts
to solve optimization problems by modeling three main mit-
igation policies including social distancing, quarantine, and
isolation. The objective is to find the fittest and healthiest per-
son in the population, which corresponds to a near-optimal
solution to a given optimization problem.
Overall, the main contributions of this paper include:

— Introducing an anti-coronavirus optimization (ACVO)
algorithm inspired by the measures recommended to mit-
igate the spread of COVID-19.

— Investigating the ability of ACVO in solving numerical
and engineering optimization problems, and compare it
with counterpart algorithms. The results show that the
ACVO achieved superior results compared with its coun-
terparts.

The organization of the remaining parts is as follows.
Section 2 presents the inspiration source and the mathemat-
ical model of the proposed ACVO. Section 3 discusses the
effectiveness of the ACVO algorithm on a variety of test opti-
mization problems. Section 4 makes some conclusions and
provides some future research directions.

2 Anti-coronavirus optimization (ACVO)
algorithm

This section presents the inspiration source of the proposed
ACVO algorithm and its mathematical model. Then, a simple
numerical example is given to illustrate the functioning of
ACVO on a continuous optimization problem.

2.1 Inspiration source

COVID-19 is an emerging contagious disease caused by
SARS-CoV-2 virus. It infects people of all ages, especially
those with preexisting medical conditions. According to the
report published by WHO, the reproductive number (Rg) of
COVID-19 is about 2.5 (Liu et al. 2020). It means that each
infected person is infecting about 1 to 3 people on average. As
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Fig.1 The total number of confirmed cases of COVID-19 from 1 Jan-
uary 2020 to 20 December 2020 (The data for draw charts are driven
from “coronavirus worldwide graphs” [https://www.worldometers.
info, last access 20 Dec 2020]

shown in Fig. 1, the number of coronavirus cases is growing
exponentially.

There are two main approaches to spread the coronavirus:
breathing and close contact. In the former approach, the virus
spreads by respiratory droplets generated when an infected
person sneezes or coughs. The droplets generated in the respi-
ratory system are large and heavy that cannot be suspended in
the air for a long time, and deposit about 1 to 1.5 meters.! The
transmission capacity of COVID-19 is less than 1.8 meters
(6ft). In the close contacting approach, the virus can trans-
mit from infected individuals to healthy people and infect
them through close communication and physical contact. In
the other form of close contact, people may be infected by
touching the objects or surfaces that contain the virus, and
then touching their mouth, nose or eyes.

To date, there is no effective treatment for COVID-19
disease. The WHO recommends that containment measures
including social distancing, quarantine, and isolation can sig-
nificantly diminish the spread of COVID-19 by removing
infectious individuals from the transmission process (Maier
and Brockmann 2020), (Anderson et al. 2020).

Social distancing means reducing closeness and frequency
of contact between individuals to slow down the spread of
a contagious disease. The safe distance recommended by
the authorities varies. WHO adopted a 1m (3.3ft) physical
distancing policy.? China, Singapore, Lithuania, and Hong
Kong recommended that 1m (3.3ft) is safe. The USA adopted
1.8m (6ft), and Canada recommended 2m (6.6ft) physical
distancing. Because of the nature of COVID-19, if the phys-
ical distance between people is more than a safe space, the
probability of spreading the virus through breathing and close

1" Coronavirus disease (COVID-19) advice for the public: WHO,
[https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
advice-for-public, last access 20 Dec 2020].

2 Social Distancing, [https://www.cdc.gov/coronavirus/2019-ncov/

prevent- getting-sick/social-distancing.html, last access 20 Dec 2020].
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contacting decreases. As the outbreak slowdowns, safe dis-
tance decreases, because other methods can be adopted to
mitigate virus transmission, for example, face masks. Recent
studies show that social distancing is one of the best tools
to decrease the spread of the COVID-19 (Anderson et al.
2020), (Matrajt and Leung 2020). Figure 2 shows the impact
of social distancing on the spread of the diseases. Fig. 2a,
b shows the number of infected people when they reduce
social exposure by 50 and 75%, respectively. Without social
distancing, 406 people will be infected in 30 days when R
is 2.5.3

The quarantine is another efficient approach to curb the
spread of the disease. A person should be quarantined if
she/he was within 6 feet of someone who has COVID-19 for a
total of 15 minutes or more, drops of sneezing or coughing of
an infected individual falls on the person, had direct physical
contact with the person, provided care at home to someone
who is sick with COVID-19, and shared eating or drinking
utensils. In the quarantine phase, the movement of people
whose disease has not been definitely diagnosed but may
have potentially been exposed to COVID-19 is restricted.
Individuals in quarantine should separate themselves from
the population, stay at home, monitor their health, and follow
health directions. Health experts recommended that quar-
antine should last for 2-14 days because the time between
exposure to the virus and the onset of symptoms is between
2 and 14 days. More recent estimations found that the mean

3 https://www.visualcapitalist.com/the- math-behind-social-
distancing/.
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incubation period was 4.2 days on average; however, it varies
greatly among infected individuals (Sanche et al. 2020).
The infected individuals that have a confirmed medical
diagnosis are isolated from the healthy population to protect
the public from exposure to the virus (Swanson and Jeanes
2007). In isolation, infected people who are at higher risk for
severe illness should be monitored and cared for. There are
various forms of isolation that periodically revise accord-
ing to outbreak time and environmental conditions. Some
popular methods include contact isolation, respiratory iso-
lation, reverse isolation, self-isolation, and strict isolation.
Researchers are working hard to quickly find an effective
treatment for COVID-19. A few methods are currently being
investigated in trials as a potential therapy for COVID-19.
One of the potential methods is convalescent plasma ther-
apy (Ye 2020), in which the plasma from people who have
recovered transfer into the infected ones. The main princi-
ple of this method is based on the fact that people who have
recovered from the disease have antibodies to the virus in
their blood. It is important to notice that isolation is differ-
ent from quarantine. Isolation separates infected individuals
from healthy individuals, while quarantine separates and
restricts the movement of individuals who are exposed to
a virus to check if they become sick. The empirical studies
show that the proportion of individuals with COVID-19 that
need to be isolated and admitted to the intensive care unit
(ICU) was 6% (Li 2020). The mean length of hospitalization
among the recovered individuals often was in the range of
10-13 days (Li 2020; Wang 2020). For asymptomatic cases,
discharging patients from isolation is 10 days after symptom
onset, and for symptomatic cases, discharging from isolation
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Figure 3 shows the impact of adopting the containment
protocols to slow down the spread of COVID-19. With-
out pandemic containment measures, the virus can spread
exponentially (Maier and Brockmann 2020). Following the
mitigation measures, many governments have been able to
control the coronavirus and push effective reproductive num-
ber (R,) to below 1 (Sanche et al. 2020).

2.2 Mathematical model

Anti-coronavirus optimization (ACVO) algorithm is a math-
ematical modeling of the containment measures developed
to mitigate the spread of the COVID-19. The working prin-
ciple of ACVO is shown in Fig. 4. ACVO starts its work with
the initialization of parameters and a population of solutions.
Then, the population is updated using three operators: social
distancing, quarantine, and isolation. If termination condi-
tions are met, the algorithm terminates, and reports the best
solution; otherwise continues the population updating pro-
cess. In modeling the algorithm, the following assumptions
are considered:

— The basis of this algorithm is to keep all members of
society healthy, recover infected people and improve their
health.

— There is no concept of death in this algorithm. No one
dies in this algorithm.

— It is assumed that everyone will be healthy at the end of
the pandemic.

— Most of the parameters are configured according to the
values recommended by WHO and other organizations
involved in disease control.

4 WHO, clinical management of COVID-19 (Interim Guidance)
[https://www.who.int/publications-detail/clinical-management-of-
covid-19, last access 20 December 2020].

Number of days since first case

’ Initialize parameters ‘
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’ Generate initial population ‘

v

’ Find fitness for each person ‘
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Stop condition are met?

| o

’ Make social distance between individuals ‘

'

’ Quarantine the suspected individuals ‘
4‘ Isolate infected individuals ‘

’ Output the fittest person }17

End

Y

Fig.4 Flowchart of the ACVO algorithm

2.2.1 Population initialization

The ACVO in each generation works with a randomly dis-

tributed population P, defined as follows:

P =[P, Py, ..., PN] ey
Each solution P; € P in the population is called a per-

son, which shows a point in a multidimensional space. It

is encoded as a set of real-valued variables and an integer

variable indicating the health status of the person.
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P; = [pi1, pi2s --s PiD> 5] (2)

where p;; consists of a possible value for jth variable, and
s is the health status of the person that is defined as

1 if P; is healthy
s = 4 0 if P;isin quarantine 3)
—1if P; is in isolation

each variable p;; is initialized as follows:

Pij = (Pmaxj — Pminj) X ¥ + Pmin j 4

where r € [0, 1] is a uniformly distributed random number,
Pmin j and pmax j are lower and upper bounds of P; in jth
dimension, respectively.

The individuals pass to a fitness function f to assess their
quality. In ACVO, it is assumed that individuals’ health is
proportionate to their fitness. The fitness function assigns
higher fitness to healthy individuals and less fitness to weak
and infected individuals.

2.2.2 Social distancing

This operator simulates the social distancing policy. Itis obvi-
ous that not all people engage in social distancing at any
given time, but only a proportion of the population follows
this policy. As the disease spreads, the importance of social
distancing becomes more apparent and people are forced to
be more observant. To mathematically model this issue, at
each iteration, m number of people are selected to engage
in social distancing to decrease the inter-personal contacts.
The algorithm attempts to guide the individuals into a safe
and promising area in the solution space. Here, it is assumed
that the best individual of the population is in the promising
and optimal place. So, the algorithm tries to lead popula-
tion toward the best individual. The algorithm updates the
position of each selected person P; as follows:

Pl =Pl 4+ A+ A) ©)

where P/ denotes the position of ith person, and ¢ is the
current iteration. A; controls the local distancing between
P; and any other individual in its vicinity. A, controls the
global distancing between P; and the best individual P*,
which guides P; into a promising position outside the current
area. The objective of A and A, is to move the individual
P; into a promising area in solution space. A is defined as
follows:

A} =l x sdl; x U(=1,1) )

where U(—1,+1) is a uniform random number genera-
tor that generates +1 or -1. The function U(—1, +1) is
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considered to make individual P; move better in different
directions. sdi’ f shows the minimum physical distance that
P; and each other individual P; in the population should be
observed to prevent the infection. sdl.t f is defined as

A—dl if(d; < )

o
sdij = d; if(d}; > A)

where di’j = H P! — P;

(7

dl." indicates the current distance between P; and P;. A is the
pre-defined safe physical distance between people at itera-
tion ¢ according to the mitigation protocols. Since the safe
physical distance may differ in various conditions and from
time to time, A can be customized according to the epidemic
conditions. af i is the infection effect of person P; on P;,
defined as

_<‘i’j>
o =e \' ®)

tj

The larger ozf~ j is, the stronger the infection imposed on
the individual P;. As the algorithm proceeds, the physical
distance between individuals increases; hence, the disease
transmission between individuals decreases, and the outbreak
slowdowns.

A} is defined as follows:

Ab =Bl x V x (P* = P} ©9)

where 'Bit. f is the infection effect of P* on P;. V is the step
size, which adjusts the amount of movement of P; toward P*
with different distance steps. P* is the best solution found
until current iteration. V' is computed by Levy distribution
(Al-Betar et al. 2012) as follows:

_Al)sin(ra/2) 1

14 ,
T sl+2

s>s50>0, 50=0.1

(10)

I’ (%) denotes the standard gamma distribution, where A
is set to be 1.5. The variable s is defined as

U

s= g U~ NO. 8%).

V~N(@,1) 1D

where U and V are Gaussian distributions, N (0, 82) indicates
the normal distribution with mean O and variance 82, and
N (0, 1) is the standard normal distribution.

Bl = ;(”P%”) (12)

1
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The idea behind Eq. (9) is to direct the other individuals
toward the best individual P*, which is the leader in follow-
ing the virus mitigation protocols.

2.2.3 Quarantine

The quarantine operator simulates the actions that each
suspected person with COVID-19 should take during the
quarantine phase. In the ACVO, the people suspected of
having the disease are those who obtain low fitness during
the optimization process. To determine the suspected peo-
ple, first, the individuals are sorted based on their fitness
in ascending order. Here, it is assumed that the problem
is maximization, and the fitness value indicates the health
condition of a person. In minimization problems, the indi-
viduals will be sorted in descending order, because the
infected ones will have low fitness. Then, the ¢ number of
the weakest individuals are selected to form the quarantine
list O = {Pl, Py, .., Py } This list is composed of suspected
individuals that should be quarantined to determine if they
were infected or not. The parameter g at each iteration ¢ is
computed as

g = [ (1= =065m) Ro| (13)

where ¢’ is the effective reproductive number at iteration 7.
It counts the number of suspected individuals that may have
potentially been exposed to diseases. m' is the fraction of the
population that takes part in social distancing to mitigate their
interpersonal contacts to a fraction of A of normal conditions.
Ry is the basic reproductive number. In a population where
everyone is equally susceptible to a disease, R indicates the
average number of secondary infected cases caused by one
primary infected person. At the time of writing this paper, the
Ry of the COVID -19 is estimated to be 1.4-2.5 (Anderson
et al. 2020). If we assume R to be 2.5, and m = 25% of
the population take part in social distancing to decrease their
interpersonal relations to A = 50% of normal contacts, then
q" ~ 3. Under this condition, a single infected person would
generate an average of 3 new secondary infected cases. If
q > 1, the number of infected individuals will increase,
and where g < 1 the number of infected cases decreases.
To successfully eliminate COVID-19 from the population, g
needs to be less than 1. To realize this goal, the algorithm
should increase the value of m, and simultaneously decrease
A as it proceeds. The following equations are proposed to
control the values of m and A:

M=1-—= 14
T (14)

mt:

t
T (15)

where T is the maximum number of generations.

The algorithm randomly selects k; variables from each
suspected person P; € Q, and updates them by Eq. (17). To
select the variables, the algorithm takes as input the solution
dimension D and kj and then generates k; pseudo-random
integers, {r1, r2, ..., I, } using the discrete uniform distribu-
tion on the interval [1, D]. Each random number r; shows
the position of a variable p;; € P; that to be selected and
updated. k1 is calculated as

k1 = frl X D-| (16)

where rq is a small uniform random number. The selected
variables are updated as follows:

pl{,jl = pfk + U(—1,4+1) x rand 17

rand is arandom number in the range [0, 1]. The suspected
individuals should quarantine for ¢4 days and their variables
are updated with Eq. (17). After the end of the quarantine
period, if the fitness of P; is greater than or equal to its fit-
ness on the first day of quarantine, then P; is recognized as
healthy and returns to the population; otherwise, it must be
isolated and hospitalized. The following equation formulates
this issue:

' = u{p else (1%

szwmmmw#zﬁ>
where P is the population, and [ is the isolation list. fiqs and
fiq" show the fitness of individual P; at the first and last day
of quarantine, respectively. g and g, are the iteration number
at the first and last day of the quarantine, respectively. g, is
equal to g5 + g4, where g is the duration of quarantine. g4
is initialized according to the WHO recommendations.

2.2.4 Isolation

The isolation operator simulates the health measures taken
to treat infected individuals and get back them to normal
conditions. In the current version of ACVO, the convalescent
plasma therapy is modeled to treat infected individuals. In
this way, some characteristics of the fittest healthy person
are injected into the infected individuals. To simulate this
process, the algorithm randomly selects k» variables from
each isolated person P; € I, and updates them by Eq. (20).
ko is computed as

ky = [rp x D] (19)

where rp is a uniform random number, regenerated every
iteration. Since the variable r, regenerates at every itera-
tion and varies for each solution P;, the number of variables

@ Springer
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selected from each solution is different from other solu-
tions. The selected variables are updated using the following
equation:

P =5 (vl + 0 x o) 20)
where p} ; shows the jth element of P; at iteration ¢, p}"
shows the jth element of fittest individual P*. y is a scaling
factor, which measures the improvement effect of p’;’ on pl? i
Eq. (20) simply simulates the convalescent plasma therapy
by combining the variables of the best-fit individual P* with
the corresponding components of the infected person P;. In
the early days of hospitalization, more care is taken, while
in the last days, drugs and care are reduced. Therefore, it
makes sense to reduce the coefficient y over isolation time.
y is defined as follows:

v v
=1-— 21
v Iy 2D

v ranges from 1 to 4, where h, is the maximum duration of
isolation. The infected individuals are isolated for K, days.
After the end of the hospitalization period, if the person’s
fitness is greater than or equal to his/her fitness on the first day
of isolation, the person is recognized as healthy and returns
to the population; otherwise, care and hospitalization should
continue. The following equation formulates this issue:

t+1 _ o he qs
iP = (PYU(PIYif(fle = £) .

It =(1yu{p}} else

fih“ is the fitness of individual P; at the last day of hospitaliza-
tion, and fl.q“ is the fitness of P; at the first day of quarantine.
h, is the iteration number at the last day of the isolation. &,
is equal to hg + hg, where hy is the iteration number at the
first day of the isolation. A4 is configured according to the
WHO recommendations.

2.2.5 Selecting the best solution

Until termination conditions are not met three operators—
social distancing, quarantine, and isolation—are applied to
update the population. Finally, an individual that obtained
the best fitness will introduce as the optimal solution for the
problem. The algorithm terminates when the status of all
individuals to be healthy (s=1), or the maximum number of
function evaluations (NFEs) reaches to a predefined value.
Algorithm 1 summarizes the pseudo-code of the ACVO.
In Sect. 3, we will present intuitive reasoning of why the
ACVO algorithm is an efficient optimization algorithm.

@ Springer

Algorithm 1: Pseudo code of the ACVO algorithm

Initialize algorithm’s parameters;
Create an initial population by Eq. (4);
Calculate the fitness of each individual;
while (1 < MaxFES) do
for (i = 1:m) do
for (j = i+1:m) do
if (d!, < A) then
éompute sd;; by Eq. (7);
Calculate local distance by Eq. (6);
Calculate global distance by Eq. (9);
Update position of P; by Eq. (5);
end
end

end
Identity suspected people to form list Q;
for i=1:/Q| do
for j=1:q, do
Update each suspected individual P; € Q by Eq.
(17
Evaluate each individual P;;
Update ¢’ by Eq. (13);
end
if (f1 > £) then
| P = (P ULR )
else
| = {1 upy
end
end
for i=1:|1| do
for (j=1:h,) do
Update each isolated individual P; € I by Eq.
(20);
Evaluate each isolated individual P;;
Update coefficient y by Eq. (21);
end
if (' > £%) then
‘ Pt+l Z{Pf}U{PI-t};

else
| = upy
end
end
Update the current fittest individual P*;
end
return P*;

2.3 A numerical example

The following numerical problem is used to illustrate how the
ACVO algorithm updates the population and finds optimal
solutions.

_ I R A
fO) = f, ) = 4= 2.1 + =5 X +x1x0

+(—4+4xD)x5 —5<x,x <5

This function is called six-hump camel. Its global min-
imum is -1.0316 at (x1, x2) = (0.0898, —0.7126). Fig. 5a
shows the 3D plot of this function. Figure 5b—f shows the
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Fig.5 A numerical example to
illustrate the functioning of
ACVO 6
4
X 2
0
-2
1
t X X fx) st x X5 fx) s
-1.45E+00 1.91E+00  3.76E+01 1 -1.14E+00 1.11E+00 2.28E+00 1
-2.84E+00 1.09E+00  6.82E+01 1 -2.34E+00 -1.59E-02 1.39E+01 1
-2.86E+00 -3.15E-01  7.56E+01 1 -1.48E+00 1.69E+00 2.08E+01 1
nitial -2.00E+00 -3.13E+00 3.53E+02 1 1 -1.45E+00 1.91E+00 3.76E+01 1
-3.71E+00 3.23E+00  9.06E+02 1 -2.84E+00 1.09E+00 6.82E+01 1
-3.17E+00  -3.81E+00 9.65E+02 1 -2.86E+00 -3.15E-01 7.56E+01 1
6.41E-01  422E+00 1.20E+03 1 -2.10E+00 2.86E+00 3.47E+02 0
3.64E+00 4.33E+00 1.80E+03 1 -2.00E+00 4.11E+00 3.53E+02 0
(b) (0
I X X2 Jx) S x X2 fx) s
-1.13E+00 9.81E-01 1.12E+00 1 -8.07E-01  8.31E-01 2.80E-01 1
-1.14E+00 1.11E+00 2.28E+00 1 -1.13E+00 9.81E-01 1.12E+00 1
-1.83E+00 -2.14E-01 2.58E+00 1 -2.00E+00 -2.39E+00 1.16E+02 1
) -2.34E+00 -1.59E-02 1.39E+01 1 3 2.76E+00  2.86E+00 2.98E+02 1
-1.40E+00 -8.03E-01 1.76E+01 0 -1.31E+00 3.81E-01 1.36E+00 0
-1.48E+00 1.62E+00 2.08E+01 O 3.50E+00 -8.03E-01 1.76E+01 0
2.76E+00  2.86E+00 3.47E+02 0 -1.48E+00 -2.15E+00 2.08E+01 0
-2.00E+00 -2.39E+00 3.53E+02 0 -1.14E+00 -7.47E-01 2.28E+00 0
(d) (e)
! X X J&) s Lt x X, fx) S
-7.35E-01 7.69E-01  6.91E-02 1 3.40E-01 -7.47E-01 -8.06E-01 1
-8.07E-01  8.31E-01  2.80E-01 1 -7.35E-01  7.69E-01 6.91E-02 1
-1.13E+00 -2.66E+00 1.12E+00 0 -8.07E-01 ~ 8.31E-01 2.80E-01 1
4 -1.31E+00 -2.90E+00 1.36E+00 0 5 -1.63E+00 -1.34E+00 9.91E+00 1
3.40E-01 -747E-01 2.28E+00 0 -1.13E+00  4.64E+00 1.12E+00 0
-1.29E+00 6.08E-01  2.56E+00 0 -1.29E+00  2.86E+00 2.56E+00 0
-1.63E+00 -2.15E+00 7.24E+01 -1 -1.44E+00 -2.90E+00 2.57E+02 -1
3.50E+00 -6.47E-01 3.47E+02 -1 3.50E+00 -3.37E-01 3.49E+02 -1
® (2

population updating mechanism of ACVO in five generations
on test function. Without loss of generality, for simplicity
and space saving, it is assumed that individuals reduced
their close contact to A = 0.75, and the quarantine and iso-
lation period are set to be 2 and 3 days, respectively. As
shown in Fig. 5, ACVO improves the individuals at each
iteration by social distancing, quarantine, and isolation oper-
ators. Individuals are gradually moving toward the optimal
solution.

3 Experiment and analysis

To evaluate the performance of the proposed ACVO algo-
rithm, seven well-established optimization algorithms are
adopted to make a comparison. These algorithms are WOA
(Mirjalili and Lewis 2016), ABC (Karaboga and Basturk
2007), SADE (Qin and Suganthan 2005), PSOGSA (Mirjalili
and Hashim 2010), TLBO (Rao et al. 2012), HHO (Heidari
etal.2019), and HGSA (Wang et al. 2019). The ABC, TLBO,
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WOA, and HHO are popular swarm intelligence algorithms,
and the SADE and HGSA are evolutionary algorithms that
have been introduced recently and obtained the best results
on numerical optimization problems.

3.1 Benchmark problems

Tables 1 and 2 summarize the characteristics of CEC2018
(Suganthan et al. 2018) and CEC2019 (Price et al. 2018)
test functions. The test suite CEC2018 contains 28 single
objective minimization problems: three unimodal (U), seven
multimodal (M), ten hybrid (H), and eight composition (C)
functions. CEC2019 test set includes 10 single objective opti-
mization functions. In test set CEC2019, functions CEC04 to
CECI10 are shifted and rotated, whereas benchmark functions
CECO01 to CECO3 are not. These problems are more complex,
difficult, and have many local optima. Therefore, they are
suitable to test the algorithms’ accuracy, reliability, conver-
gence rate, and the ability to avoid the local optima. Detailed

information about these problems is given in (Suganthan et al.
2018; Price et al. 2018). To clearly show the scalability of
algorithms, the CEC2018 functions with three dimensions
10, 30, and 50 are considered to assess their performance
on low, medium, and large scale. The search domain for all
CEC2018 test problems is [—100, 10012, where D indicates
the dimension of test problems. In Tables 1, 2, F,;, stands
for the global optimum of benchmark problem.

3.2 Experimental setup

All algorithms are implemented in MATLAB language on a
Laptop machine with 8GB RAM and 2.2GHz Intel(R) Core
(TM) 17 CPU. Following the guidance provided in Suganthan
etal. (2018), the algorithms executed 30 times independently,
each time with a different population to obtain statistical
results for each benchmark function. The maximum num-
ber of fitness function evaluations is initialized as 10, 000 x
D, and the population size of all the algorithms is 50.

Table 1 Characteristics of the

IEEE-CEC 2018 test suite No. Problem Type Fmin
N Shifted and Rotated Bent Cigar Function U 100
b Shifted and Rotated Sum of Different Power Function U 200
f3 Shifted and Rotated Zakharov Function U 300
fa Shifted and Rotated Rosenbrock’s Function M 400
fs Shifted and Rotated Rastrigin’s Function M 500
fe Shifted and Rotated Expanded Scaffer’s F6 Function M 600
f1 Shifted and Rotated Lunacek Bi_Rastrigin Function M 700
I3 Shifted and Rotated Non-Continuous Rastrigin’s Function M 800
fo Shifted and Rotated Levy Function M 900
fio Shifted and Rotated Schwefel’s Function M 1000
fi Hybrid Function 1 (K=3)* H 1100
fi2 Hybrid Function 2 (K=3) H 1200
f13 Hybrid Function 3 (K=3) H 1300
Sf1a Hybrid Function 4 (K=4) H 1400
fis Hybrid Function 5 (K=4) H 1500
f16 Hybrid Function 6 (K=4) H 1600
fi7 Hybrid Function 6 (K=5) H 1700
fis Hybrid Function 6 (K=5) H 1800
f19 Hybrid Function 6 (K=5) H 1900
f0 Hybrid Function 6 (K=6) H 2000
fa Composition Function 1 (K=3) C 2100
fn Composition Function 2 (K=3) C 2200
/23 Composition Function 3 (K=4) C 2300
foa Composition Function 4 (K=4) C 2400
fas Composition Function 5 (K=5) C 2500
fr Composition Function 6 (K=5) C 2600
7 Composition Function 7 (K=6) C 2700
8 Composition Function 8 (K=6) C 2800

*K indicates the number of components in function f;
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IEEIE_ZCE%h;ri%iE::lSC;;f the No. Problem D Search Range Foin
CECO1 Storn’s Chebyshev Polynomial Fitting Problem 9 [—8192, 8192] 1
CECO02 Inverse Hilbert Matrix Problem 16 [—16384, 16384] 1
CEC03 Lennard-Jones Minimum Energy Cluster 18 [—4,4] 1
CEC04 Rastrigin’s Function 10 [—100,100] 1
CECO05 Griewangk’s Function 10 [—100,100] 1
CECO06 Weierstrass Function 10 [—100,100] 1
CECO07 Modified Schwefel’s Function 10 [—100,100] 1
CECO08 Expanded Schaffer’s F6 Function 10 [—100,100] 1
CEC09 Happy Cat Function 10 [—100,100] 1
CEC10 Ackley Function 10 [—100,100] 1

Table 3 Parameter tuning of ACVO and comparison algorithms

Algorithm

Parameters

SADE (Qin and Suganthan 2005)
ABC (Karaboga and Basturk 2007)
PSOGSA (Mirjalili and Hashim 2010)
HHO (Heidari et al. 2019)

WOA (Mirjalili and Lewis 2016)
TLBO (Rao et al. 2012)

HGSA (Wang et al. 2019)

ACVO

p=0.05C=0.1,CR=N(CR,;0.1), F= N(0.5;0.3)
limit = N x D

K € [n,2], wi(t) = 0.5, wy(t) = 1.5, = 20, Gy = 100
B=15,Eye[-1,1]

ael0,2],a € [—1,-2]

T=1,2

K €[n,2],L =100, Gy = 100, w (1) =1 —19/TC, wy(r) = t%/T°
Ry=25,A=2,q4=5,hg =10,r1,r €0,0.5]

Other specific parameters of algorithms are configured fol-
lowing the recommended settings in the original works and
summarized in Table 3.

3.3 Results

Tables 4, 5, and 6, respectively, summarize the statistical
results on 10, 30, and 50D functions. The results are shown
in mean + std format, where mean is the mean cost, and std
is the standard deviation obtained in all simulation runs. In
the tables, the best values obtained by the algorithms on each
function is represented in boldface. Results demonstrate that
ACVO obtains the best results on the most functions due to
its high strength in finding the optimal solutions.

Table 7 shows the final and average ranks of the algo-
rithms computed by the Friedman test (Derrac et al. 2011)
according to the mean cost values. The first rank belongs
to the ACVO algorithm in all dimensions. The second rank
belongs to SADE in 10 and 30D functions, and HGSA in
50D functions. The third rank belongs to HHO, HGSA, and
SADE, respectively, in 10, 30, and 50D functions. It can
be observed that the ACVO is a competitive algorithm for
numerical optimization problems with different scale.

To provide more accurate conclusions, Table 8 shows a
multi-problem based pairwise statistical analysis that is com-

puted by the Wilcoxon signed-rank test (Derrac et al. 2011)
at a significance level of « = 0.05. The computation of p-
values is performed according to the mean values generated
through 30 runs. The results show that the ACVO performs
the best among counterpart algorithms on test problems with
three dimensions 10, 30 and 50. This highlights that ACVO
can efficiently optimize the test problems with diverse dimen-
sions. The p-values obtained in D= 30 and 50 show that
ACVO is an effective method in optimizing medium and
large dimension problems.

Figure 6 shows the algorithms’ aggregate performance
on test problems. The horizontal axis shows the kth rank
of algorithms. The vertical axis represents the number of
functions on which the algorithm gained the kth rank based on
the Wilcoxon signed-rank test. As shown in Fig 6, the ACVO
algorithm is the top-1 performer among most functions. This
shows that the solution quality of the ACVO is better than its
counterparts. The second rank belongs to SADE on 10 and
30D functions, and HGSA on 50D functions. The third rank
on 10, 30 and 50D functions, respectively, belongs to HHO,
HGSA and SADE.

Tables 9 and 10 list the unadjusted and adjusted p-values
(Derrac et al. 2011) obtained by counterpart algorithms in
comparison with the ACVO on benchmarks. The compu-
tation is performed according to the mean costvalues. The
results demonstrate that ACVO performs well on most func-
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Table 7 Comparison of the algorithms in terms of the average and final ranks computed by Friedman test

Algorithm 10D 30D 50D
Average rank Final rank Average rank Final rank Average rank Final rank

SADE (Qin and Suganthan 2005) 3.589 2 3.828 2 3.304 3
ABC (Karaboga and Basturk 2007) 5.321 7 4.638 5 6.142 8
PSOGSA (Mirjalili and Hashim 2010) 4.893 6 6.327 8 5.357 5
HHO (Heidari et al. 2019) 4.321 3 4.603 4 4.625 4
WOA (Mirjalili and Lewis 2016) 4.839 5 5172 7 5.875 7
TLBO (Rao et al. 2012) 6.107 8 4.724 6 5.518 6
HGSA (Wang et al. 2019) 4.393 4 3.948 3 3.143 2
ACVO 2.536 1 2.759 1 2.036 1

Bold values indicate the best results generated by the algorithms

Table 8 Statistical results obtained by the Wilcoxon signed rank test between ACVO and comparison algorithms in D= 10, 30 and 50 dimensions,

and o = 0.05
ACVO vs. D =10 D =30 D =50
T+ T— p-value T+ T— p-value T+ T— p-value

SADE (Qin and Suganthan 2005) 241 84 3.49E—-02 299 107 2.85E—02 297 109 3.24E-02
ABC (Karaboga and Basturk 2007) 357 49 4.40E—04 319.5 86.5 8.04E—03 396 10 1.00E—05
PSOGSA (Mirjalili and Hashim 2010) 348 30 1.40E—04 421.5 13.5 1.00E—05 388 18 1.00E—05
TLBO (Rao et al. 2012) 356 50 5.00E—04 349.5 56.5 8.40E—04 387 19 1.00E—05
WOA (Mirjalili and Lewis 2016) 335 43 4.40E—04 362 44 3.00E—04 381 25 1.00E—05
HHO (Heidari et al. 2019) 279 99 3.08E—02 330.5 55.5 3.74E—03 261 90 3.00E-02
HGSA (Wang et al. 2019) 231 69 2.09Ev02 292.5 113.5 4.14E-02 227 73 2.78E—02

Number of functions

Number of functions

Number of functions

Top kth

(a)

Fig.6 The aggregate performance of algorithms on test problems with a 10, b 30, and ¢ 50 dimensions

tions, matching or exceeding the best result reported by its
counterparts.

The contrast estimation based on medians for algorithms
over test problems is summarized in Table 11. The objective
of contrast estimation is to show the global performance of
the algorithms by computing the magnitudes of the differ-
ences among their performances (Derrac et al. 2011). This
test shows how well one algorithm compared to another one.
The results highlight the ACVO as the best performing algo-

@ Springer

rithm. ACVO obtains low error rates compared with other
algorithms.

Figure 8 represents the convergence behavior of compar-
ison algorithms on test functions f4, f10, f22, and fag as
representatives from four groups of unimodal, multimodal,
hybrid and composite functions. Figure 7 represents the 3D
plot of these functions. As shown in Fig. 8, on f4 function, the
ACVO and SADE algorithms outperformed counterparts in
terms of average best-so-far solution and convergence speed.
On f19, ACVO, SADE, and HGSA obtained similar perfor-
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mance; however, the ACVO algorithm is a little better. The
ACVO outperformed other ones on f>> function. The ACVO,
SADE, and HHO algorithms performed better than others on
f28 function. Overall, ACVO shows a steady convergence
behavior, matching or exceeding the best results obtained by
other algorithms. It is not trapped in local optima due to its
efficient exploration and exploitation of solution space.

Figure 9 shows the distribution of solutions obtained by
comparison algorithms on f1, f10, f22, and f>g functions
with 10, 30, and 50 dimensions. From Fig. 9c, f, i, and 1,
we observe that ACVO obtains the best solutions with min-
imum deviation from the global solution. Other algorithms
generate solutions with larger distribution due to their incon-
sistent convergence behavior. This justifies that the ACVO
is an efficient method to optimize high dimension problems
compared with other algorithms. In Fig. 9a, b, d, and e, the
SADE algorithm obtains the best results indicating that it an
efficient method to optimize low and medium scale unimodal
and multimodal problems. The HGSA obtains the best results
on medium scale hybrid and composite functions f>, and
f2g. This is shown in Fig. 9h, k. For 30 dimension functions,
ACVO obtains moderate results; however, its performance is
close to HGSA and SADE algorithms. Except for function
f10, ACVO finds the best solutions on 10 dimension functions
compared with other algorithms. This indicates that ACVO is
a powerful method in optimizing low scale functions. Over-
all, we can conclude that the ACVO algorithm is an efficient
method for solving problems with different dimensions. It is
important to note that the algorithms should be tested on a
variety of functions to comment more confidently on their
performance in finding optimal solutions.

To further analyze the search efficiency of the ACVO
algorithm, it is evaluated on recent CEC2019 test functions
(Price et al. 2018). The statistical results are summarized in
Table 12. The results confirm that the ACVO obtains better
performance than its counterparts except in CEC03, CECO08,
and CEC10. The Mean results generated for the CECO03,
CECO08, and CECI10 functions where the ACVO is not the
ideal is still competitive to the other algorithms. An investi-
gation on the Std values shows that the values generated by
ACVO is comparable to other algorithms.

3.4 Scalability analysis

To show the search performance of the proposed ACVO algo-
rithm and counterpart algorithms in solving high dimension
problems, we test the algorithms on benchmark functions of
different sizes. We performed a series of tests on 100, 500,
and 1000 dimension scalable unimodal and multimodal prob-
lems. Table 13 shows the characteristics of used unimodal
and multimodal functions.

Tables 14, 15, and 16 summarize the statistical results
generated by algorithms. The results confirm that ACVO

@ Springer

generates better results compared with its counterparts. The
proposed ACVO algorithm generates the best mean results in
8, 5, and 9 test problems in 100, 500, and 1000 dimensions,
respectively. If we consider the test problems that ACVO gen-
erates the similar mean results compared with counterparts,
the success numbers will increase. The mean results of the
problems where ACVO is not the best performing algorithm
are competitive to the best performance. This issue proves
the superior scalability of the ACVO algorithm

3.5 ACVO for engineering problems

To investigate the performance of ACVO in solving engi-
neering applications, it is evaluated on seven real-world
engineering problems. These problems are drawn from
CEC2011 competition (Das and Suganthan 2012) and related
literature (Emami 2020, 2021), and include the frequency-
modulated sound waves (FMSW), static economic load
dispatch (SELD), transmission network expansion planning
(TNEP), spread spectrum radar poly phase code design (SSR-
PCD), speed reducer design (SRD), welded beam design
(WBD), and rolling element bearing design (REBD). The
characteristics of FMSW, SELD, TNEP, and SSRPCD prob-
lems are summarized in Table 17.

3.5.1 Frequency-modulated sound waves (FMSW)

The objective of FMSW is to estimate a sound that has
the minimum difference with a target sound. FMSW is a
multimodal problem with six dimensions that need to be opti-
mized to minimize the difference between the target sound
and the estimated sound. The mathematical formulation and
constraints of FMSW are formulated as follows (Das and
Suganthan 2012):

100
minimize f(X) = Y (y(t) — yo(1))?
=0

where (23)
v (t) = ay.sin(wy.t.0+ay. sin(wy.t.0 + a3. sin(wsz.t.0)))
vg(t) = 1.sin(5..0 + 1.5.sin(4.8.1.0 + 2.5in(4.9.1.0)))

where 6 = 27/100, y, is the target sound, and y, is the
generated sound by the algorithm.

3.5.2 Spread spectrum radar polyphase code design
(SSRPCD)

The objective of SSRPCD is to create a radar system using
the polyphase codes (Wang et al. 2019). SSRPCD is a nonlin-
ear problem with many local optima. It falls in the category
of continuous min-max global optimization problems and
defined as follows Das and Suganthan (2012):
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Fig.7 Plots of f1, fi0, f22, and fog test problems

Erg Jf(x) = max{g; (x), ..., ¢pom (¥)}
X={(1,....,xp) eR0O<x; <27, j=1,2,...,n}
subject to
n J
$i1(x) =D cos( Y x), i=1,.,n (24)
j=i k=|2i—j—1]+1
J

¢2i(x) = 0.5+ i cos( Y, Xk,

j=i+1 k=|2i—j|+1
Gmti(x) = —¢i(x), i=1,...,m

where 7 is the number of variables and m = 2n — 1.

3.5.3 Transmission network expansion planning (TNEP)

An optimal design of TNEP is essential for planning the
power systems efficiently and economically. The objective of
the TNEP is to cope with the problem of finding a set of trans-
mission lines that must be built in a way that no overloads
are generated during the planning and achieve the minimum

@ Springer
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cost of the expansion plan. The TNEP without security con-
straints is formulated as follows Das and Suganthan (2012):

minimize f = Y g + Wi Y. (abs(fi) — fi) + Walng — i)
lef2 ol
subject to

Sf+g=d (25)
fi = +n)(A6) =0, for I €1,2,..nl

Ifil <0 +np)fi, for 1e1,2,..nl

0<m=mn

nl: total number of lines in the circuit

§2: set of all right-of-ways

n;: the maximum number of circuits that can be added in /th
right-of-way

f: the maximum allowed real power flow in the circuit in /th
right-of-way

f1: total real power flow by the circuit in /th right-of-way
ol: the set of overloaded lines
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Fig.8 Convergence plots of ACVO and counterpart algorithms on fi, f10, f22, and fag test functions with 10, 30 and 50 dimensions
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Fig. 9 The box-and-whisker plots of solutions reported by ACVO and counterpart algorithms on fi, f10, f22, and fag test functions with 10, 30,
and 50 dimensions
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Table 12 Results obtained by comparison algorithms on CEC2019 test functions

Algorithm

CECO1

CECO02

CECO03

CEC04

CECO05

SADE (Qin and
Suganthan 2005)

ABC (Karaboga and
Basturk 2007)

PSOGSA (Mirjalili and
Hashim 2010)

TLBO (Rao et al. 2012)

WOA (Mirjalili and
Lewis 2016)

HHO (Heidari et al.
2019)

HGSA (Wang et al.
2019)

ACVO

5.93E+07 £ 9.44E+05

6.79E+08 £ 4.47E+06

5.93E+07 £ 9.44E+05

6.79E+09 £ 1.44E+09
7.58E+05 + 2.87E+05

8.82E+08 & 8.06E+07

2.97E+05 £ 5.33E+04

2.17E+05 + 3.20E+05

1.74E+01 £ 7.41E-03

3.27E+02 £ 2.22E+02

2.13E+01 % 3.25E-03

6.91E+02 + 1.57E+02
1.80E+01 &£ 3.74E-01

1.83E+01 =+ 5.34E-05

1.74E+01 % 1.09E-02

1.73E+01 + 2.51E-15

1.27E+01 % 1.24E-05

1.27E+01 + 1.31E-05

1.27E+01 + 3.28E-05

1.27E+01 + 5.03E-05
1.27E+01 £ 4.19E-04

1.27E+01 £ 4.56E-11

1.27E+01 £ 3.77E-07

1.27E+01 = 0.00E+00

2.19E+02 + 2.75E+01

8.28E+01 £ 5.60E+00

2.19E+02 £ 2.75E+01

3.47E+02 £ 1.85E+02
1.60E+04 + 9.37E+03

1.38E+02 + 1.45E+01

2.16E+02 + 6.03E+01

3.95E+01 + 4.14E+00

1.83E+00 £ 1.93E-02

1.46E+00 =+ 1.09E-01

1.83E+00 = 1.93E-02

1.99E+00 + 5.84E-02
5.36E+00 £ 8.22E-01

1.61E+00 =+ 2.33E-01

1.80E+00 £ 5.33E-03

1.12E+00 + 4.75E-02

Algorithm

CEC06

CECO07

CECO08

CEC09

CEC10

SADE (Qin and
Suganthan 2005)

ABC (Karaboga and
Basturk 2007)

PSOGSA (Mirjalili and
Hashim 2010)

TLBO (Rao et al. 2012)

WOA (Mirjalili and
Lewis 2016)

HHO (Heidari et al.
2019)

HGSA (Wang et al.
2019)

ACVO

1.02E+01 £+ 3.51E-01

8.00E+00 + 5.61E-01

1.02E+01 £ 3.51E-01

1.00E+01 =+ 8.34E-02
1.12E+01 % 2.34E-01

6.54E+00 & 9.51E-01

1.04E+01 % 7.75E-01

1.00E+00 + 1.05E-13

2.48E+02 £+ 2.15E+02

1.96E+02 + 1.69E+02

2.51E+02 + 1.17E+02

5.96E+02 + 3.15E+01
1.11E+03 £ 1.20E+02

3.44E+02 £ 1.64E+02

4.45E+02 £ 1.02E+02

1.90E+02 + 1.35E+02

4.65E+00 £+ 3.41E-01

6.32E+00 = 3.45E-01

4.65E+00 £ 3.41E-01

4.50E+00 + 2.59E-01
6.44E+00 + 4.33E-01

5.36E+00 £ 1.76E-01

4.92E+00 + 3.98E-01

5.24E+00 £+ 7.25E-01

5.31E+00 £ 6.83E-01

4.40E+00 =+ 1.77E+00

5.48E+00 £ 9.53E-01

4.68E+01 + 1.45E+01
2.14E+01 £ 2.66E+02

4.91E+00 % 6.70E-01

4.67E+00 % 2.23E-01

2.34E+00 £ 3.43E-05

2.03E+01 £+ 5.23E-02

1.89E+01 + 1.82E-01

2.14E+01 £ 2.54E-02

2.05E+01 % 3.35E-02
3.94E+00 £ 4.02E-01

2.01E+01 £ 8.40E-02

2.03E+01 % 6.38E-02

2.00E+01 + 3.68E-02

Bold values indicate the best results generated by the algorithms

A6;: phase angle difference in the /th right-of-way

n?: the number of circuits in the base case

n;: the number of circuits added in /th right-of-way
cy: cost of line added in the /th right-of-way
S: branch-node incidence transposed matrix of the power

system

f: the vector with elements f;
y;: susceptance of the circuit that can be added to /th right-

of-way

Table 13 Characteristics of scalable unimodal and multimodal test

3.5.4 Static economic load dispatch (SELD)

SELD aims to minimize the fuel cost of generating units
through finding the optimal thermal generation schedule pro-
vided that four constraints are satisfied. The constraints are
prohibited operating zones, generator operation, ramp rate
limits, and load demand. SELD is a non-differentiable, com-

functions

No. Problem Search range Fin
Fi Sphere [—100 100] 0

P Sum Squares [—10, 10] 0

F3 Quartic [—1.28, 1.28] 0

Fy Dixon Price [—10, 10] 0

Fs Zakharov [—5.12,5.12] 0

Fe Rosenbrock [—30, 30] 0

F; Rastrigin [—5.125.12] 0

Fg Griewank [—600, 600] 0

Fo Shubert [—10, 10] —186.7309
Fio Penalized [—50, 50] 0

plex, and nonlinear problem with multiple local minimums.
This problem mathematically is expressed as follows Das
and Suganthan (2012):

@ Springer
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Ng
minimize [ = Y a; Pl.2 +b; P; +c;
i=1

subject to
Ng
Z P; = Pp + Pr, (26)
i=1
f)imll’l S P[ S Pimax
max(P™", UR; — P) < P; < min(P"™, Pl.tf1 — DR))

— Pz ~ Pz

Pi<P andP; > P

Table 18 summarizes the best, mean, worst, and standard
deviation of objective function values reported by ACVO
and counterparts over 30 independent runs. In simulations,
the algorithms independently execute 30 times, and the sta-
tistical results are reported. At each run, the initial population
is formed using uniform random initialization within the pre-
determined search boundary of each test problem. In terms
of best values, the ACVO performed better or had a similar
performance to other algorithms in four problems. From the
mean and std values reported by ACVO, one can conclude
that it has a steady behavior in finding optimal solutions. The
worst values found by ACVO are close to the mean values.
This issue justifies that the ACVO can avoid local optimum
points. The results given in Table 18 show that the ACVO can
be applied to various practical and engineering problems.

3.5.5 Speed reducer design (SRD)

The speed reducer design problem is a popular benchmark
in the structural optimization field. A graphical view of a
speed reducer is shown in Fig. 10. The goal is to design a
gearbox with the minimum weight, which is located between
the propeller and engine in a light aircraft. In designing a
speed reducer, four constraints should be considered that are
stresses in the shafts, surface stress, bending stress of the
gear teeth, and the transverse deflection of the shafts (Askari
et al. 2020). The following equations show the mathematical
definition of the problem.

minimize  f(x) = 0.7854x1x3 (3. 3333x3 + 14.9334x3 — 43.0934)—
1.508x1 (x2+x3)+7.4777 (x3 +x3) +0.7854 (x4x2 + x5x7)

subjectto g1(X) = 1 —1<0. g(X) = fg -1<0,
1.93x; 193
g3(x) = _;42 —120, g =% — 120,

\/( 7451, ) +169x10°—1<0

85(x) = lle T10x2x3

27

2
000 = s ) 1575 001 20

g71(x) = "m -1<0, gsx)==2-1<0

go(x) = ‘17 +.19‘0 g10(x) = ‘5‘64“" -1<0
L B

gnx) =-—=-=—=-1<0

where 26 <x1 <3.6,07<x<08,17 <x3 <28,
73 <x4 <83,73 <x5<83,29<x5 <39,

50<x7<55

As shown in Table 19, the results show that ACVO obtains
the best results. With a slight difference from ACVO, HHO
attains the second rank. HGSA obtains the third rank, and the
last rank belongs to ABC. The results suggest that ACVO is
a proper choice to design the speed reducer.

3.5.6 Welded beam design (WBD)

As shown in Fig. 11, the objective of the EBD is to decrease
the manufacturing cost considering constraints on bending
stress (o), buckling load (P,), shear stress (7), deflection (),
and side constraints. The problem is formulated as follows:

minimize f(?) = 1.10471x12xz + 0.04811x3x4(14.0 4+ x2)
subject to ¢ (?) = t(?) — Tmax < 0,

(X)) =0(F) — omax <0,

e3(X) = 8(X) — max <0,

ea(F)=x1—x4 <0,

es(X) =P — P(¥) <0,

c6(X) =0.125—x; <0,

¢7(¥) = 1.10471x% + 0.0811x3x4(14.0 + x2) — 5.0 < 0

[h,1,t,b] where 0.1 <x; <2,
0.1 <x <10,
0.1 <x3 <10,
0.l <x4<2

(28)

= [x1, x2, x3, x4] =

(29)

where {c1, 3, c3, ¢4, c5, cg, c7} are the constraints of the
WBD problem, b is the width of the beam, ¢ is the height
of the beam, [ is the length of the weld, and / is the thickness
of weld. The objective is to find optimal values for variables
{h,l,t,b}. The other variables are defined below:

1(F) = [P+ 20+ (),

U= = M P(L+%),

J= 2{fx1xz[’if T+ (E)2),

o(F) =553 )—g:ij (30)
P.(T) = M(1 —u [E)

P = 6000(b,L = 14m,5max =0.25in,
E =30 x 10psi, G = 12 x 10°psi,
Tmax = 13600psi, omax = 30000 psi

Table 20 reports the results generated by the comparison
algorithms on the WBD problem. The results prove that the

ACVO attains better results compared with counterpart algo-
rithms.

3.5.7 Rolling element bearing design (REBD)

A graphical representation of a REBD problem is shown in
Fig. 12. This maximization problem consists of 9 design con-

@ Springer



5018

H. Emami

Table 17 Characteristics of

EMSW. SELD, TNEP, and Problem Dimension Constraints Bounds
SSRPCD engineering problems FMSW 6 Bound constrained [-6.4, 6.35]
SSRPCD 20 Bound constrained [0, 2]
TNEP 7 Equality and inequality constraints [0, 15]
SELD 13 Inequality constraints [0, 680; 0, 360; 0, 360; 60, 180;

60, 180; 60, 180; 60, 180; 60,
180; 60, 180; 40, 120; 40,
120; 55, 1205 55, 120]

straints and 10 geometric variables to handle the geometric-
based and assembly restrictions. The mathematical definition
of the problem is as follows (Emami 2021):

maximize
Cq= f.2**D}? if(D < 25.4mm)
Cq =3.647f.Z*3D}* if(D > 25.4mm)

subject to

_ ol _
81(z) = 2sin- "(Dy/ D) Z+1=0,
83(2) = Kpmax(D —d) — 2Dy > 0,
¢5(2) = D — 0.5(D +d) > 0,

3.6 Computational complexity

The time complexity of the ACVO depends on three main
steps: initialization, fitness calculation, and updating of indi-

82(z) =2Dp — Kpmin(D —d) > 0,

g4(z) =§By — Dp <0,
86(z) = (0.5+¢)(D +d) — Dy = 0,

87(@) =0.5(D — Dy, — Dp) —eDp >0 gg(z) = fi > 0.515,

89(z) = fo = 0.515

where

I+y Jo2fi—1)

1.72 041)1073 "
fi = 37.91[1 Froa(iz) P (g™

3
y0‘3(1—y)]’39 2 0.41
o e

(3D

x=[{(D—=2)/2=3(T/HY +{D/2—T/4— Dp)* — {d/2+ T /4)?]

y=2{(D—d)/2=3(T/H}{(D/d) — T /A — Dy}
b0 =2]] —cos_l(i)

y =1 fi=4 fo=4.T=D—d—2D,

D =160,d = 90

By =30,r; =r, =11.0330.5(D +d) < D,, <0.6(D +d),
0.15(D—-d) <D, <045(D —d),4 < Z <50,0.515 < fiandf, < 0.6,

0.4 < Kpmin < 05,
0.6 < Kpmax <0.7,03<e¢<04,002<e<0.1,
0.6 <£<0.85

The results generated by ACVO and counterpart algo-
rithms on REBD problems are summarized in Table 21. The
results prove that the ACVO shows the best design and attains
better performances compared with other algorithms. HGSA
takes the second rank, and TLBO obtains the third rank in
terms of C,; parameter.

@ Springer

viduals. To be very precise, the time complexity of each phase
in ACVO is computed as follows:

The parameter initialization phase needs the time complexity
o(1).

The population initialization phase needs O (N), where N is
the population size.

Computing the fitness of all individuals costs O ().
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Xs

Fig. 10 A graphical view of a speed reducer (Askari et al. 2020)

Controlling the boundary of individuals’ variables costs
O(n).
The time complexity of social distancing phase is O (n2).
Quarantine phase needs the time complexity O (|Q|), where
QI < N.
Isolation phase is of order O (|I]), where |I| < N.

The overall time complexity of ACVO in each generation
in the worst case is as follows:

Xa

Fig. 11 Welded beam design problem (Emami 2020)

O(1) + O(N)+ O(N) + O(N) + O(N*) + 0(I1Q)) + O(lI))
= 0(1) +30(N) + O(N*) + 0(1Q]) + O(I)) ~ O(N?)
(32)

Thus, the overall time complexity of ACVOis O (N 2). The
time complexity of SADE, ABC, PSOGSA, TLBO, WOA,
HHO, and HGSA is O (N?) in the worst case. The time com-
plexity of ACVO is the same as its counterparts. This shows

Table 19 Comparison of results generated by algorithms on speed reducer design problem

Algorithm Problem parameters Optimal cost
X1 X2 X3 X4 X5 X6 X7
SADE (Qin and Suganthan 2005) 3.5000 0.7 17 7.3000 8.300000 3.350215 5.286859 3007.4368
ABC (Karaboga and Basturk 2007) 3.5000 0.7 17 8.3000 8.300000 3.352207 5.286859 3016.7705
PSOGSA (Mirjalili and Hashim 2010) 3.5000 0.7 17 8.3000 7.715381 3.352210 5.286659 3003.8110
TLBO (Rao et al. 2012) 3.5000 0.7 17 7.3000 8.015279 3.350215 5.286758 3001.1214
WOA (Mirjalili and Lewis 2016) 3.5005 0.7 17 7.3000 7.766471 3.352840 5.286887 2996.6212
HHO (Heidari et al. 2019) 3.5000 0.7 17 7.3065 7.715439 3.350227 5.286655 2994.5342
HGSA (Wang et al. 2019) 3.5000 0.7 17 7.3000 7.721984 3.350215 5.286657 2994.6192
ACVO 3.5000 0.7 17 7.3000 7.715335 3.350215 5.286655 2994.4718

Table 20 Results obtained by the algorithms on welded beam design problem

Algorithm Problem parameters Optimum cost
h l t b
SaDE (Qin and Suganthan 2005) 3.06E-01 3.02E+00 6.33E+00 4.19E-01 2.48E+00
ABC (Karaboga and Basturk 2007) 2.79E-01 2.74E+00 7.79E+00 2.79E-01 1.99E+00
PSOGSA (Mirjalili and Hashim 2010) 2.40E-01 3.09E+00 8.36E+00 2.40E-01 1.85E+00
TLBO (Rao et al. 2012) 2.28E-01 3.20E+00 8.57E+00 2.28E-01 1.81E+00
WOA (Mirjalili and Lewis 2016) 2.04E-01 3.43E+00 9.25E+00 2.05E-01 1.74E+00
HHO (Heidari et al. 2019) 2.04E-01 3.53E+00 9.03E+00 2.06E-01 1.73E+00
HGSA (Wang et al. 2019) 2.11E-01 3.40E+00 8.90E+00 2.12E-01 1.75E+00
ACVO 2.05E-01 3.48E+00 9.04E+00 2.06E-01 1.73E+00
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Fig. 12 Rolling element bearing problem (Emami 2021)

that the ACVO is computationally efficient in comparison
with other algorithms.

We performed a test on 1000 dimensions scalable prob-
lems Fp-Fio to show the execution time consumed by
algorithms to reach the global optimum. As shown in Fig. 13,
itis clear that ACVO consumes less execution time than other
algorithms in most benchmark functions.

4 Conclusion

In this paper, a novel anti-coronavirus optimization (ACVO)
algorithm is introduced to solve single-objective optimiza-
tion problems. This algorithm simulates the protocols rec-
ommended by the world health organization to prevent the
spreading of coronavirus. It consists of three main opera-
tors including social distancing, quarantine, and isolation.
These operators hopefully guide the individuals in the pop-
ulation to converge to the global optimum point in solution
space. ACVO is relatively easy to implement and customize
for various real-world applications. The effectiveness of the
proposed algorithm is compared with several state-of-the-art
methods on a set of 28 test functions, which covers a wide
variety of different problems. The results demonstrate that
ACVO obtains outstanding performance in solving single-
objective optimization problems. There remain several works
to further improve the performance of ACVO. New opera-
tors such as vaccination can be embedded in the algorithm
to enhance its search power. A multi-objective version of the
algorithm should be investigated for solving problems with
multiple objectives. The parameters of the algorithm need
to be further analyzed to be tuned with optimal values. The

Table 21 Comparison of results for rolling element bearing design problem

TLBO WOA HGSA HHO ACVO

PSOGSA

ABC

SADE

Algorithms

125.7095901
21.42329966
11.00010435

0.515

125.305428

125.7080059
21.42330054
10.99997761

0.515

125.1007341
21.42330001
10.95119042

0.515

125.6830297
21.42330091
10.99797096

0.515

125.0085325
21.11263796
11.06226678

0.515

127.393727

125

Dm

21.41961507
10.96902407

0.515

20.37891402

21.42330094
10.94309732

0.515

Dy,

11.55679004

0.515

0.515

0.515088575

04

0.515
0.5

0.515
0.4

0.7

0.515

0.519599291
0.404876429

0.53271438

0.515
0.5

Jo

0.483526982

0.454384155

0.491963843
0.647640879

0.3

K pmin

0.618218965

0.646640076

0.3
0.1

0.7

0.624561334

0.603250134

0.69522976

0.3

K pmax

0.300275339

0.02

0.300304057

0.314216016

0.02
0.6

0.300036133

0.02

0.300000011

0.1

0.027109778

0.6

0.020595704

0.023301906

0.647881738
85533.4103

0.70453363
85336.7584

0.607771799
85521.743

0.703712695

83650.9164

0.645102744
80900.6816

0.626576428
85220.6809

85532.7227

85265.167

Cy

Bold values indicate the best results generated by the algorithms
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Fig.13 Comparison of the execution time of algorithms in 1000 dimen-
sions unimodal and multimodal functions

algorithm should be applied to various engineering problems
to assess its disadvantages and potentials.
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