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Summary
Background Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity in people with and
without diabetes, but it is underdiagnosed, posing challenges for research and clinical management. Here, we
determine if natural language processing (NLP) of data in the electronic health record (EHR) could identify
undiagnosed patients with hepatic steatosis based on pathology and radiology reports.

Methods A rule-based NLP algorithm was built using a Linguamatics literature text mining tool to search 2.15 million
pathology report and 2.7 million imaging reports in the Penn Medicine EHR from November 2014, through
December 2020, for evidence of hepatic steatosis. For quality control, two independent physicians manually
reviewed randomly chosen biopsy and imaging reports (n = 353, PPV 99.7%).

Findings After exclusion of individuals with other causes of hepatic steatosis, 3007 patients with biopsy-proven
NAFLD and 42,083 patients with imaging-proven NAFLD were identified. Interestingly, elevated ALT was not a
sensitive predictor of the presence of steatosis, and only half of the biopsied patients with steatosis ever received
an ICD diagnosis code for the presence of NAFLD/NASH. There was a robust association for PNPLA3 and
TM6SF2 risk alleles and steatosis identified by NLP. We identified 234 disorders that were significantly over- or
underrepresented in all subjects with steatosis and identified changes in serum markers (e.g., GGT) associated
with presence of steatosis.

Interpretation This study demonstrates clear feasibility of NLP-based approaches to identify patients whose steatosis
was indicated in imaging and pathology reports within a large healthcare system and uncovers undercoding of
NAFLD in the general population. Identification of patients at risk could link them to improved care and outcomes.

Funding The study was funded by US and German funding sources that did provide financial support only and had no
influence or control over the research process.
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Research in context

Evidence before this study
Non-alcoholic fatty liver disease (NAFLD) is a major cause of
fibrotic liver disease and cirrhosis, but a large proportion of
NAFLD cases are undiagnosed. Can Natural Language
Processing (NLP) be used to identify undiagnosed patients
with hepatic steatosis in electronic health records (EHR) by
applying it to imaging and liver biopsy reports?

Added value of this study
Using an NLP approach to liver biopsy pathology reports and
imaging studies, this study identified 3007 patients with
biopsy-proven steatosis and 42,083 with steatosis present on
imaging from the EHR, of whom only ∼35% had a diagnosis

code in their chart for NAFLD or related conditions. PheWAS
and LabWAS analyses found 234 phenotypic traits
significantly over- or underrepresented in subjects with
steatosis and nine serum markers associated with presence of
steatosis. Genetic association analysis revealed robust
associations with genetic variants known to be associated
with steatosis.

Implications of all the available evidence
This study demonstrates the feasibility of NLP at a
population-based scale in identifying undiagnosed patients
with steatosis.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is a silent
epidemic that is estimated to affect nearly two billion
people worldwide1 and is a major cause of fibrotic liver
disease and cirrhosis.2 Hepatic steatosis, the first stage
in NAFLD, is defined as hepatic lipid droplet accumu-
lation in more than 5% of the hepatocytes in the absence
of other known inducers of steatosis (such as chronic
viral hepatitis and chronic alcohol abuse).3 Obesity is the
most important risk factor for the development of
NAFLD, but genetics also play a major role.4 Identifying
NAFLD has clinical value because it is a prevalent con-
dition that can lead to serious liver problems if left un-
treated. Early identification can lead to important
lifestyle changes and clinical follow up that may prevent
progression.5

While hepatic steatosis is common, estimated to be
present in approximately 25% of the US population,6

less than a quarter of these individuals progress to
non-alcoholic steatohepatitis (NASH),7 the inflamma-
tory, progressive form of NAFLD,8 and even fewer to
liver fibrosis, cirrhosis and hepatocellular carcinoma.9

Elevated blood alanine aminotransferase (ALT) is often
used as a proxy for NAFLD but normal levels of ALT do
not exclude the presence of steatosis or even NASH.4,10

Imaging modalities can identify hepatic steatosis,
often as an incidental finding. The gold standard for
NAFLD and NASH diagnosis is liver biopsy.11 Overall,
NAFLD is underdiagnosed and there are no systematic
screening protocols.12–14 Despite the high prevalence of
hepatic steatosis and NAFLD, research on their natural
history using electronic health record (EHR) data has
been limited due to the requirement of long-term follow
up as well as the underdiagnosis of these conditions.

EHR systems include structured data (such as ICD
codes) and unstructured data (clinical documentation
such as biopsy reports, and imaging reports). EHRs are
emerging as a powerful data source for clinical and
translational research studies.15 However, phenotypes of
interest need to be accurately defined.16 In the last few
years, artificial intelligence has shown increasing
promise when applied to the prediction of medical
outcomes.17,18 Natural language processing (NLP) is a
computational method that can be used to break down
sentences and apply linguistic rules to interpret the
meaning of a sentence fragment. The large-scale iden-
tification of patients with NAFLD by applying NLP to
unstructured text in the EHR is one potential method to
address the gap between using the EHR for patient care
and leveraging it for translational research.

In this study, we applied NLP to unstructured data in
a large academic health system EHR to identify patients
with hepatic steatosis and NAFLD that could not be
identified by a search of structured diagnosis codes. We
used NLP to search 2.15 million pathology reports and
2.67 million radiology reports and identified a large
number of patients with biopsy-proven NAFLD/NASH
or imaging-identified steatosis who did not have ICD
codes for these conditions in their EHR reports. We
performed a number of analyses that demonstrated
excellent accuracy of the NLP approach. Our study
demonstrates that the rapid and accurate identification
of steatosis by NLP from unstructured text is a potential
method to bridge the gap between this incidental
finding with high prevalence in the general population
and the low detection of NAFLD using ICD-9/10 codes
in EHR systems.
Methods
Study setting, population and data processing
The study was conducted at the University of Pennsyl-
vania and used the data resources of the Penn Medicine
EHR and the Penn Medicine Biobank. Protocols for this
study were approved by the Institutional Review Board
(IRB) at Penn Medicine (#813913). The requirement for
explicit informed consent was waived due to the retro-
spective nature and the use of de-identified data.
Throughout the study, all data were anonymized to
ensure confidentiality.
www.thelancet.com Vol 62 August, 2023
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We extracted 2.15 million pathology reports and 2.67
million imaging reports from Penn Medicine EHRs
starting November 27, 2014, through December 31,
2020. Of those images 250,329 liver-related key-words in
200,132 images that included the liver were found. We
applied NLP (described below) to create mutually
exclusive datasets of imaging-identified steatosis cases,
biopsy-proven steatosis/NAFLD cases, and PMBB con-
trols. If multiple biopsies/images were available on one
patient, we chose the most recent biopsy or image for
analysis. If a patient had both a biopsy and a liver image,
they were only included in the biopsy group.

The Penn Medicine Biobank (PMBB) is a resource
that provides controlled access to genetic information,
clinical data and biospecimens from consented partici-
pants from the Penn Medicine Health System. We
identified a group of control patients who are free of
NAFLD from PMBB as patients without imaging-
identified steatosis or biopsy-proven steatosis and all
liver diseases (ICD10: B18, K7 and F10; ICD9: 155.0,
197.7, 570–573). In total 21,195 controls were identified.

Patients with other causes and overlapping causes of
hepatic steatosis were excluded from our study. Specif-
ically, any patient with one of the following diagnoses
(on the biopsy/imaging report or as ICD code), was
excluded: viral hepatitis, hemochromatosis, primary
biliary cholangitis, autoimmune hepatitis, secondary
biliary cirrhosis, Wilson’s disease, alcohol use disorder,
alcoholic liver disease, alcoholic hepatitis and/or ascites,
alcoholic fibrosis and sclerosis of liver, alcoholic
cirrhosis of liver and/or ascites, alcoholic hepatic failure
and/or coma, and unspecified alcoholic liver disease,
biopsies/imaging after liver transplantation. Moreover,
we excluded patients with age <18 at the time of biopsy
or imaging and those with BMI <12 or >200 kg/m2

since these BMI values were likely typographical errors.
A total of 15,667 (31%) unique imaging cases as well as
3550 (54%) unique biopsy cases were excluded.

For our identified NAFLD cohort, we extracted their
longitudinal data from Penn Medicine EHRs, including
23.7 million ICD-10 codes, 3.1 million laboratory values
and more than 1.2 million BMI measurements. BMI
and serum values of available biomarkers strictly within
183 days prior to or after the biopsy were evaluated. We
excluded lab observations which were negative, or
>10xULN or <0.1xLLN.

Natural language processing using Linguamatics
I2E
We used Linguamatics, an NLP software, to identify
patients with biopsy-proven steatosis as well as imaging
reports mentioning hepatic steatosis. The query was
built using Linguamatics’ I2E, a literature text mining
tool based on natural language processing and linguistic
analytics19 applies logic concepts to build a rules-based
NLP algorithm. The Linguamatics algorithm is particu-
larly good at detecting negations, which is a common
www.thelancet.com Vol 62 August, 2023
problem when using NLP. I2E uses linguistic patterns,
grammatical rules, and pre-built domain-specific ontol-
ogies to identify and extract entities, relationships, and
associations within the text.

The algorithm was developed as follows:

1. Query formulation: The I2E platform offers an
intuitive, visual query-building interface, making it
easy for users to design complex queries. The tool
was adapted to our specific problem by creating a
custom query to identify key terms related to
NAFLD diagnosis and steatosis severity. This query
was formulated based on expert knowledge, litera-
ture review, and a list of predefined terms relevant
to liver disease. In summary, 12 keywords/phrases
were used to identify biopsy-proven NAFLD cases,
five keywords for NASH cases, and ten keywords/
phrases for imaging-identified steatosis cases
(Supplementary eTables S1–S3). The NLP tool used
several key terms considered diagnostic for
NAFLD/NASH, including “hepatic steatosis”, “fatty
liver” and “non-alcoholic steatohepatitis".

2. Text processing: I2E processes the input text data by
tokenizing it and parsing the sentences to deter-
mine their grammatical structure.

3. Information extraction: Using the formulated
queries, I2E searches the processed text and extracts
the relevant information. This process allows the
platform to transform unstructured data into
structured, actionable insights.

4. Manual check for a subset (n = 200) and algorithm
re-evaluation

5. Multiple rounds of 1–4 until the final algorithm was
developed, when no patient in the subset (n = 200)
was falsely identified

The sample size in this study was determined based
on the availability of data within the Penn Medicine
EHR system, as it serves as a representative example of a
tertiary, academic healthcare system.

Quality control: manual validation by two qualified
physicians
After manual review (described in results), we scored
the presence or absence of ICD-9/10 codes for NAFLD/
NASH (571.8/9, K76.0, K75.8) in patients found to have
steatosis by biopsy or imaging, as well as the elevation of
ALT (>35 U/L for males, >25 U/L for females, if sex was
not available/unclear we used >35U/L, 0.63% of stea-
tosis on biopsy cohort have unclear sex, 0.09% of stea-
tosis in imaging cohort have unclear sex, no unclear sex
exist in controls).20

Severity of steatosis
Hepatic steatosis is defined by the presence of greater
than 5% of lipid droplets in the liver, and NAFLD is
defined by hepatic steatosis in the absence of other
3

www.thelancet.com/digital-health


Articles

4

acute or chronic liver disease and the absence of
excessive alcohol use in the two years prior to diag-
nosis.20 The NAFLD Activity (NAS) score was rarely
used in the pathology reports in our EHR, but the
use increased with time. NASH is defined as NAFLD
with the presence of predominantly macrovesicular
steatosis along with hepatocyte ballooning and
inflammation (equaling NAS ≥ 5, Supplementary
eTable S4).

Borderline NASH is defined as steatosis with fibrosis
or inflammation equaling NAS < 5, therefore not fully
reaching the cutoff for NASH (e.g., presence of only
fibrosis or only ballooning). Therefore, biopsy-proven
steatosis included all cases of biopsy-proven NAFLD,
borderline NASH and biopsy-proven NASH. To deter-
mine the severity of fibrosis in our patient cohort, we
employed two widely-accepted and non-invasive fibrosis
scores: the Fibrosis-4 (FIB-4) index and the Aspartate
Aminotransferase-to-Platelet Ratio Index (APRI). The
FIB-4 index incorporates patient age, AST levels, alanine
aminotransferase (ALT) levels, and platelet counts into
its calculation, while the APRI is calculated using AST
levels and platelet counts.21,22

Statistical analysis
After normality testing by Kolmogorov–Smirnov test, we
summarized continuous baseline variables by median
and interquartile range (IQR), and applied Mann–
Whitney U test for between-group comparison. All cat-
egorical variables were displayed as counts and relative
frequencies (%), and the Chi-square or Fisher’s exact
test was performed for between-group comparison
depending on whether all cell counts were above 5. We
additionally reported s-values,23–25 which convert p-
values into a more interpretable measure of evidence
against the null hypothesis. The analyses were per-
formed using R software version 4.0.2 (R Foundation
for Statistical Computing; Vienna, Austria, all Tables)
and SPSS Statistics version 26 (IBM; Armonk, NY,
USA). All tests were two-sided at significance level 0.05.
Fig. 1A and the graphical abstract was created with
biorender.com.

Genetic analysis
To validate the imaging-identified steatosis cohort, we
leveraged available genomic data in PMBB. Among the
44,076 participants in PMBB with available genomic
data, there were 2840 cases of imaging-identified stea-
tosis cohort (6.75% of all imaging steatosis cases)
(Supplementary eTable S5). For each PMBB participant,
whole exome sequences (WES) were generated by the
Regeneron Genetics Center from DNA extracted from
stored buffy coats. These sequences were mapped to
GRCh37. We removed samples with low exome
sequencing coverage (less than 75% of targeted bases
achieving 20 × coverage), high missingness (greater
than 5% of targeted bases), high heterozygosity,
dissimilar reported and genetically determined sex, ge-
netic evidence of sample duplication, and cryptic relat-
edness (closer than third-degree relatives). We
performed ancestry-specific NAFLD analyses in the
PMBB using WES data that had been filtered using a
series of quality control filters known as Goldilocks fil-
ter.26 First, we used a causal directed acyclic graph to
identify a minimally sufficient set of confounders and
evaluated the linearity of the confounders for usage in
our logistic regression models (Supplementary
eFigs. S2 and S3). The variance explained by the
different PCs can be found in Supplementary eFig. S4.
We tested all single nucleotide variants in the exome for
association with NAFLD through logistic regression
assuming an additive model and excluded synonymous
variants and variants with less than ten African and/or
European ancestry carriers. Covariates in the regression
model were age, sex, BMI, diabetes and the first five
principal components of genetic ancestry for African-
specific and the first ten principal components for
European-specific analyses. We aggregated summary
statistics from the African and European ancestry-
specific analyses and performed a multi-ancestry meta-
analysis using the inverse variance method for pooling.
The R package “meta” was used to perform all fixed
effects meta-analyses. Variants were considered exome-
wide significant if they passed our FDR-adjusted p-value
threshold (p < 1.53 × 10−6). All association analyses were
performed using plink 2.0.

PheWAS
To validate the biopsy- and imaging-identified steatosis
cases we performed a phenome-wide association study
(PheWAS). The coding for clinical diagnoses in our
data set followed the WHO’s International Classifica-
tion of Diseases (ICD) coding systems. All of the
21,195 PMBB control patients who had exome-wide
sequencing data available, all of the 3007 biopsy stea-
tosis patients, and 99.7% (41,972) imaging steatosis
patients had at least one ICD-10 code available. For
each patient, ICD-9/10 codes from the EHR diagnoses
throughout the study period were collated with dupli-
cates removed. ICD-9 codes were translated into ICD-
10 codes. We converted the ICD-10 codes to 1847
associated Phe-codes using the R software PheWAS
package, a method to bin similar ICD-codes into single
coherent phenotypes. Only phenotypes with at least ten
cases per group were evaluated. Only Phecodes that
were diagnosed prior to the date of imaging/biopsy/
study inclusion were analyzed. R package “PheWAS”
was used for the analyses.

Role of funding
The research described in this study received support
from various funding sources, which played a crucial
role in enabling the execution and completion of the
research. The funding sources mentioned at the end of
www.thelancet.com Vol 62 August, 2023
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Fig. 1: (A) Flowchart of the selection process of steatotic individuals using NLP and controls. We applied an NLP algorithm to 2.67 million
imaging reports and, after applying several exclusions, we identified 42,083 discrete patients in whom the presence of hepatic steatosis was
specifically reported by the radiologist. We also searched 2.15 million pathology reports to find 34,437 liver biopsy reports. After applying
exclusions for other known causes of steatosis and liver disease, we identified a total of 3007 discrete patients with biopsy-proven NAFLD.
Among these patients, 1210 patients met criteria for NASH, 456 patients had borderline NASH, and 1341 patients had steatosis (B) Genetic
analysis of steatosis on imaging patients compared to controls. Manhattan plot of genome-wide markers for imaging-identified steatosis (2840
cases and 21,195 controls). Logistic regression analysis performed ancestry specific EWASs in the PMBB using WES data that had been filtered
using a series of quality control filters known as the Goldilocks filter assuming an additive genetic model, adjusted for age, sex, BMI, and genetic
ancestry. Results are plotted as –log10 p values on the y-axis by position in chromosome (x-axis) (NCBI build 37).

Articles
the manuscript had no involvement in the study design,
the collection, analysis, and interpretation of data, the
writing of the report, or in the decision to submit
the paper for publication. The authors declare that the
funding agencies provided financial support only and
had no influence or control over the research process or
the content of the manuscript.
Results
Patients with imaging-identified steatosis and
biopsy-proven NAFLD/NASH identified using NLP
We applied an NLP algorithm to 2.67 million imaging
reports involving 1.51 million patients and, after
applying several exclusions (see Methods). The different
imaging modalities evaluated are highlighted in
Supplementary eTable S6. Prior to applying exclusion
www.thelancet.com Vol 62 August, 2023
criteria, we identified 6557 (22% of all evaluated distinct
cases) biopsy-proven steatosis cases and 50,104 (3% of
all evaluated images, 25% of all distinct cases where
images were showing the liver) imaging-identified
steatosis cases. Finally, we identified 42,083 discrete
patients in whom the presence of hepatic steatosis was
specifically reported by the radiologist (Fig. 1). Only 34%
of these individuals had an ICD code for NAFLD/NASH
in the EHR (Table 1). We also searched 2.15 million
pathology reports to find 34,437 liver biopsy reports
involving 30,215 patients and applied a similar NLP al-
gorithm (Fig. 1). We ranked the top features that
contributed to the identification of cases by the number
of times they were found. The most influential features,
in order of importance, were among both biopsy and
imaging cases “(hepatic) steatosis” as well as “steatohe-
patitis”. After applying exclusions for other known
5
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Fig. 1: Continued.
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causes of steatosis and liver disease (see Methods), we
identified a total of 3007 discrete patients with biopsy-
proven NAFLD. Among these patients, 1210 patients
met criteria for NASH, 456 patients had borderline
NASH, and 1341 patients had steatosis (Fig. 1).
Remarkably, only 53% of these individuals had an ICD
code for NAFLD or NASH in the EHR. We generated a
control group of 21,195 patients drawn from the same
EHR who had no evidence of steatosis on imaging and
no liver-related ICD codes (Fig. 1).

Quality control
Linguamatics can export the sentence where the
searched phrases are located. One physician screened
these sentences for most identified patients. For
quality control, we randomly selected 100 biopsy re-
ports demonstrating steatosis, 80 imaging reports
evidencing steatosis, and 20 controls (patients devoid
of steatosis), composed of ten patients with imaging
and ten with biopsy. These biopsy and imaging reports
were evaluated by another pair of physicians. The
manual review confirmed that the NLP algorithm
adeptly identified every participant, accurately classi-
fying them according to the findings of this manual
review. To augment the precision in pinpointing po-
tential misclassifications, we randomly selected pa-
tients from a subset of our data set that had the
greatest likelihood of being misclassified—those
devoid of a NAFLD/NASH ICD10 diagnosis and with
no history of elevated ALT. This selected sub-cohort
comprised 46 additional patients with biopsy-
validated steatosis, ten randomly chosen patients with
biopsy-confirmed absence of steatosis, 79 patients
with imaging-validated steatosis, and 18 patients with
imaging-confirmed nonexistence of steatosis. Two
additional physicians conducted a comprehensive chart
review for these patients. Once again, the manual re-
view identified all participants to be correctly identified
into their subsequent group by our algorithm. Only in
a singular case, a recent imaging report was copied and
therefore duplicated within the biopsy report’s results.
While the term ’steatosis’ was correctly flagged by the
algorithm as present in the results section, it was
missing from the biopsy report. However, an in-depth
chart review confirmed this patient had clinical evi-
dence of NAFLD, validating the accuracy of the algo-
rithm. Still, in total among the 353 evaluated biopsy
reports sensitivity was 100%, and specificity 98%.
www.thelancet.com Vol 62 August, 2023
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NAFLD on biopsy Steatosis in Imaging pc steatosis
biopsy vs.
steatosis
imaging

sd steatosis
biopsy vs.
steatosis
imaging

Controls p steatosis
biopsy vs.
controls

s steatosis
biopsy vs.
controls

p steatosis
imaging vs.
controls

s steatosis
imaging vs.
controls

(n = 3007) (n = 42,083) (n = 21,195)

Age at image/biopsy/inclusion 55 (43–64) 57 (45–67) <0.001 40.4 57 (41–68) <0.001 19.4 <0.001 14.3

(years), median (IQR)

Male, n (%) 1366 (45.7) 19,570 (46.5) 0.39 1.4 10,375 (49) <0.001 10.0 <0.001 26.4

White, n (%) 2080 (74.1) 29,694 (70.6) 0.0001 13.1 14,296 (69.9) <0.001 17.6 0.04 4.5

Hispanic Latino, n (%) 105 (3.7) 2399 (5.7) <0.001 16.2 511 (2.4) <0.001 14.5 <0.001 254.1

Black, n (%) 379 (13.5) 7952 (18.9) <0.001 39.8 5020 (24.5) <0.001 125.3 <0.001 194.2

BMI (kg/m2), median (IQR) 30 (26–37) 32 (27–37) <0.001 40.5 28 (25–33) <0.001 144.9 0 Inf

Diabetes (ICD), n (%) 893 (29.7) 12,969 (30.8) 0.21 2.3 4209 (20) <0.001 114.1 <0.001 622.3

Serum markers

ALT (U/L), median (IQR) 35 (20–75) 24 (16–40) <0.001 295.8 18 (13–25) 0 Inf 0 Inf

ALT > ULN, n (% of patients with
elevated ALT)

1219 (57.5) 11,151 (37.92) <0.001 233.3 1666 (14.39) 0 Inf 0 Inf

AST (U/L), median (IQR) 32 (21–62) 22 (17–32) <0.001 502 19 (16–24) 0 Inf <0.001 705.9

GGT (U/L), median (IQR) 78 (41–163) 50 (25.9–128) <0.001 21.4 24 (15–49) <0.001 69.6 <0.001 47.5

ALP (U/L), median (IQR) 82 (64–117.5) 73 (59–93) <0.001 149.9 65 (52–81) <0.001 524.6 <0.001 759.5

Albumin (g/dl), median (IQR) 4.0 (3.6–4.3) 4.2 (3.8–4.4) <0.001 67.7 4.1 (3.9–4.4) <0.001 79.2 0.586 0.8

Triglycerides (mg/dl), median (IQR) 126 (88–178) 133 (94–191) <0.001 12.0 100 (71–145) <0.001 92.1 <0.001 906.8

Cholesterol (mg/dl), median (IQR) 172 (144.3–205.8) 175 (146–205) 0.488 1.0 174 (146–204) 0.977 0.03 0.089 3.5

LDL (mg/dl), median (IQR) 97.2 (76–123) 96 (71–123) 0.099 3.3 98 (75–123) 0.866 0.2 <0.001 11.6

HDL (mg/dl), median (IQR) 44 (36–53) 45 (37–54) 0.005 7.6 49 (40–60) <0.001 81.2 <0.001 295.4

HbA1C (%), median (IQR) 6.0 (5.5–6.8) 6.2 (5.7-7.2) <0.001 28.6 5.8 (5.4–6.7) 0.005 7.8 <0.001 108.1

WBC ( × 109/L), median (IQR) 7.4 (5.5–9.9) 7.5 (5.9-9.9) <0.001 12.2 6.9 (5.6–8.7) <0.001 26.1 <0.001 459.9

FIB-4, median (IQR) 1.45 (0.86–2.76) 1.09 (0.72–1.7) <0.001 199.7

FIB-4, n (%)

F0 (<1.3) 872 (43.86) 17,021 (60.91) <0.001 313.5

F2/3 (1.3–2.67) 593 (29.83) 7771 (27.81)

Probable F4 (>2.67) 523 (26.31) 3151 (11.28)

APRI, median (IQR) 0.40 (0.23–1.01) 0.24 (0.17–0.39) <0.001 506.2

ICD

NAFLD ICD9/10 code (%) 1603 (53.3) 14,035 (33.4) <0.001 360.1 0 (0) 0 Inf 0 Inf

NASH ICD10 codea (%) 684 (22.7) 1831 (4.4) 0 Inf 0 (0) 0 Inf <0.001 689.2

NAFLD or NASH ICD9/10 codeb (%) 1710 (56.9) 14,490 (34.4) <0.001 446.9 0 (0) 0 Inf 0 Inf

BMI, body mass index; ALT, alanine transaminase; AST, aspartate transaminase; AP, alkaline phosphatase; GGT, gamma-glutamyl transferase; HbA1c, hemoglobin A1c, LDL, low-density lipoprotein; HDL, high-density lipoprotein; INR, international
rationalized ratio; WBC, white blood cell; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis. aK57.8. bK67.0 and 571.8/9. cp; p-value obtained from Mann–Whitney U test for continuous variables and Pearson’s chi-
squared test for categorical variables. All continuous variables were non-normally distributed. ds; s-value obtained from formula: s-value = −log2 (p-value).

Table 1: Baseline characteristics of biopsy-proven NAFLD and imaging-identified steatosis cases identified by NLP and controls.
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Table 1 shows the comparison of selected clinical
and laboratory data for the three groups (imaging-
identified steatosis, biopsy-proven NAFLD/NASH, and
controls). Compared with the controls, both steatosis/
NAFLD groups had higher median BMIs (Body Mass
Index) and higher prevalence of diabetes. We examined
laboratory values drawn within one year of the liver bi-
opsy or the imaging study showing steatosis (Table 1).
Among the three groups, biopsy-proven NAFLD pa-
tients had the highest median levels of ALT, AST, AP
and GGT, with controls the lowest (Table 1). Interest-
ingly, while the median ALT of patients with imaging-
identified steatosis of 24 U/L (IQR) was significantly
higher than the median ALT in the control group of 18
U/L, it was still within the normal range. As expected
APRI and FIB-4 scores were the highest in biopsy
proven steatosis (Table 1). A total of 58% of patients
with biopsy-proven steatosis and 38% of patients with
imaging-identified steatosis had median ALT levels
above the upper limit of the normal range (ULN) within
one year of the biopsy/image. Only 53% of patients with
biopsy-proven NAFLD and 33% of patients with
imaging-identified steatosis had ever been diagnosed
with either a NAFLD or NASH ICD-10 code (Table 1).
Differences in medication prescription and the
completeness of the data for serum markers are re-
ported in Supplementary eTables S7–S9.

Genetic association analysis of imaging-identified
steatosis
We used a genetic approach to help validate the identifi-
cation of steatosis by NLP of radiology reports. Among the
patients identified with imaging-identified steatosis, 2840
(6.75%) had genomic data available. We performed a
WES (whole exome sequencing) analysis comparing
these 2840 imaging-identified steatosis patients to the
21,195 controls, all of whom had genomic data available
(Fig. 1). Our QQ plot shows that there is no p-value
inflation or deflation, and the divergent tail of the plot
represents significant associations for the variants that are
in linkage disequilibrium with a causal polymorphism for
our phenotype steatosis (Supplementary eFig. S1). Thirty-
two single nucleotide variants (SNVs) were significant
(Fig. 1), including 14 SNVs that have reported to be
associated with NAFLD (Supplementary eTable S10).
Consistent with previous literature,23–25 a robust associa-
tion was detected for the PNPLA3 gene cluster (Fig. 1 and
Supplementary eTable S10). At the PNPLA3-SAMM50
region, thirteen SNVs, including rs738409, rs738408, and
rs3747207, showed the strongest association with stea-
tosis (best SNP rs738408 p < 10−23, Fig. 1).

PheWAS reveals both expected and unexpected
associations
PheWAS was employed to scrutinize the underlying
causes associated with imaging and biopsy observations
of steatosis. We compared imaging-identified steatosis
patients to controls and biopsy-proven NAFLD patients
to controls (Fig. 2 and Supplementary eTables S11 and
S12). 832 phecodes were significantly more common
in patients with imaging-identified steatosis compared
with controls (Fig. 2 and Supplementary eTable S11).
These included a number of liver-related phecodes, as
well as obesity, diabetes, and hypertension related di-
agnoses. In patients with biopsy-proven NAFLD, 275
phecodes were significantly more common compared
with controls (Fig. 2 and Supplementary eTable S12).
These included a number of expected phecodes such as
cholelithiasis and ascites, as well as some unexpected
associations such as systemic inflammatory response
syndrome (SIRS) and neutropenia. The Venn diagram
of significantly associated phecodes showed substantial
overlap, with 234 phecodes over-represented in both the
imaging-steatosis and biopsy-NAFLD cohorts compared
with controls (Fig. 2). For both cohorts, the presence of
abnormal serum enzymes preceding the identification
of steatosis by imaging or biopsy was one of the most
strongly associated phecodes (Odds ratio (OR) 11 as well
as 143, respectively). We also confirmed an increased
number of metabolic, gastrointestinal, and vascular
comorbidities in both steatosis groups compared with
controls.

Liver histology findings in biopsy-proven NAFLD
comparing NASH to steatosis
Among the biopsy-proven NAFLD patients, we gro-
uped them based on the histology findings into definite
NASH, borderline NASH, and steatosis groups
(Table 2). All reports that mentioned steatosis/steato-
hepatitis related key words at least once were included
in this study, but qualitative or quantitative measure-
ments of the amount of steatosis were rare. Steatosis
grade was mentioned only in 272 patients with steatosis,
and most patients were steatosis grade 1. Patients with
NASH had significantly more severe steatosis, both
quantitatively (29.5%) and qualitatively (9.8%),
compared with the patients with steatosis, with border-
line NASH intermediate for steatosis (Table 2). The vast
majority of the steatosis in all groups was macro-
vesicular in the qualitative assessment.

By definition, patients with NASH had steatohepati-
tis that was absent in steatosis patients. However,
grading of steatohepatitis in NASH was rarely present in
the reports (Supplementary eTable S9, 55.4% missing).
Patients with NASH also tended to have more fibrosis in
all grades compared to patients with steatosis (Table 2,
p-value 0.046, s-value 4.5). The specific fibrosis grade
was rarely specified in histology reports (Supplementary
eTable S9, 91.1% missing).

Comparison of clinical data in patients with biopsy-
proven NASH to biopsy-proven steatosis
While hepatic steatosis is very common, only a fraction
of patients with steatosis progress to NASH and fibrotic
www.thelancet.com Vol 62 August, 2023
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liver disease. One of the major questions regarding
NAFLD is what factors determine who progresses from
steatosis to NASH and cirrhosis. To better understand
this question, we compared patients with biopsy-proven
NASH to those with biopsy-proven steatosis
(Supplementary eTable S8). The two groups were
similar in age, sex, and BMI. Patients with NASH were
significantly more likely to have T2DM (36% vs 27%, s-
value 20.8.) and had higher levels of HbA1c, glucose,
and insulin. Patients with NASH also had higher ALT
and AST levels compared to those with steatosis
(Supplementary eTable S8). Triglycerides were signifi-
cantly higher and HDL-C significantly lower in NASH
patients compared to steatosis (s-values 14.8 and 11.2
for Triglycerides and HDL-C). Patients with borderline
NASH had intermediate ALT and AST levels
(Supplementary eTable S8). FIB-4 scores and APRI
scores differed between the different biopsy-proven
steatosis groups. NASH showed the highest APRI and
FIB-4 scores, followed by borderline NASH and then
steatosis (Supplementary eTable S8).
Discussion
In this study we demonstrate that NLP applied to im-
aging reports in an academic health system identified a
large number (>42,000) patients with hepatic steatosis
and NLP applied to liver biopsy pathology reports
identified >3000 patients with NAFLD/NASH, all with
extensive longitudinal EHR data available. Less than
40% of these patients had ICD codes for NAFLD or
NASH. By contrast, a recent publication from the NASH
Clinical Research Network reported on a median lon-
gitudinal follow-up of four years in 1773 patients with
biopsy-proven NAFLD.27 Applying NLP, the algorithm
led to the identification of steatosis in 22% of all
Fig. 2: Comorbidity PheWAS analysis for patients with (A) steatosis on
analysis only includes diagnoses that were diagnosed prior to the imag
comparing their occurrence. Highlighted are associations results with p-val
that are over-/underrepresented. (C) Venn Diagram showing overlap of p
and imaging identified steatosis.
evaluated biopsy cases and 25% of all evaluated images
that included the liver. These numbers are lower than
the estimated prevalence of NAFLD of 30% of the
general population.28 We hypothesize that these differ-
ences arise due to the underdiagnosis of NAFLD and the
low percentage of all imaging studies across the EHR
that capture the liver parenchyma. Still, our study shows
how large-scale data mining can dramatically enhance
the identification of patients with hepatic steatosis
compared to using ICD codes. Our research highlights
the undercoding of NAFLD ICD codes in the general
population, which leads to less care received by the
affected patients, and our results point toward an
effective approach for case identification to enhance the
use of the EHR to better understand the factors that
contribute to disease progression. However, validation
in other large-scale cohorts is needed and we acknowl-
edge that a proportion of individuals with NAFLD were
missed using the NLP method. Our findings high-
lighting the undercoding of steatosis certainly shed light
on the need for improvements in disease coding prac-
tices. By using NLP algorithms to identify patients with
steatosis from EHRs, we hope to demonstrate the po-
tential for automated systems to assist in improving
diagnostic accuracy and disease coding. While the
implementation of such improvements would require
further steps, including policy changes and training, our
study contributes to the body of evidence supporting
this direction.

The widespread availability of EHRs in healthcare
systems provides an excellent opportunity for clinical
research and advanced patient care through clinical de-
cision support.29 Nevertheless, proper use of the large-
scale data in EHRs relies on the objective and prompt
identification of patients with the disease of interest.30

Integrating data extracted by NLP into a phenotyping
algorithm has various advantages. First, NLP can pro-
vide data that is not available in structured EHR data-
bases or in contexts where the accuracy of the structured
data is low. For example, before 2012, no specific ICD-9
code existed for NASH. Secondly, NLP can systemati-
cally connect multiple terms to a concept. NLP differs
from a “find” command because the algorithm can be
trained to recognize that the terms “steatosis,”
“NAFLD,” and “NAS-Score” are all related to the
concept of hepatic steatosis.

Here we have identified the remarkable underuse of
steatosis diagnosis codes, even after a radiologist has
reported an incidental finding of steatosis on imaging or
a pathologist has reported steatosis or NAFLD on a
imaging and (B) biopsy proven steatosis compared to controls. This
ing. Manhattan plot of adjusted −log10 (p-values) for all PheCodes
ues < 3 × 10−4. Upwards/downwards pointing trials refer to PheCodes
hecodes that were diagnosed prior to the imaging/biopsy for biopsy
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Biopsy characteristics NASH
(n = 1210)

Borderline
NASH
(n = 456)

Steatosis pa steatosis
vs NASH

sb steatosis
vs NASH

p Borderline
NASH vs NASH

s Borderline
NASH vs NASH

p Steatosis vs
Borderline
NASH

s Steatosis vs
Borderline
NASH

(n = 1341)

Steatosis assessment

Quantitative Steatosis grade, n (%)

1 162 (47.2) 70 (79.5) 238 (87.5) <0.001 78.7 <0.001 21.9 0.17 2.6

2 80 (23.3) 11 (12.5) 19 (7)

3 101 (29.5) 7 (8) 15 (5.5)

Qualitative Steatosis assessment

Macrovesicular, n (%) 324 (26.8) 112 (24.6) 294 (21.9) 0.005 7.7 0.39 1.4 0.27 1.9

Microvesicular, n (%) 21 (1.7) 8 (1.8) 24 (1.8) 1 <0.001 1 <0.001 1 <0.001

Degree of steatosis, n (%)

mild 417 (55.9) 166 (76.5) 484 (84.4) <0.001 89.4 <0.001 22.9 0.03 5.1

moderate 256 (34.3) 45 (20.7) 76 (13.3)

severe 73 (9.8) 6 (2.8) 13 (2.3)

Steatohepatitis assessment

NLP identified key word: Steatohepatitis,
n (%)

1210 (100) 0 (0) 0 (0)

Degree of steatohepatitis, n (%)

mild 402 (74.4) 0 (0) 0 (0)

moderate 122 (22.6) 0 (0) 0 (0)

severe 16 (3) 0 (0) 0 (0)

NLP identified key word: Ballooning, n (%) 193 (16) 67 (14.7) 0 (0) 0.58 0.8

Fibrosis grade, n (%)

1 57 (52.8) 5 (62.5) 16 (47.1) 0.046 4.5 0.39 1.4 1 0

2 23 (21.3) 3 (37.5) 13 (38.2)

3 26 (24.1) 0 (0) 3 (8.8)

4 2 (1.8) 0 (0) 2 (5.9)

NLP identified key word: Fibrosis, n (%) 146 (12.1) 398 (87.3) 0 (0) <0.001 617.3

NLP identified key word: Cirrhosis, n (%) 220 (18.2) 0 (0) 0 (0)

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis. ap; p-value obtained from Pearson’s chi-squared test for categorical variables; with exception for fibrosis grade, the p-value
obtained from Fisher’s exact test, as more than 20% of the cells have frequency <5. All variables were non-normally distributed. bs; s-value obtained from formula: s-value = −log2 (p-value).

Table 2: Biopsy Characteristics of patients with biopsy-proven NASH, Borderline NASH, and steatosis.

Articles
biopsy. Surprisingly, even biopsy-proven NASH was
reflected in diagnosis codes less than half of the time.
This is clinically important, because individuals with
steatosis may warrant further assessment of disease
severity, monitoring for disease progression, and benefit
from medical optimization of metabolic risk factors.31

Various approaches to identifying NAFLD patients
using EHRs have been described and the majority of
NLP cohorts have comprised a few hundred radiolog-
ical/histologically confirmed NAFLD patients.17,32,33 An
earlier study used NLP to identify NAFLD within the
EHR through radiology reports combined with ICD
codes and found that the combination had a PPV (89%)
and NPV (56%), which was superior to a method uti-
lizing ICD coding alone or a model including AST/ALT
serum measurements.34 Some studies used deep
learning to predict steatosis on images or histopathology
images.35,36 Still, other NLP approaches counted only the
occurrences of pre-defined terms related to NAFLD
without considering crucial issues in NLP, including
negation, context, spelling, and acronyms.37,38 Nonethe-
less, our data support the findings that steatosis-related
ICD codes are vastly underutilized in the EHR.
www.thelancet.com Vol 62 August, 2023
Interestingly, sex-specific ALT was only elevated in
∼40% of NAFLD patients, identifying NLP as clearly
superior for unique phenotype algorithms. This is
especially important in the context of elevated ALT as a
proxy for steatosis, as this approach would miss 50% of
the steatosis population. A recent paper estimated a 25%
rate of missed diagnosis by using ALT as a proxy based
on diagnosed NAFLD patients,39 but our results suggest
this is an underestimate. The same is true for GGT
levels; while GGT is a consistent marker for NAFLD,
elevations can be attributed to metabolic phenotypes in
NAFLD patients and are also seen in unrelated liver
conditions such as cholestatic and alcohol-induced liver
disease.40 Other recent studies showed abnormal GGT
and ALT in only 46% of image-confirmed NAFLD pa-
tients,41 demonstrating the superiority of NLP as sup-
ported by our study. Furthermore, we saw a difference
between biopsy-proven and imaging-identified patients.
This could be due to the severity of liver disease, since
patients undergoing imaging for a non-liver indication
were more likely to have an incidental finding of stea-
tosis, whereas patients with liver biopsies were more
likely to have medical complications that justified an
11
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invasive procedure. This is also reflected in the differ-
ences in the baseline demographics of the two groups.
These findings support the use of NLP of the EHR,
especially of imaging and pathology reports, as a valu-
able tool for the early detection of steatosis to initiate
accurate patient care.

We found that NLP of imaging reports in identifying
hepatic steatosis is highly accurate. Furthermore, we
used available genomic data and confirmed associations
with well-established genetic variants associated with
steatosis and NAFLD.42–44 Finally, we used PheWAS and
found many highly significant expected associations
with imaging-identified and biopsy-proven steatosis.
Given the substantial number of identified individuals
and a precise collection of disease phenotypes, we were
able to gain new insights and identified 234 comorbid-
ities that are significantly associated with the presence of
steatosis. We confirmed a strong relationship with spe-
cific disorders such as hypertension, diabetes mellitus
or obesity, which are well documented in the litera-
ture.45,46 We confirmed earlier findings associating
steatosis to metabolic comorbidities.2,45 Our analyses
suggest that imaging-identified steatosis was associated
with more comorbidities but less severe elevation of
steatosis-associated serum biomarkers, which might
also reflect the clinical context for the imaging study.
Consequently, the PheWAS results should be inter-
preted as reflecting the range of clinical indications for
obtaining imaging in this cohort, since studies were
typically not performed for evaluation of liver disease
specifically.

High-throughput identification of steatosis with
electronic follow-up through the EHR could aid in un-
derstanding the risk factors for progression to NASH in
the future. Analysis of progression from steatosis to
NASH is complicated, particularly when a NASH ICD
diagnosis is often not made, as we reported in this
study. A robust scientific evaluation of progression from
NAFLD to NASH would require biopsy confirmation of
NASH. In this study we selected the latest available bi-
opsy specimens for analysis, but future studies could
examine patients with interval biopsies to identify
markers associated with progressive disease.

Our study should be interpreted in the context of its
limitations. First, we used NLP for our analyses, which
along with ICD coding errors or omissions, could have
erroneously labelled patients as having steatosis. We did
perform a manual analysis of a subset of reports to help
negate this potential source of error. The limitations of
the study design and analysis including unmeasured
confounding have to be mentioned. The PheWAS
analysis is well suited to identify an extensive repertoire
of steatosis-associated conditions. The missing temporal
information may introduce reverse causation bias. Still,
as we have shown in this study, outcomes based on ICD
codes suffer from misclassification and underdiagnosis.
Another limitation of PheWAS analysis is sparse-data
bias47 which is an important limitation of EHR
studies. Another limitation of this study is that some of
the imaging studies and biopsies were obtained for
evaluation of extrahepatic malignancies, which is among
the leading causes of death among patients with
NAFLD.48 Therefore, a systematic approach to quanti-
fying the various indications for both imaging and bi-
opsy reports is needed in future studies. In addition,
Penn patients may differ from patients in other
healthcare systems and the algorithm may need ad-
justments. Finally, we do not claim that our analysis
fully identified all undiagnosed NAFLD cases. Based on
the QC data, we are confident that NLP largely identified
those who were noted in the imaging and pathology
reports. But under-diagnosed patients who never had
imaging or pathology reports or whose condition was
not noted in the reports are yet to be identified.

In conclusion, we reveal that NLP-based approaches
can identify large cohorts of biopsy and imaging-proven
steatosis patients. We have shown that NLP has superior
accuracy in identifying biopsy-proven NAFLD and
NASH within the EHR compared to ICD codes as well
as ALT serum measurements within one year of the
biopsy/imaging. There is a lack of acknowledgment in
clinical documentation of NAFLD findings in radiology
reports, and a considerable number of these patients are
later reported to have NASH. Our observations suggest
that NLP-based approaches at scale have the potential to
identify patients with important undiagnosed condi-
tions, like steatosis and NAFLD, that have clinical con-
sequences and warrant additional follow-up.
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