
Frontiers in Immunology | www.frontiersin.

Edited by:
Dirk Holzinger,

Essen University Hospital, Germany

Reviewed by:
Claudia Bracaglia,

IRCCS Ospedale Pediatrico Bambino
Gesù (IRCCS),

Italy
Seth Lucian Masters,

Walter and Eliza Hall Institute of
Medical Research, Australia

*Correspondence:
Bert Malengier-Devlies

bert.malengier@kuleuven.be
Patrick Matthys

patrick.matthys@kuleuven.be

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 29 August 2021
Accepted: 23 November 2021
Published: 13 December 2021

Citation:
Malengier-Devlies B,

Metzemaekers M, Wouters C,
Proost P and Matthys P (2021)

Neutrophil Homeostasis and
Emergency Granulopoiesis: The
Example of Systemic Juvenile

Idiopathic Arthritis.
Front. Immunol. 12:766620.

doi: 10.3389/fimmu.2021.766620

REVIEW
published: 13 December 2021

doi: 10.3389/fimmu.2021.766620
Neutrophil Homeostasis and
Emergency Granulopoiesis: The
Example of Systemic Juvenile
Idiopathic Arthritis
Bert Malengier-Devlies1*, Mieke Metzemaekers2, Carine Wouters1,3,4,
Paul Proost2 and Patrick Matthys1*

1 Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical
Research, KU Leuven, Leuven, Belgium, 2 Department of Microbiology, Immunology and Transplantation, Laboratory of
Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium, 3 Division of Pediatric
Rheumatology, University Hospitals Leuven, Leuven, Belgium, 4 European Reference Network for Rare Immunodeficiency,
Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium

Neutrophils are key pathogen exterminators of the innate immune system endowed with
oxidative and non-oxidative defense mechanisms. More recently, a more complex role for
neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and
adaptive immune responses has come into view. Under homeostatic conditions,
neutrophils are short-lived cells that are continuously released from the bone marrow.
Their development starts with undifferentiated hematopoietic stem cells that pass through
different immature subtypes to eventually become fully equipped, mature neutrophils
capable of launching fast and robust immune responses. During severe (systemic)
inflammation, there is an increased need for neutrophils. The hematopoietic system
rapidly adapts to this increased demand by switching from steady-state blood cell
production to emergency granulopoiesis. During emergency granulopoiesis, the de
novo production of neutrophils by the bone marrow and at extramedullary sites is
augmented, while additional mature neutrophils are rapidly released from the
marginated pools. Although neutrophils are indispensable for host protection against
microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases.
Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we
discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during
emergency myelopoiesis and provide an overview of the different molecular players
involved in this regulation. We substantiate this review with the example of an
autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
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INTRODUCTION

Neutrophils are the most abundant leukocytes in human blood and
protect our bodies from potentially harmful agents (1, 2). The
importance of these cells is demonstrated in patients with
neutropenia, leukocyte adhesion deficiency, or chronic
granulomatous disease who are prone to developing (fatal)
microbial infections (3). Traditionally, neutrophils were
considered to be homogeneous, simple, and short-lived innate
phagocytes mounting rapid - but largely non-specific -
antibacterial and antifungal responses. However, discoveries in
recent years have revealed the complexity of neutrophil functions
including phagocytosis, degranulation, ROS production and NET
formation (1, 4, 5). In addition, neutrophils interact with other
leukocytes through the production of alarmins (such as S100A8/A9
and S100A12), cytokines and chemokines. Neutrophils have both
disease-promoting and disease-limiting properties, indicative of the
existence of different neutrophil subsets with unique
immunomodulatory functions (6–9). Indeed, the existence of
neutrophil subsets with transcriptional, functional, and phenotypic
heterogeneity has recently emerged in both humans and mice (10).
The production and storage of new neutrophils are tightly regulated.
Figure 1 summarises the different neutrophil regulatory
mechanisms that include: the formation of new neutrophils or
‘granulopoiesis’ in the bone marrow (BM), the release of new
neutrophils into the circulation, the storage of neutrophils outside
the BM (marginated pool), the infiltration of neutrophils into sites of
inflammation (tissue pool) and eventually the clearance of (aged)
neutrophils (7, 11). Under steady-state conditions, neutrophils are
produced in the BM at a rate of 1-2 x 1011 cells/day in humans and
1 x 107 cells/day in mice (12, 13). However, during an excessive
inflammatory immune response, when there is a high demand for
new neutrophils, the life span of neutrophils may increase up to 7
days and the production of new neutrophils may increase tenfold
(11, 14). During such excessive neutrophil production - often
referred to as ‘emergency granulopoiesis’ - the generation of new
cells may additionally take place outside the bonemarrow (BM) in a
process called ‘extramedullary myelopoiesis’ (15, 16). Diverse
autoimmune and autoinflammatory diseases are hallmarked by
emergency granulopoiesis. In this review, we provide an overview
of the mechanisms and molecules that regulate homeostatic and
emergency granulopoiesis. We place special emphasis on
neutrophils and cytokines in systemic juvenile idiopathic arthritis
(sJIA), which is a rare but severe multifactorial autoinflammatory
disease characterised by expansion of neutrophils.
REGULATION OF NEUTROPHIL
HOMEOSTASIS AND MAJOR FUNCTIONS
OF NEUTROPHILS

Granulopoiesis: A Process That Takes
More Than 10 Days
The BM is the main source of new neutrophils. Neutrophils that
mature in the BM can be subdivided into three pools with
increasingly restricted proliferation potentials, i.e. the stem cell
Frontiers in Immunology | www.frontiersin.org 2
pool, the mitotic pool, and the post-mitotic pool. The
hematopoietic stem cells (HSC) of the stem cell pool give rise
to the granulocyte-macrophage progenitor (GMP) cells that
gradually mature under influence of different cytokines or
growth factors into mature neutrophils. Complete neutrophil
maturation takes more than 10 days (17, 18).

HSCs localize in dedicated BM niches filled by perivascular
cells that express a membrane-bound form of stem cell factor as
well as the chemokine CXCL12 (also known as stromal cell-
derived factor 1 or SDF-1), which are the ligands for the stem cell
antigen CD117 (C-kit) and CXC chemokine receptor 4 (CXCR-
4), respectively (19, 20). Two models are proposed that describe
the differentiation of these HSCs. In the first classical or
hierarchical model, HSCs give rise to committed common
myeloid progenitors (CMP) that eventually give rise to GMPs.
During the differentiation, their capacity to give rise to other cell
types is progressively lost (21–23). In the alternative model, cells
rather have a mixed-lineage potential with transcriptional and
functional heterogeneity (21). The absence of oligopotent
intermediates with mixed cell markers, having a limited
differentiation potential, is favouring this second model
(24–26). Here, the CMP compartment contains predestined
subpopulations that are transcriptionally primed towards
becoming either erythrocytes, megakaryocytes, dendritic cells
(DCs), monocytes, neutrophils, eosinophils, or basophils (26–28).

The mitotic pool includes promyelocytes and myelocytes.
Finally, the most differentiated non-dividing cells include
both the immature neutrophils and the mature neutrophils.
The different neutrophil precursors can be distinguished
microscopically. Promyelocytes are defined as large cells with
an oval nucleus and dark cytoplasm. Myelocytes have a less dense
cytoplasm and a round-shaped nucleus. Metamyelocytes, band
cells, and mature neutrophils are relatively small cells and have a
clear cytoplasm. In humans, metamyelocytes and band cells have
a kidney-like nucleus whereas in mice these cells have a
doughnut-like, band-shaped nucleus. Finally, mature
neutrophils are characterised by their segmented nuclei (29–
34). The different neutrophil precursors are shown in Figure 2.

The differentiation of neutrophils requires dynamic changes in
the activity of specific transcription factors. The main transcription
factors driving granulopoiesis are CCAAT/enhancer-binding
protein (C/EBP) a and PU.1 (Figure 3). High expression of C/
EBPa or PU.1 is associated with commitment to the granulocyte or
monocyte lineage, respectively. Runx1 and lymphoid enhancer-
binding factor 1 (Lef1) are responsible for regulating the
expression of C/EBPa with defects in their activities resulting in a
neutrophil maturational block (33, 35, 36). C/EBPa itself negatively
regulates the expression of cMyc.Consistently, C/EBPamutantmice
have an early block in granulocyte differentiation (37–39). Another
major transcription factor involved in neutrophil development is
Krüppel-like factor 5 (KLF5), which is mainly active during early
developmental stages and controls neutrophil production at the
expanse of eosinophils (40). In addition, growth factor independent-
1 (Gfi-1) also drives the initial neutrophil development and represses
the monocyte-promoting transcription factors PU.1 and Irf8 (26,
41–47). Mutations in Gfi-1 block neutrophil maturation at the
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promyelocyte stage (33, 36, 46). The expression ofGfi-1 andC/EBPa
decreases from the myeloblast stage and is associated with an
increased expression of C/EBPϵ that peaks at the myelocyte stage.
C/EBPϵ regulates the transition from promyelocytes to myelocytes
and represses genes involved in cell cycling. The deletion of C/EBPϵ
leads to neutrophil progenitor arrest and neutropenia (26, 48–51).
Further myelocyte maturation is driven by an upregulation of C/
EBPb, C/EBPg, C/EBPd, and C/EBPx.

The different maturational stages are accompanied by the
sequential formation of primary (azurophilic), secondary
Frontiers in Immunology | www.frontiersin.org 3
(specific), tertiary (gelatinase), and secretory granules (34).
Primary granules are mainly formed during the myeloblast
stage (GMP, promyelocyte) and the main granule proteins
include myeloperoxidase (MPO), a-defensins, bactericidal/
permeability-increasing protein (BPI), and distinct serine
proteinases such as elastase or cathepsin G (Figure 2). The
main secondary granule proteins are lactoferrin (LTF) and
lysozyme and are mainly formed during the myelocyte stages
(myelocyte, metamyelocyte). Tertiary granules are rich in
gelatinases and are formed during the band cell stage (banded
FIGURE 1 | Neutrophil homeostasis is tightly regulated. In homeostatic conditions (black arrows) neutrophils mature in the bone marrow from undifferentiated hematopoietic
stem cells (HSCs), replenishing the mitotic stem cell pool that gives rise to mature neutrophils via different immature stages of myeloblast, promyelocyte, myelocyte,
metamyelocyte, immature band cells, and mature neutrophils. These neutrophils are stored in the bone marrow upon release before entering the blood circulation. Different
organs store a pool of neutrophils, referred to as marginated pool, and are forming a reservoir of mature neutrophils. In response to inflammation, neutrophils can exit the
bloodstream and enter the tissue pool. Senescent neutrophils are cleared in the bone marrow by stromal macrophages or by tissue-resident macrophages in the periphery.
During excessive inflammation (red arrows), neutrophils are massively attracted to the site of inflammation and their clearance is decreased by increasing their lifespan.
Demanding the high need for neutrophils, increased numbers of neutrophils are released from the bone marrow. Furthermore, neutrophils are formed and released from
extramedullary sites. Cytokine stimulation, including epinephrine, can additionally quickly release neutrophils from the marginated pool.
December 2021 | Volume 12 | Article 766620
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immature neutrophils). Secretory vesicles are mainly generated
during the final stages of neutrophil maturation and contain
early activation-related proteins that facilitate neutrophil
adhesion and migration. Upon neutrophil activation, the
different granules are hierarchically released according to the
“formed-first-released-last model” (52).

Novel insights on granulopoiesis were recently provided by
innovative approaches such as single-cell RNA sequencing
(scRNAseq) and mass cytometry (CyTOF) and have suggested
that the classical nomenclature may require adjustment to
accurately represent the true heterogeneity of neutrophils. Evrard
et al. performed CyTOF analysis on murine BM cells and revealed
the existence of three neutrophil subsets including a proliferative
neutrophil progenitor group (preNeu), and non-proliferating
immature and mature groups (49). PreNeu express CD117
(c-kit) but do not express markers for other leukocyte lineages.
Phenotypically, preNeu were defined as Lin-c-kitintCD11b+CXCR4+

cells containing primary and secondary granules. The human
Frontiers in Immunology | www.frontiersin.org 4
counterparts of the preNeu subset were defined as being Lin-

CD34-CD101-CD15+CD66b+ cells. Immature and mature
neutrophils can be discriminated based on the distinct expression
profiles of CXCR2 and CD101. Immature neutrophils are Lin-c-kit-

CD11b+CXCR4-CXCR2-CD101- (or Lin-CD11b+CD115-

Ly6GlowLy6Bint) and are mainly expressing secondary
granule proteins. Mature neutrophils are CD11b+CD115-

Ly6G+CXCR2+CD101+ and express gelatinase granule proteins
(49). In humans, immature and mature neutrophils are defined as
L in -CD34 -CD101+CD15+CD66b+CD10 -CD16 - and
CD101+CD15+CD66b+CD10+CD16+, respectively (53, 54). Kim
et al. confirmed the existence of a murine neutrophil precursor
and defined these cells as Lin-c-kit+CD11b+Ly6GlowLy6BintCD115-

GFI1+ cells (55). Later Zhu et al. showed that two populations of
neutrophil precursor cells can be distinguished based on the
expression of CD34. Early-stage and late-stage precursor cells
were defined as c-kit+Gfi1lowCEBPAhiLy6Glow and c-kit
+Gfi1highCEBPAlowLy6G+ cells, respectively (56).
FIGURE 2 | Neutrophil development in the bone marrow. Overview of the different neutrophil subsets in the bone marrow. Morphologically, neutrophils are divided
into granulocyte-monocyte progenitor cells (GMPs), promyelocytes, myelocytes, metamyelocytes, band neutrophils, and mature neutrophils. Based on their
proliferative and differentiation capacity, the cells are divided into a stem cell pool, a mitotic pool, and a post-mitotic pool. Neutrophil maturation is associated with
changes in transcription factors and granule protein expression. At least four types of granules are formed in the neutrophils, each obtaining a unique set of effector
molecules. The different granules are released hierarchically, opposite to their formation. Recently, single-cell sequencing or CyTOF reassessed the different neutrophil
subsets and different groups have proposed a new neutrophil nomenclature.
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Circulating Pool of Neutrophils in Blood
Mature neutrophils can be stored in the BM and are liberated
into the circulation upon appropriate stimulation (Figure 4) (1,
7). Recent scRNA-seq experiments have exposed an additional
layer of complexity by showing that neutrophils can enter the
peripheral blood without going through the most mature stage
first, entering the circulation as immature cells (57). The
balanced action of the chemokine receptors CXCR4 and
CXCR2 tightly regulates the release of neutrophils.
Upregulation or downregulation of CXCR2 and CXCR4,
respectively, is associated with egress from the BM (58).
CXCR4 is the main receptor for CXCL12, which is expressed
by the stromal cells of the BM and retains developing neutrophils
within the BM (11). Enhanced activity of CXCR4 delays the
release of mature neutrophils from the BM as seen in patients
with WHIM (‘warts, hypogammaglobulinemia, infections, and
myelokathexis’) syndrome, a rare primary immunodeficiency
Frontiers in Immunology | www.frontiersin.org 5
disorder (59). Also, the adhesion molecule vascular cell
adhesion molecule (VCAM)-1, expressed by the BM epithelial
cells, promotes retention of neutrophils within the BM via its
interaction with the integrin very late antigen (VLA)-4 on
neutrophils (11). In contrast, human CXCR2 - which
recognises CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7,
and CXCL8 - stimulates the release of neutrophils from the BM.
Granulocyte colony-stimulating factor (G-CSF) further
promotes neutrophil mobilization by lowering CXCL12
production (60) and CXCR4 expression (61) and by increasing
the amounts of mobilising signals (e.g. CXCL1) (62). The release
of neutrophils outside the BM is accompanied by the release of
granule proteins including MMP-9, paving the transendothelial/
transcellular way through the sinusoidal endothelium (63, 64).
Moreover, in human, the most potent chemokine activator of
CXCR2, i.e. CXCL8 is further potentiated by N-terminal
truncation by MMP-9 creating a positive feedback loop and
FIGURE 3 | Transcription factors regulating neutrophil differentiation. Neutrophils mature from hematopoietic stem cells (HSCs) in the bone marrow (BM). These
HSCs are self-reviewal and can differentiate into all immune cells. The common myeloid progenitor (CMP) cells give rise to the myeloid lineage including neutrophils,
monocytes, and eosinophils. C/EBPa is the main transcription factor driving myeloid differentiation. Together with PU.1, and c-Myc, C/EBPa drives granulocyte-
monocyte progenitor cell (GMP) differentiation. High levels of C/EBPa, PU.1, and Irf8 further drive monocyte development, high levels of GATA-1 eosinophil
development, whereas C/EBPa, Lef1, Runx1, KLF5 together with low expression of PU.1 enhance neutrophils development. Neutrophil maturation is further driven
by Gfi-1, Lef-1, C/EBP transcription factors (C/EBPϵ, C/EBPb, C/EBPd, C/EBPz), and PU.1. C/EBP, CCAAT/enhancer-binding protein; Irf8, Interferon regulatory
factor 8; Lef1, Lymphoid enhancer-binding factor 1; Runx1, Runt-related transcription factor 1; KLF5, Krüppel Like Factor 5; GFI1, Growth Factor Independent 1
Transcriptional Repressor.
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inhibition of CXCL8 with neutralizing anti-MMP-9 antibodies
inhibited CXCL8-induced mobilization of progenitor cells from
bone marrow in monkeys (65, 66). Interestingly, the transit from
the BM to the peripheral blood is associated with large
transcriptomic and epigenetic differences (67).

Marginated Pools of Neutrophils in Organs
Margination refers to the prolonged transit of neutrophils
through organs, which results in discrete intravascular
(marginated) pools. These can be found within the spleen,
liver, and BM. Lung margination may be specific only for
certain species such as primates, mice, and dogs (1, 58, 68–70).
During infection or inflammation, cytokine or epinephrine
(adrenaline) stimulation can quickly release the marginated
neutrophils into the circulation (71–73).
Frontiers in Immunology | www.frontiersin.org 6
Extravasation of Neutrophils Into
Inflamed Tissues
Effective pathogen elimination requires the presence and activation
of neutrophils at the right location in the body. Neutrophils need to
enter the inflamed tissue via extravasation, a process that is
coordinated by selectins, integrins, and soluble mediators including
proteases and chemoattractants (Figure 5). The different
chemoattractants are classified into chemotactic lipids [e.g.
leukotriene B4 (LTB4)], chemokines [CXCL1 to CXCL3 and
CXCL5 to CXCL8 in humans and KC, macrophage inflammatory
protein-2 (MIP2), and granulocyte chemotactic protein-2 (GCP-2)
in mice], complement anaphylatoxins (C3a and C5a), and formyl
peptides [e.g N-formylmethionyl-leucyl-phenylalanine (fMLF)].
Their specific roles in the regulation of neutrophil migration and
activation were recently reviewed by Metzemaekers et al. (74–76).
FIGURE 4 | The release of neutrophils from the bone marrow is tightly regulated in homeostatic conditions. In the bone marrow, neutrophils differentiate from
undifferentiated hematopoietic stem cells (HSCs) into mature neutrophils via different immature stages of myeloblast, promyelocyte, myelocyte, metamyelocyte, immature
band cells, and mature segmented neutrophils. Neutrophils are retained in the bone marrow (BM) via the homing CXCR4 receptor or the stem cell antigen CD117 (C-kit)
which both bind CXCL12, released by stromal cells. Additionally, the integrin very late antigen 4 (VLA-4) expressed on neutrophils are retaining neutrophils in the BM by
binding the adhesion molecule vascular cell adhesion protein-1 (VCAM-1) or fibronectin. Granulocyte colony-stimulating factor (G-CSF) is an important growth factor that
regulates the proliferation, differentiation, and egress of neutrophils in the BM. It aborts the CXCR4/CXCL12 interactions and releases neutrophilic chemoattractants including
CXCL1-3 and CXCL5-8 that bind CXCR2. During the release of neutrophils from the BM, granule proteins are released degrading the fibronectin and mediating trans-
endothelial transport. Aged neutrophils are characterised by the expression of diverse receptors including upregulated CXCR4, ICAM1, CD11b, CD49d, and low expression
of CXCR2 and CD62L. Aged neutrophils migrate back to the BM where they are engulfed by macrophages. Upregulation of the liver X receptor (LXR) family induces the
expression of interleukin-23 (IL-23) that may enhance the release of new neutrophils, balancing the homeostasis of neutrophils, via the IL-23/IL-17/G-CSF-axis.
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Neutrophil extravasation encompasses four well-defined
steps. First, pro-inflammatory cytokines (including tumour
necrosis factor alpha (TNF-a), interleukin (IL)-1b, and IL-17)
or stimulants of bacterial origin (including LPS) induce the
upregulation of P-selectins and E-selectins on endothelial cells.
These adhesion molecules can bind to glycoproteins e.g. P-
selectin glycoprotein ligand-1 (PSGL-1) present on the surface
of neutrophils, mediating rolling of the latter along the
endothelium. Next, chemoattractant-induced signalling and
interaction between L-selectin (CD62L) and its ligands (e.g.
GlyCAM-1) on endothelial cells can activate integrins such as
lymphocyte function-associated antigen 1 (LFA-1) on
neutrophils. LFA-1 binds to ICAM1 and ICAM-2 on
endothelial cells and mediates firm neutrophil adhesion and
Frontiers in Immunology | www.frontiersin.org 7
arrest. Afterwards, neutrophils crawl along the endothelium
and exit the blood vessel preferentially via the paracellular
route. Neutrophils may also follow a transcellular path directly
through the endothelial cell body without the loss of the integrity
of the plasma membrane of either cell. Finally, neutrophils
further migrate towards increasing concentrations of
chemoattractants (1, 77–83).

Neutrophilic Functions at the Site
of Inflammation
Neutrophils have diverse functions which are illustrated in
Figure 6 (1, 4, 5). A full description of the different
neutrophilic functions falls out of the scope of this review and
has been provided elsewhere (1). Main antimicrobial functions
FIGURE 5 | Neutrophil recruitment towards the site of inflammation. Neutrophil mobilisation and internalisation involve different steps including the capture of the
cells, rolling, firm adhesion, crawling, and transmigration. Diverse neutrophil surface receptors are involved in this process. Pro-inflammatory cytokines or pathogen-
associated molecular patterns (PAMPS) activate endothelial cells, allowing them to express adhesion molecules (e.g. P-selectins and E-selectins). These adhesion
molecules bind mucins expressed on the neutrophil surface capturing and slowing the neutrophil. Slow rolling of the cells allows chemoattractants to bind their
respective chemoattractant receptors. Subsequent signalling results in integrin activation and eventually firm adhesion. Next, neutrophils are crawling along with the
endothelial cells and transmigrate at cell-cell junctions (paracellular migration) or by endothelial cell bodies (transcellular migration). Once migrated, neutrophils are
further attracted towards the centre of inflammation by a gradient of chemoattractants. An overview of the main chemoattractants is shown in the green box.
Chemoattractants are mainly released by pro-inflammatory cytokines. At the focus of inflammation, neutrophils are primed by proinflammatory cytokines, PAMPs,
damage-associated molecular patterns (DAMPs), complement molecules, and/or growth factors enhancing their effector function and additionally increases their
lifespan. In vivo studies in animals suggest that extravasated neutrophils can back-migrate (retrograde migration). Otherwise, neutrophils undergo NETosis or
apoptosis. Apoptotic neutrophils are engulfed by tissue-resident macrophages that upregulate transcription factors of the liver X receptor (LXR) family, potentiating
resolution at the site of inflammation.
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include: ROS production, degranulation, neutrophil extracellular
trap (NET) formation, phagocytosis and ectosome formation
(Figure 6A). Whereas the degranulated granule proteins may tag
(i.e. by the binding of cationic antimicrobial peptides such as
defensins or cathelicidins) or eliminate extracellular pathogens
[i.e. by neutrophil elastase (NE), MPO, or lactoferrin], they may
also induce tissue damage and neutrophil migration (i.e. by
MMP-8 or MMP-9) (1, 47, 78, 84, 85). The secreted granule
proteins also influence the inflammatory activities of the
neighbouring cells and promote cytokine, chemokine, ROS
production, cell activation, or cell extravasation.

Next to the important antimicrobial properties, neutrophils
can also directly or indirectly interact with other immune cells
(including T cells, B cells, NK cells, macrophages, and DCs) and
are critical in establishing a good immune response (summarised
in Figure 6B). Neutrophils can secrete both pro-inflammatory
cytokines (e.g. TNF-a, IL-18, and IL-1b), anti-inflammatory
Frontiers in Immunology | www.frontiersin.org 8
cytokines (i.e. IL-10, and IL-1RA), and chemokines (e.g. CCL2,
CXCL8, CXCL9, CXCL10, and CCL20), further recruiting new
immune cells to the site of inflammation (86–91). Despite the
relatively low amounts of cytokines/chemokines produced by
neutrophils and their limited capacity for de novo protein
synthesis, neutrophils and their activation products can play
significant roles during inflammation since they are usually
overwhelming in terms of absolute cell numbers (92). The
neutrophil-derived proteases may additionally modulate the
signaling network via their cytokine and chemokine processing
capacity (93–95). Neutrophils also produce growth factors,
alarmins, and angiogenic factors (G-CSF, S100 proteins, and
VEGF) via which they may influence different biological
processes (86, 96, 97) or may induce immunoglobulin class
switching and somatic hypermutations in B cells by the
secretion of B-cell activating factor (BAFF), a proliferation-
inducing ligand (APRIL), also known as TNF ligand
FIGURE 6 | Overview of the different neutrophil effector functions. Neutrophils possess different defence mechanisms including both oxidative and non-oxidative
mechanisms (A). Neutrophils can produce reactive oxygen species (ROS) and release soluble mediators stored in pre-made granules (degranulation). Neutrophils
show a unique form of cell death, called NETosis, where neutrophils expel neutrophil extracellular traps (NETs), consisting of decondensed DNA together with
histones, cytokines, and granule proteins. Furthermore, neutrophils are professional phagocytes able to engulf foreign particles for internal digestion. Neutrophils can
also transform into anuclear cytoplasts (ectosomes), regulating the inflammatory microenvironment, intercellular communication, and exerting antimicrobial functions.
Neutrophils interact with different cells of both the innate and adaptive immune systems (B). Neutrophils can carry antigens and act as antigen-presenting cells,
activating T cells. In contrast, myeloid-derived-suppressor neutrophils can inhibit the proliferation of T cells. Neutrophils can stimulate the maturation of antibody-
producing B cells and play an essential role in the generation of natural killer (NK) cells in the bone marrow. Furthermore, neutrophils may also interact with platelets,
macrophages, dendritic cells (DCs), or osteoclasts. Neutrophils also release a bunch of soluble mediators (C). Although the release per individual cell is limited,
neutrophils are an important source, due to their high abundance in the blood.
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superfamily member 13 (TNFSF13), and IL-21 (98–101).
Neutrophils can also regulate the inflammatory outcome by
changing the composition of the secreted lipids (Figure 6C) (4).

At the site of inflammation, neutrophils can be primed by
cytokines (IL-1b, IL-6 or TNF-a), pathogen-associated
molecular patterns (PAMPs; e.g. LPS), damage-associated
molecular patterns (DAMPs; e.g. ATP), or complement-
opsonized particles via their vast repertoire of cytokine
receptors and pathogen recognition receptors (PRRs) (102).
Primed neutrophils are phenotypically defined by increased
CD16 or CD11b/CD18 expression levels and reduced
expression of CD62L. In comparison with quiescent cells,
primed neutrophils display a more aggressive action upon
subsequent activation with a second inflammatory stimulus,
illustrated by enhanced ROS production, degranulation,
phagocytosis, and an increased tendency to release NETs (103).

Apoptosis and Neutrophil Clearance
Under homeostatic conditions, senescent ‘aged’ neutrophils
upregulate CXCR4 and CD11b while downregulating CD62L
(104, 105). Aged neutrophils transmigrate into the BM where
they are cleared by the resident stromal macrophages. This
results in the induction of transcription factors belonging to
the liver X receptor (LXR) family. Macrophages and LXRs are
essential components for the modulation of the hematopoietic
niche and may cause G-CSF production and downregulation of
CXCL12, which subsequently result in an increased neutrophil
mobilisation (106). Using similar mechanisms, hypocellularity
(e.g. during antibody depletion), can also be sensed in the BM. In
addition, circadian rhythm and food intake via microbiota-
derived signals also regulate the number, maturation, and gene
expression program of neutrophils. A full description of the
intrinsic clockworks or diurnal rhythm variations in systemic
and local factors falls out of the scope of this review [reviewed in
(107–110)].

After fulfilling their effector functions at the site of
inflammation, neutrophils may undergo suicidal NET
formation, necrosis, or apoptosis. Apoptotic neutrophils can be
phagocytosed by resident macrophages and subsequently
upregulate LXR (111, 112). This induces a reduced IL-23
production and subsequent reduced IL-17 and G-CSF
that terminates the inflammatory recruitment of additional
neutrophils , tempering inflammation and restoring
homeostasis. Furthermore, it stimulates the secretion of the
anti-inflammatory cytokines TGF-b and IL-10, which further
decrease the neutrophil chemo-attraction and activation (6).
EMERGENCY GRANULOPOIESIS IN SJIA

Emergency Granulopoiesis and
Extramedullary Myelopoiesis
During excessive inflammation, neutrophil homeostasis is
disturbed. Neutrophils are massively attracted to the site of
inflammation, their clearance is decreased, and their lifespan is
Frontiers in Immunology | www.frontiersin.org 9
increased. Cytokine stimulation can quickly release neutrophils
from the marginated pool and the high demand for new
neutrophils results in a massive generation of new neutrophils
(outside the BM) described as emergency granulopoiesis and
extramedullary myelopoiesis respectively (Figure 1, red arrows).

Emergency granulopoiesis involves a series of conserved
cascading events and is especially well documented during
infection (113, 114). The different steps involved are summarised
in Figure 7. Emergency granulopoiesis is characterised by an
increased release of immature neutrophils, such as myelocytes,
metamyelocytes, and band cells into the circulation, known as
‘the left shift’ (115). Clinically, the left shift is defined by leucocytosis
with the appearance of immature neutrophil precursor cells in the
peripheral blood, which are normally only present in the BM. In
sepsis, the presence of immature neutrophils in the circulating
blood is often used as a clinical indicator (116, 117). In humans,
mature and immature neutrophils can be distinguished based on
the CD10 expression which is restricted to mature neutrophils (54).
Furthermore, based on expression levels of CD16 and CD62L (L-
selectin) neutrophils can be subdivided into mature, immature, and
hyper-mature neutrophils. In non-inflammatory conditions, nearly
all circulating neutrophils have a mature phenotype and are
CD16highCD62Lhigh cells. In inflammatory settings, an increased
number of immature neutrophils (CD16dimCD62Lhigh) and
hypersegmented neutrophils (CD16highCD62Ldim) are found
(118–120). Recently, a single-cell sequencing experiment was
performed in a bacterial infection-induced mouse model. In this
study, researchers showed that emergency granulopoiesis is
associated with an augmented proliferation of the early-stage
neutrophil progenitor cells in the BM and accelerated post-
mitotic maturation of the neutrophils. Interestingly, the overall
neutrophil differentiation in the BM remains intact but a substantial
difference in the transition between the subpopulations was
reported (57).

Today, it remains challenging to accurately discriminate
between steady-state and emergency haematopoiesis. Studies
aiming to dismantle the mechanisms involved in emergency
granulopoiesis have shown that granulopoiesis can be induced by
cytokines in the absence of C/EBPa and suggested alternative
pathways under emergency conditions (Figure 8) (121). It was
found that especially C/EBPb plays a crucial role in the stress-
induced haematopoiesis, which was hampered in C/EBPb KO
mice (16, 121–127). Whereas both C/EBPa and C/EBPb share
downstream genes involved in the granulocyte differentiation
(128), a less pronounced cell cycle inhibition was linked to
C/EBPb as compared to C/EBPa (37, 121, 129–131). The
importance of C/EBPb in stress-induced granulopoiesis has
been confirmed in diverse mouse models and a zebrafish
model (132–134). Interestingly, in chronic myeloid leukaemia,
the breakpoint cluster region-Abelson murine leukaemia virus
(BCR-ABL) fusion protein may drive a myeloid expansion by
activating the emergency granulopoiesis in a C/EBPb-dependent
way (123, 124).

During extramedullary myelopoiesis neutrophils are formed
outside the BM. The extramedullary myelopoiesis mainly takes
place in spleen, and liver and, more controversially, also in lymph
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nodes, lungs, and kidneys (16, 135–139). Under acute or chronic
stress conditions such as infection, these HSPC can seed in the
extramedullary tissues (138). In the murine spleen, the HSPCs
were localised close to transcription factor 21 (Tcf21)-positive
stromal cells that can secrete niche factors such as CXCL12 and
stem cell factor to support the splenic extramedullary
haematopoiesis EMH (140). Although the BM niche and splenic
stroma are quite different, neutrophil development in the spleen
during extramedullary haematopoiesis is believed to follow the
same hierarchical developmental order as described in the mouse
BM. In this way, the spleen provides a unique reservoir able to
supply additional myeloid cells during the immune challenge (49,
141, 142).

Emerging evidence from cancer studies suggests that
neutrophils generated from the BM are functionally different
from those derived from extramedullary sites such as the spleen.
Driven by the cancer microenvironment, HSPCs can generate
Frontiers in Immunology | www.frontiersin.org 10
myeloid-derived suppressor cells (MDSC) in the spleen that can
suppress the activation and proliferation of T cells (141, 143,
144). Interestingly, C/EBPb can regulate the expression of
enzymes such as arginase and inducible nitric oxide synthase
both of which are required for the lymphocyte inhibitory
activities of the MDSC (56) and the absence of C/EBPb could
reduce the tumour metastasis (145, 146). Pre-existing differences
in the chromatin landscape between the different neutrophil
maturational stages may contribute to observed heterogeneity
since the same environmental trigger may induce a different
biological output (111).

The term ‘reactive granulopoiesis’ has been proposed in
settings where emergency granulopoiesis is induced by a non-
infectious trigger such as described in active sJIA patients. sJIA
patients show an increased number of circulating (immature)
neutrophils which is in line with the peripheral expansion of
immature CD34+CD33+ myelomonocytic precursors (147, 148).
FIGURE 7 | Factors involved in the induction of emergency granulopoiesis. During excessive inflammation, there is a high need for new neutrophils (emergency
granulopoiesis). Different direct and indirect mechanisms are involved in the differentiation and release of new neutrophils. Damage-associated molecular patterns
(DAMPs) or pathogen-associated molecular patterns (PAMPs) bind diverse pathogen recognition receptors, expressed on diverse cell types. In hematopoietic stem
cells (HSCs), binding directly stimulates the release of interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF), inducing their proliferation and
differentiation into neutrophils. Indirectly, the molecular pattern molecules bind endothelial cells or stromal cells, providing an important source of pro-inflammatory
molecules and growth factors. Additionally, these endothelial cells or mesenchymal cells are stimulated by pro-inflammatory cytokines released by immune cells or
non-immune cells of the periphery that encounter invading pathogens or cell damage. The neuronal release of adrenalin or noradrenalin additionally stimulates the
release of new neutrophils. Finally, also food intake and the gut microbiome tightly regulate neutrophil homeostasis.
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In addition, increased levels of neutrophil-derived mediators
such as S100 proteins, MMP-8, MMP-9, elastase, and proteins
involved in adhesion and chemotaxis of neutrophils (e.g. soluble
E-selectin and soluble ICAM-1) were measured in the plasma of
patients with sJIA. Furthermore, a positive correlation was found
between increased numbers of neutrophils and levels of the
inflammatory mediators C-reactive protein (CRP), ferritin,
S100A8/A8, S100A12, MMP-8, and soluble E-selectin (149).
Since neutrophils are thought to drive the pathogenesis of sJIA,
in the next paragraph, we describe how the different neutrophil
functions including the different neutrophil subsets may
contribute to the disease pathogenesis of sJIA.
Frontiers in Immunology | www.frontiersin.org 11
How Neutrophilia May Fuel the
Pathogenesis of sJIA
sJIA is a childhood autoinflammatory disease characterised by
expansion of neutrophils. The disease can also occur in adults,
where it is called Adult-onset Still’s disease (AOSD) (150). Apart
from an important neutrophilia, patients are diagnosed by the
presence of arthritis in one or more joints with or preceded by a
quotidian fever of at least 2 weeks and accompanied by an
erythematous rash, and enlargement of the lymph nodes
(lymphadenopathy), liver and/or spleen (hepatosplenomegaly)
or serositis (151). Patients also present with fatigue, abdominal
pain, and weight loss (148, 152–154). In addition to neutrophilia,
FIGURE 8 | Growth factor signaling regulates emergency granulopoiesis. In homeostatic conditions, the granulocyte colony-stimulating factor (G-CSF) is the main
growth factor that regulates neutrophil development. G-CSF signals via the G-CSF receptor (G-CSFR) (encoded by the CSF3R gene), and signals via the Janus
kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. Via unknown mechanisms, G-CSFR signaling induces the CCAAT-enhancer-binding
protein-a (C/EBPa). C/EBPa is the major transcription factor involved in myelopoiesis. The transcription factor enhances the expression CSF3R, whereas it inhibits
genes required for the cell cycle, eventually causing a limited myeloid proliferation and differentiation. During excessive inflammation, neutrophils massively migrate to
the site of inflammation. To counterbalance neutrophil depletion and to provide newly needed neutrophils, emergency granulopoiesis is initiated. Emergency
granulopoiesis is characterised by a large-scale de novo generation of new neutrophils from neutrophil progenitor cells. Interleukin-6 (IL-6), G-CSF, and granulocyte-
macrophage colony-stimulating factor (GM-CSF) are mainly stimulating the proliferation and differentiation of new neutrophils. IL-6 binds the IL-6 receptor (IL-6R)/
gp130 and signals in a JAK-STAT1 or STAT3-dependent way. Excessive G-CSFR signalling induces both STAT1, STAT3, and STAT5 phosphorylation and
signalling, whereas GM-CSF receptor (GM-CSFR) signalling mainly tempts STAT5 activation. Upon activation, the pSTAT molecules are translocated to the nucleus
where they directly stimulate genes involved in the regulation of apoptosis, proliferation, and cellular translocation. Additionally, pSTAT signalling stimulates the
expression of the transcription factor C/EBPb. C/EBPb replaces C/EBPa, and releases the brake on proliferative genes, cranking myelopoiesis. During emergency
granulopoiesis, not only mature neutrophils are leaving the BM, but also more immature neutrophils are being released. This process is called “left shift”.
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laboratory findings include (normo- or microcytic) anaemia,
thrombocytosis, and a high erythrocyte sedimentation rate
(ESR). Plasma levels of inflammatory cytokines (IL-6, IL-18),
acute phase proteins S100A8/A9, and S100A12, and CRP are
highly increased. In addition, the level of ferritin and D-dimers
and liver enzymes such as aspartate transaminase (AST), alanine
transaminase (ALT), and lactate dehydrogenase (LDH) are often
elevated as well (148, 152, 154).

The exact aetiology of sJIA remains enigmatic. sJIA is not an
infectious disease since, up till now, the condition has not been
consistently associated with any pathogen. Given a seasonal
variation in some studies, it has been postulated that infectious
agents may trigger an excessive immune reaction to a relatively
harmless trigger in genetically susceptible children (148, 152, 155).
Clinically, sJIA follows a biphasic clinical course, in which the
innate immune system is mainly involved at disease initiation
(febrile stage) with excessive activation of neutrophils, monocytes,
natural killer (NK) cells, and gd T cells (156). The constitutive
activation of the innate immune system supports the notion that
describes sJIA as an autoinflammatory disorder. Several
immunological genetic polymorphisms have been demonstrated
to be associated with sJIA, defining sJIA as a multigenic and
multifactorial autoinflammatory disease (157–169). In contrast to
monogenic autoinflammatory diseases, also the adaptive immune
system is involved in the pathogenesis of sJIA and contributes to
the development of arthritis at a later stage (arthritic stage).
Evidence for involvement of adaptive immunity in the
pathogenesis of the disease is further provided by the fact that
expression of the human leukocyte antigen (HLA) variant HLA-
DRB1*11 places paediatric individuals at risk for developing sJIA.

Neutrophils from sJIA patients show a primed phenotype,
characterised by an increased intracellular ex vivo ROS
production upon formyl peptide stimulation and by an
enhanced secretory vesicle degranulation (170). The increased
degranulation was demonstrated by the increased surface
expression of the complement receptor CD35, upregulation of
the high-affinity Fcg receptor CD64, and by the enhanced release
of S100A8/A9 upon stimulation with phorbol 12-myristate 13-
acetate (PMA) (149). Neutrophils from patients with AOSD also
show upregulation of CD64 (170). It remains unknown if
neutrophil-derived ectosomes are also altered in the sJIA
pathogenesis. NETs may have a dual role in autoimmune and
autoinflammatory diseases. As a disease tempering role, they
catch pro-inflammatory cytokines and proteolytically degrade
them to resolve the inflammation (171). In contrast, NETs are
also highly immunogenic and were linked to the development of
several autoimmune diseases including RA and systemic lupus
erythematosus (SLE) (172–180). In sJIA patients, NETosis was
never directly studied ex vivo. Nevertheless, increased serum
histone levels in active sJIA patients compared to inactive
patients or healthy controls (HCs) were described, arguing for
enhanced NETosis. In addition, the serum histone levels were
correlating to the sJIA disease activity (181). The increased levels
of high mobility group box 1 protein (HMGB1) in patients with
sJIA (182) is linked to enhanced NETosis since Garcia-Romo
and colleagues have demonstrated in SLE that HMGB1 is
released during NETosis, forming a positive feedback loop (183).
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In sJIA, diverse clinical features in the febrile and the arthritic
stage may be linked to neutrophils. At the initial stages,
neutrophils are an important source of pro-inflammatory
cytokines, chemokines, molecular mediators, proteases, and
growth factors as blood neutrophil transcriptome analysis
showed an inflammatory gene expression profile. Upregulated
genes included neutrophil granule proteins, members of the IL-1
cytokine family, components of inflammasomes, the high-
affinity IgG receptor CD64, CXCL8, and genes involved in the
NF-kB pathway. Interestingly, the gene expression profile was
partially overlapping with the transcriptome of sepsis (149, 184,
185). Additionally, using the sJIA mouse model we demonstrated
that neutrophils are the main source of IL-1b (unpublished
results from our own group). Worthy of note is the fact that
neutrophils have a relatively high steady-state expression of pro-
IL-1b and do not necessarily need a priming signal. Interestingly,
patients displaying high numbers of neutrophils or neutrophil-
associated genes appear to benefit from treatment with IL-1-
targeting drugs such as anakinra and canakinumab (149, 168,
186). In addition, neutrophils provide an important source of
alarmins or DAMPs, further amplifying the activation of the
innate immune system. In sJIA, there is a growing interest in
these molecules, in particular in the family of S100 proteins. S100
proteins may activate innate immune cells, predominantly
monocytes and macrophages, upon binding the RAGE
receptor or TLR4 by enhancing the secretion of pro-
inflammatory molecules (187). High concentrations of S100
proteins (both S100A8/A9 and S100A12) are measured in
patients with sJIA and therefore these molecules were
proposed to be biomarkers (188–195). The release of IL-1 and
other inflammatory cytokines by total white blood cells (WBCs)
or monocytes from sJIA patients was reduced upon depleting
serum S100A8/A9 or by preventing the S100A12 complex
formation (191, 196, 197).

In the arthritic stage of sJIA, neutrophils may drive the
development of arthritis fitting the remnant epitopes generate
autoimmune (REGA) model that states that cells and molecules
of the innate immune system (including neutrophils) can start
the autoimmune reaction by cytokine-regulated proteolysis
yielding remnant epitopes (2). Indeed, activated neutrophils
can destroy the cartilage by e.g. releasing granule proteins or
ROS production (198, 199). This was mainly investigated and
reported in rheumatoid arthritis (RA) (172, 200, 201).
Additionally, neutrophils express a functionally active
membrane-bound RANKL, the ligand for receptor activator of
NF-kB (RANK) and so can activate osteoclastogenesis (202). In
the joints of JIA patients, activated neutrophils were abundantly
present (203–205) and the presence of S100A12 in synovial fluids
from JIA patients (189) provides evidence for their involvement
in disease pathogenesis.

Neutrophil Subsets in sJIA Patients
In sJIA patients, an increased number of immature CD16dim

neutrophils has been reported. The increased percentage of
immature neutrophils in the peripheral blood cell count
(banded neutrophils and granulocyte precursors) was
confirmed microscopically (149). Also, patients with sJIA had a
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higher proportion of CD62Llow neutrophils compared to healthy
controls (149, 184). The shedding of CD62L, mediated by
membrane-proximal cleavage, is indicative of priming (as
described above) (103, 206–208). Whereas one study failed to
show an increased number of hypersegmented neutrophils,
another study showed, by imaging cytometry, that patients
with systemically active disease have increased numbers of
hypersegmented neutrophils (149, 184). We recently uncovered
neutrophil-DC hybrid cells (expressing both neutrophil and DC
markers) in the synovial fluid from patients with JIA (205) that
may serve as antigen-presenting cells (209, 210), eventually
contributing to the arthritic phenotype. Remarkably,
neutrophil protease genes (including MMP-8, and MMP-9)
could also be found in PBMC microarray datasets of sJIA
patients and might reflect the presence of low-density
granulocytes in the PBMC fraction, which was confirmed by
flow cytometry analysis (185). Remark that also in AOSD,
increased levels of low-density granulocytes were reported,
correlating with disease activity (211). Single-cell sequencing
on splenic neutrophils derived from the sJIA-like mouse model
recently showed the emergence of MDSCs. From this, it is
tempting to speculate that neutrophils, next to their pro-
inflammatory properties, also may have some disease-
tempering effects in sJIA (Malengier-Devlies et al . ,
unpublished results).
CYTOKINES THAT LINK NEUTROPHILS
TO SJIA PATHOGENESIS

Diverse cytokines and growth factors play an important role in
the pathogenesis of sJIA and all of them regulate important
aspects of neutrophil homeostasis (16, 212–216). In a next part of
this review, we overview the different neutrophil-regulating
cytokines and growth factors in sJIA (including G-CSF, GM-
CSF, IL-17, IL-1b, IL-6, IL-18, and IFN-g). Considering the
current beneficial effects of agents blocking IL-1- and IL-6 in
sJIA (217–228), a better understanding of all neutrophil-
regulating cytokines and growth factors may open new avenues
for therapeutic intervention.

G-CSF
G-CSF is the main haematopoietic growth factor required for the
proliferation and differentiation of haematopoietic precursor
cells into neutrophils (229–234). G-CSF regulates the
commitment of progenitor cells to the myeloid lineage (235),
induces the proliferation of granulocytic precursor cells (236),
reduces the transit time through the granulocytic compartment
(236), and controls the viability of the BM neutrophil pool (233,
234, 237). Furthermore, it induces the release of mature
neutrophils from the BM into the blood by the internalisation
and consequent downregulation of CXCR4 (238, 239) or by
downregulation of CXCL12 in the BM (Figure 4) (240). In
contrast, G-CSF can also impede the CXCR2-induced neutrophil
mobilisation by negatively regulating CXCR2-mediated
intracellular signalling which under specific bacterial infections,
Frontiers in Immunology | www.frontiersin.org 13
functions as a negative regulator of neutrophil mobilisation
(241). Both in vitro and in vivo, G-CSF acts on mature
neutrophils and may enhance ROS production, adherence,
phagocytosis, killing, antibody-dependent cellular cytotoxicity
(ADCC), and may induce phenotypic alterations such as
increased expression of CD11b (242). G-CSF also affects the
expression of the pro-survival protein survivin which increases
the lifespan of mature neutrophils (243, 244).

G-CSF signals via the homodimeric G-CSF receptor (G-
CSFR) (245) in a manner that depends on a Janus kinase
(JAK)/signal transducer and activator of transcription (STAT).
G-CSF can stimulate three members of the STAT family (STAT
1, 3, and 5) (246–250). However, the role of STAT1 and STAT5
in the granulopoiesis is limited (251–256) and myeloid
differentiation is mainly induced by STAT3 (257). In steady-
state conditions, the G-CSFR signalling is controlled in a
suppressor of cytokine signalling 3 (SOCS3)-dependent way
(258) and STAT3-deficient mice are marked by peripheral
neutrophilia (259–262). In steady-state granulopoiesis, the
expression of G-CSFR is regulated by C/EBPa. C/EBPa drives
the expression of many genes that encode proteins required for
myeloid progenitor proliferation and granulocyte differentiation.
Besides, it restricts excessive proliferation of neutrophil
precursors by inhibiting the expression of genes required for
cell cycle progressions e.g. the genes encoding MYC, cyclin-
dependent kinase 2 (CDK2), or CDK4 (16, 263). During
emergency granulopoiesis, when G-CSF levels are markedly
increased, STAT3 is directly stimulating the expression of
MYC and C/EBPb, which in turn further stimulates MYC
transcription by replacing C/EBPa at the promoter region
(Figure 8) (16, 133).

G-CSFR-deficient mice have lower amounts of immature
granulocytic precursors and neutrophils in the BM, show a 70-
80% reduction of circulating neutrophils (due to a defective
release), and are defective in certain mature neutrophil cell
functions (233, 234, 264). Similarly, humans expressing
dominant-negative receptor mutations in G-CSFR are
neutropenic (265, 266). Additionally, mutations in the
haematopoietic cell-specific Lyn substrate 1-associated protein
X1 (HAX1), which contributes to the G-CSFR signalling
pathway cause severe neutropenia in humans (267, 268).
Interestingly, emergency granulopoiesis, however, can occur in
a G-CSF-independent way and G-CSFR-deficient mice can still
mount a granulopoietic response in a sterile model of peritonitis
or during a C. albicans infection. In contrast, G-CSFR KO mice
showed a more severe disease during infection with L.
monocytogenes (234, 269–272).

The exogenous administration of G-CSF mimics the
physiological responses that are observed during emergency
granulopoiesis and increases the neutrophil count in peripheral
blood (114, 273). Upon G-CSF treatment, also HSCs can be
mobilised from the BM into the blood (274, 275). Currently, G-
CSF is used in clinics to treat neutropenic individuals (276–278) or to
mobilise hematopoietic progenitors for transplantation (230, 279).

Many tissues including endothelial cells, macrophages,
epithelial cells, fibroblasts, and BM stromal cells produce
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G-CSF when stimulated with inflammatory stimuli such as LPS,
IL-1b, or TNF-a (280–283). IL-17 and IL-23 have been
implicated as major upstream regulators of G-CSF (discussed
below) and play a crucial role in the pathogenesis of sJIA (230,
281, 284). G-CSF levels are increased in sJIA patients compared
to HCs, whereas in other JIA subtypes, G-CSF was demonstrated
to be a major regulator of the neutrophil gene expression
signature (168, 185). In line with the pathological role of
neutrophils in sJIA, the highest levels of G-CSF were found in
patients with an incomplete response or nonresponse to
anakinra (168).

In addition to its neutrophil regulatory properties, G-CSF
induces the release of prostaglandin E2 and induces fever, one of
the hallmark clinical features in sJIA (285). Furthermore, G-CSF
can stimulate the peripheral sympathetic nervous system to
release catecholamines (84) which may reduce the number of
osteoblasts and the production of CXCL12 (286, 287).
Interestingly, G-CSF is a strong inhibitor of the NK cell
function, altering the receptor expression profiles and reducing
the cytotoxic and cytokine producing capacity of these cells (288,
289). It is important to note that NK cells are an important group
of innate immune cells involved in the pathogenesis of sJIA. The
role of NK cells in sJIA has recently been reviewed by
Vandenhaute et al. (290). The mutual role of both NK cells
and G-CSF in sJIA requires further investigation. Using a sJIA-
like mouse model, we recently showed that G-CSF regulates the
development of arthritis. Additionally, we demonstrated that G-
CSF stimulates extramedullary myelopoiesis in the spleen.
Neutrophils followed a similar differentiation and maturation
path as described in the BM, which was found to be CEBP/b-
driven (Malengier-Devlies et al., manuscript under revision).

GM-CSF
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
is a cytokine secreted by a variety of cells. The major sources of
GM-CSF include activated T and B cells, monocytes/
macrophages, endothelial cells, fibroblasts but also neutrophils,
eosinophils, epithelial cells, mesothelial cells, chondrocytes,
Paneth cells, and tumour cells may secrete GM-CSF (291–293).
In T cells, the release of GM-CSF is triggered by IL-1b and IL-23
or IL-1b and IL-12 in mice and humans respectively (294–296).
In fibroblasts, endothelial cells, chondrocytes, and smooth
muscle cells, TNF-a and IL-1 are the main inducers of GM-
CSF production whereas in macrophages/monocytes GM-CSF is
predominantly released upon TLR-stimulation (291). GM-CSF
can form a positive feedback loop by activating macrophages and
DCs to produce IL-23, IL-1b, and IL-6 activating Th17 and Th1
cells that in turn express GM-CSF (297). The production can be
inhibited by IFN-g (298), IL-4 (299), IL-10 (300), and
glucocorticoids (301).

GM-CSF is required for the in vivo development of
neutrophils, monocytes, and macrophages from BM precursor
cells and plays a crucial role in the maintenance of the innate
immune homeostasis (302–305). Depending on the dose, GM-
CSF can have different effects on myeloid cell survival,
proliferation, or differentiation (243, 306–308). GM-CSF also
upregulates the antimicrobial function of mature neutrophils and
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enhances ROS production, adherence, killing, phagocytosis, and
antibody-dependent cellular cytotoxicity both in vitro and in vivo
(242, 309). Furthermore, GM-CSF phenotypically alters
neutrophils and can upregulate the expression of the integrin
CD11b, which facilitates adhesion and tissue entry (242, 310).
Following chemo- or radiotherapy, exogenous GM-CSF can be
used to restore the myeloid populations (311). In addition to its
effect on neutrophils, GM-CSF stimulates the activities of
macrophages, DCs, and B cells [reviewed in (312)].

GM-CSF signals via the GM-CSF receptor (GM-CSFR) that is
composed of a low-affinity a chain and a high-affinity b chain.
The b chain is shared with IL-3 and IL-5 receptors (307). GM-
CSFR is expressed on myeloid cells and some non-hematopoietic
cells, but not on T cells (313). Four main signalling pathways can
be triggered by G-CSFR (314–316). The main pathway involves
JAK2/STAT5 signalling and facilitates the activation of genes
such as pim-1, CIS, and cyclin to induce cell myeloid
differentiation and proliferation (317–319). Next, both the
phosphatidylinositol-3-kinase (PI3K) and JAK/STAT-Bcl-2
signalling pathway are involved in cell survival (320).
Eventually, the ERK1/2 and NK-kB pathways mediate cell
differentiation and inflammation (321, 322).

Whereas GM-CSF-deficient mice have an impaired
reproductive capacity and develop pulmonary alveolar
proteinosis (PAP), GM-CSF-deficient mice have a normal basal
granulopoiesis and show no alterations in peripheral blood
counts (271, 323, 324). This indicates that other growth factors
aside from GM-CSF have a redundant role in myeloid cell
development and differentiation under steady-state conditions.
In emergency granulopoiesis, GM-CSF plays an important role
and GM-CSF-deficient mice fail to control infections with L.
monocytogenes orM. avium (270, 325). In contrast, mice lacking
the three myeloid colony-stimulating factors [G-CSF, GM-CSF,
and macrophage colony-stimulating factor (M-CSF)] still mount
an inflammatory response in a sterile model of peritonitis (272).
Interestingly, GM-CSF (but also IL-3 and IL-6) can restore the
lack of G-CSFR expression in C/EBPa-deficient mice and can
initiate a C/EBPa-independent granulopoiesis (326–328). In
vitro studies suggested C/EBPb as the driving transcription
factor in this process, since C/EBPb-deficient hematopoietic
cells had impaired responsiveness to GM-CSF (132).

GM-CSF has a pathological role in Th17-driven autoimmune
diseases such as multiple sclerosis (MS) and RA (294, 297, 329).
Consequently, the ablation of GM-CSF signalling could suppress
the disease in models of arthritis, multiple sclerosis (MS), and lung
disease (308, 330–332). In patients with JIA, the frequency of GM-
CSF producing T helper cells was significantly increased in the
synovial fluid and correlated with an increased ESR (333, 334). sJIA
patients show increased plasma levels of GM-CSF as compared to
healthy controls and a significantly decreased level was observed in
the anakinra responder group (80). In the sJIA-like mouse model,
depleting GM-CSF however had no effect on the observed disease
symptoms (unpublished results from our laboratory).

IL-17
IL-17 is a pro-inflammatory cytokine that is mainly secreted by
Th17 cells. Th17 cells are induced from naïve T cells in the
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presence of both TGF-b and IL-6 (in mice) or IL-1b (in humans).
The pro-inflammatory cytokines TNF-a and IL-1b can
synergistically increase IL-6 production, further contributing to
Th17 cell differentiation. Following activation, RORgt is induced,
which promotes the expression of IL-17 and the IL-23 receptor
(IL-23R). Subsequent IL-23-signalling further increases the
RORgt and IL-17 expression in a STAT3-dependent way (335).
Although IL-17 was first described as a T cell-secreted cytokine,
it can also be produced by innate immune cells such as gd T cells
(336). Since these cells do not require induction of the IL-23R,
these cells may induce a fast IL-17 response to IL-1b or IL-23
without any T cell receptor engagement (337). Note that together
with IL-1b, S100 proteins may promote Th17, gd T cell
development, or induce IL-17 expression in autoreactive CD8+

T cells, sustaining a potentially important amplification loop
mediated by activated neutrophils (197, 338–340).

In sJIA patients, plasma or serum levels of IL-17 were found to
be either normal or increased compared to those of HCs (168, 340,
341). Intracellular flow cytometric staining showed that IL-17 was
increasingly expressed in circulating gd T cells of patients with
sJIA. Furthermore, an increased number of IL-17-producing T
cells in patients was reported (340, 342). Using the sJIA-like
mouse model, we showed that IL-17 is a major cytokine driving
the disease pathogenesis (343). In analogy, in patients with sJIA,
the development of anaemia was linked to IL-17 since a positive
correlation was seen between circulating IL-17 and the
erythropoiesis signature (344). In addition to the development
of anaemia, IL-17 expression may explain multiple disease
symptoms including arthritis, fever (e.g. by the release of
prostaglandins such as PGE2), and neutrophilia (148, 345–348).

Already since the first reports describing IL-17, an indirect
role of the cytokine on neutrophil proliferation and
differentiation was demonstrated (281). IL-17 mainly functions
on epithelial, endothelial, and stromal cells, inducing the
expression of pro-inflammatory cytokines, growth factors, and
chemokines that regulate granulopoiesis, recruitment, and life
span of new neutrophils (349). IL-6 was the first identified target
gene downstream of IL-17, regulating granulopoiesis (350).
Furthermore, IL-17 induces the production and release of the
two main granulocytic growth factors, namely G-CSF and GM-
CSF (281, 351, 352). Since IL-23 is the major regulator of IL-17
release and subsequent G-CSF induction, its pathway is often
referred to as the “IL-23-IL-17-G-CSF axis” (353). Remark that
this axis also plays a central role during neutrophil homeostasis.
Here, phagocytosis of dying neutrophils by specialised
macrophages in the tissue i.e. lung, BM, or spleen, may block
the secretion of IL-23 and subsequent IL-17-regulated neutrophil
release (described above) (112, 354). IL-17 also induces the
production of other pro-inflammatory cytokines including
TNFa, IL-1b as well as cyclooxygenase 2 (COX2), and
inducible nitric oxide synthase (iNOS), which all directly or
indirectly regulate the formation of new neutrophils (355). Next,
IL-17 also regulates the attraction of neutrophils via the
induction of various chemokines i.e. CXCL1 (KC), CXCL2
(MIP2) , CXCL6 (GCP-2) , or CXCL8 (IL-8) (356) .
Furthermore, IL-17 can stimulate endothelial expression of P-
selectins, E-selectins, and integrin ligands including ICAM-1 and
Frontiers in Immunology | www.frontiersin.org 15
VCAM, enhancing the neutrophil mobilisation (357). Remark
that neutrophils themselves can form a positive feedback loop
during neutrophil recruitment by releasing pro-inflammatory
cytokines and chemokines (8). Unfortunately, no reports exist on
the use of IL-17 blocking agents (such as secukinumab,
ixekizumab, or bimekizumab) in treating sJIA patients nor on
its role in driving neutrophilia.

IL-1b
IL-1b is a cytokine with many pro-inflammatory activities.
Several inflammatory cell types including activated monocytes,
neutrophils, or macrophages secrete the cytokine via a two-step
mechanism. PAMPs or damage-associated molecular patterns
(DAMPs) induce the transcription of pro-IL-1b. Subsequent
processing into active IL-1b by inflammasomes requires the
presence of a second stimulus (358). IL-1b can bind its IL-1R
type I (IL-1RI) that, together with the IL-1 receptor accessory
protein (IL-1RAcP), induces MyD88-dependent signalling (359).

The pro-inflammatory activity of IL-1b is further regulated by
the naturally occurring IL-1 receptor antagonist (IL-1Ra) and by
IL-1 receptor type 2 (IL-1R2) (360). IL-1Ra blocks the binding of
IL-1 to its signalling receptor. IL-1R2, which is mainly expressed
on neutrophils and their precursors, lacks the signalling Toll/IL-
1R domain and regulates the pro-inflammatory activity of IL-1b
by acting as a decoy receptor (361, 362). The IL-1R2 has a higher
affinity for IL-1 than for the IL-1Ra and thus further enhances
the anti-inflammatory function of IL-1Ra (363). The surface
expression of IL-1R2 is tightly regulated. Anti-inflammatory
molecules such as glucocorticoids may augment the surface
expression of IL-1R2 and may in part explain the beneficial
effects of glucocorticoid treatment in sJIA (364, 365). Pro-
inflammatory molecules such as ROS, LPS, TNF-a, leukotriene
B4, and fMLF can initiate a rapid proteolytic cleavage of the
membrane-bound IL-1R2 by different proteases (364, 366).

Myelopoiesis is stimulated both directly and indirectly upon
binding of IL-1b to its receptor. IL-1b itself or in synergy with
other growth factors (e.g. G-CSF), can induce the proliferation
and differentiation of HSPCs and GMPs. This induction is based
on the activation of PU.1 and can be blocked in IL-1R1-deficient
mice (367, 368). In naïve conditions, IL-1R1-deficient mice have
no defects in myeloid cell numbers (369). Alternatively, IL-1b
can indirectly regulate granulopoiesis by modulating the
production of neutrophilic growth factors and inflammatory
mediators including IL-3, IL-6, G-CSF, and GM-CSF (121,
370–372). More importantly, IL-1b - together with IL-23 - is a
potent inducer of IL-17 expression in CD4+ T cells or gd T cells
(337, 373). IL-1b additionally regulates the recruitment of
neutrophils by the production of neutrophil attracting
chemokines such as CXCL1, CXCL2, or CXCL8 and by the
induction of adhesion molecules on endothelial cells (370, 374,
375). Interestingly, IL-1b can also directly prime neutrophils for
ROS production or NET formation and may prolong their
lifespan (149, 244, 376–378).

Many of the symptoms observed in sJIA patients including
fever, rash, thrombocytosis, neutrophilia, and arthritis, can be
explained by the increased production of IL-1b (359). However,
plasma IL-1b levels are hard to measure and multiple studies
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failed to show increased plasma or serum IL-1b levels (340, 341,
379–382). Neither was an increased IL-1b gene expression profile
observed in patients (383–385). Increased IL-1b production was
demonstrated upon stimulation of PBMCs with serum of sJIA
patients. However, a reduced IL-1b secretion by monocytes of
sJIA patients was reported, suggesting that other cellular sources,
such as neutrophils, might play an important role in the
production of IL-1b in these patients (168, 218, 386). The
successful treatment with IL-1-blocking agents such as
anakinra, canakinumab, and rilonacept was the first proof of
the importance of IL-1 in sJIA (218, 222, 381, 387, 388). IL-1
blocking therapies are reported to be equally beneficial as first-
line therapy, underlining the importance of IL-1b at the disease
onset (221, 389). This is in line with the “window of opportunity”
that has been proposed by Nigrovic (345). A localised action of
IL-1b or activity at low levels might explain the absence of an
elevated plasma IL-1b signature (148). Follow-up studies and the
identification of single nucleotide polymorphisms (SNPs) in IL-
1-related genes have also pointed towards a pathological role for
IL-1b in sJIA (158, 168, 218, 384).

In sJIA, the number of neutrophils was rapidly normalised
during disease remission and after treatment with anakinra (149).
A high (immature) neutrophil count was found to correlate with a
good response to anakinra and a short disease duration assuming
that the effect of anakinra is mainly due to its effects on
neutrophils (149, 168). Indeed, IL-1b has been demonstrated to
be an important cytokine in the priming of neutrophils, which
could be reverted upon anakinra treatment (149). Also in patients
with AOSD, a strongly elevated neutrophil number was associated
with an IL-1 gene expression profile and a pronounced
upregulation of canakinumab-responsive genes (390).

IL-6
IL-6 can be produced by almost all stromal and immune cells in
response to e.g. IL-1b, TNF-a, or TLR ligands. IL-6 binds the IL-
6 receptor (IL-6R) which is expressed on a wide variety of cell
types and signals in a JAK-dependent way (391, 392).

Although IL-6 is not necessary for maintaining neutrophil
homeostasis (393), the cytokine plays a critical role during
emergencies (394–396) and may stimulate granulopoiesis in
the absence o f bo th G-CSF and GM-CSF (371 ) .
Administration of IL-6 induces a biphasic neutrophilia in
animals via a rapid mobilization of neutrophils from the
marginated pool into the circulation (397–399), followed by an
accelerated release of neutrophils from the bone marrow, which
is induced by a stimulated myeloid cell differentiation (371, 397,
400, 401). IL-6 deficient mice show an impaired neutrophil
response after C. albicans infection (402) and patients treated
with the humanised monoclonal anti-IL-6R antibody
tocilizumab, show transient neutropenia, all demonstrating the
neutrophil mobilising properties of IL-6 (403–408). Interestingly,
in C/EBPa KO mice, IL-6 can induce neutrophil differentiation
by restoring the G-CSF receptor expression (16, 327).

Classically, IL-6 signals upon binding to its membrane-bound
IL-6-receptor alpha subunit (IL-6Ra), resulting in gp130
homodimerization, phosphorylation of STAT3 and STAT1
proteins, and downstream signalling (409). IL-6 can also
Frontiers in Immunology | www.frontiersin.org 16
promote IL-6 trans-signalling in cells that express gp130 but
lack the IL-6Ra which requires the binding of IL-6 to the soluble
IL-6Ra (sIL-6Ra) into an IL-6/IL-6Ra complex. Neutrophils
themselves are an important source of sIL-6Ra. IL-6Ra can
proteolytically be cleaved via the TNFa converting enzyme-like
enzyme (410) upon stimulation with CRP, CXCL8, C5a, LTB4, or
platelet-activating factor (PAF) (410). In this way, neutrophils
promote IL-6 trans-signalling in other cell types to favour the
resolution of inflammation (411–413). Together with IL-6, the
IL-6/IL-R complex activates endothelial cells to secrete monocyte
chemoattractant protein-1 (MCP-1) (or CCL2) and induces the
expression of adhesion molecules (such as ICAM1 or VCAM) to
limit neutrophil accumulation while favouring monocyte
recruitment (414, 415). This could explain why in animal
models of inflammation, the neutrophilic infiltrate is more
dominant in IL-6 KO than in WT animals (412, 416). The
recruitment of monocytes is protective in acute models, whereas,
during chronic inflammation such as CIA, colitis, or
experimental autoimmune encephalomyelitis (EAE), IL-6
predominantly fulfils pro-inflammatory functions by favouring
mononuclear-cell accumulation, angioproliferation, B cell
maturation, and by promoting the anti-apoptotic properties of
T cells (416–420).

Conflicting results regarding the direct role of IL-6 on
neutrophil function have been reported (421–426). Recently, it
was demonstrated that granulocytes are unable to induce STAT-
signalling upon stimulation with IL-6 since the expression of
gp130 is lost during the maturation of granulocytes (427). One
may therefore speculate that the function attributed to IL-6R in
neutrophils rather results from its effects on contaminating cell
populations (428).

In sJIA, the gene expression of IL-6 (383, 384) and IL-6
protein levels in serum were strongly elevated in patients
compared to HCs (168, 340, 341, 379–381, 429–436).
Furthermore, increased IL-6 levels were measured in the
synovial fluid of sJIA patients (341). Interestingly, high IL-6
levels were associated with more active joint inflammation (437).
Several sJIA symptoms - including fever, thrombocytosis, and
growth impairment - can at least partially be explained by the
elevated levels of IL-6. IL-6 may be responsible for the microcytic
anaemia, by blocking the iron supply to the developing erythroid
cells and induces the production of acute-phase proteins (e.g.
CRP) in hepatocytes (148, 438–440). The crucial role of IL-6 in
sJIA was confirmed by the successful use of the humanised anti-
IL-6 receptor antibody tocilizumab (222, 223, 227). Tocilizumab
treatment could induce neutropenia and increases the risk of
infection in patients. However, these adverse effects were
outweighed by the beneficial effect on the sJIA-like features
(227). Interestingly, the treatment of sJIA patients with
tocilizumab was associated with a significantly different
neutrophilic gene expression profile and marked upregulation
of genes associated with oxidative phosphorylation (441).

IL-18
IL-18 is a pro-inflammatory cytokine constitutively expressed by
monocytes, keratinocytes, and epithelial cells. Like IL-1b, the
cytokine is produced in a premature form (pro-IL-18) that
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requires inflammasome-dependent cleavage by caspase-1 in
order to become biologically active (442, 443). IL-18 binds the
IL-18 receptor expressed on lymphocytes, DCs, and
mesenchymal cells. The cytokine signals like IL-1b in a
MyD88-dependent way and exerts its pro-inflammatory action
increasing the levels of cell adhesion molecules, including
chemokine production, and promoting joint inflammation
(443). IL-18 is a potent inducer of IFN-g and is often referred
to as “IFN-g-inducing factor”. IFN-g, in turn, regulates the
activity of IL-18 via the induction of an IL-18 endogenous
inhibitor, the IL-18 binding protein (IL-18BP), thus setting up
an auto-inhibition loop (442).

IL-18 has pleiotropic effects on neutrophil activation, including
pro-inflammatory cytokine expression, degranulation, and
priming of the oxidative burst (1, 444, 445). Since the activation
of neutrophils induces inflammasome-mediated IL-18 release, the
cytokine can trigger a positive activation loop (446). IL-18 has no
direct effect on granulopoiesis, but can stimulate the secretion of
CXCL1 and CXCL2, two chemokines involved in the recruitment
of neutrophils (447). Indirectly, IL-18 may alter neutrophil
homeostasis by inducing IFN-g in T cells and NK cells (442).

High plasma levels of IL-18 were measured in active sJIA
patients and have been proposed as a candidate biomarker (341,
379, 429, 437, 448). In contrast, the levels of IL-18BP were found
only moderately increased, insufficient to counteract the high
levels of IL-18 (449, 450). Also in patients with inactive disease,
moderately increased levels of IL-18 were measured (341, 379,
429, 437, 448). IL-18 is considered as an important cytokine
involved in the pathogenesis of sJIA (437). A Phase II clinical
trial in which AOSD patients were treated with the IL-18-
blocking recombinant IL-18PB (Tadeking alfa) showed a
favourable safety profile and demonstrated clinical and
laboratory efficacy in 50% of the treated patients. Interestingly,
both the number of neutrophils as well as the neutrophil-
associated S100A8/A9 and S100A12 protein plasma levels were
significantly decreased upon treatment (451).

IFN-g
IFN-g is a cytokine that is produced predominantly by activated
T cells and NK cells upon stimulation with IL-12 and IL-18
(452–454). The cytokine binds to its specific IFN-g receptor that
signals in a JAK/STAT-dependent way. IFN-g is a cytokine with
both pro- and anti-inflammatory properties.

With respect to myelopoiesis, IFN-g favours the production of
monocytes at the expense of neutrophils (455, 456). Consistently,
IFN-g induces the differentiation of human progenitor cells into
monocyts while blocking G-CSF-induced granulopoiesis (457).
IFN-g also inhibits neutrophil recruitment in an indirect way, by
blocking the development of Th17 cells and by counteracting
IL-17- induced neutrophil-related chemokines (458, 459). These
findings explain why IFN-g-deficient mice are marked by
massive granulopoiesis during infection with M. tuberculosis or
T. gondii (460, 461). Similarly, the sJIA-like mouse model
requires an IFN-g-deficient background and is hallmarked by a
massive neutrophilia (343).

IFN-g can also directly stimulate neutrophils e.g. by alterering
the expression of genes involved in migration, chemotaxis,
Frontiers in Immunology | www.frontiersin.org 17
phagocytosis, or apoptosis (462). IFN-g-stimulated neutrophils
have a prolonged life span, an increased capacity for
phagocytosis, oxidative burst, and NET formation, and show
an enhanced pro-inflammatory cytokine expression (463, 464).
In contrast, IFN-g inhibits the expression of neutrophil-specific
chemokines (i.e. CXCL8/IL-8) and the release of key neutrophil-
derived soluble mediators (i.e. MMPs and serine proteases), to
counteract inflammation-induced tissue damage (454, 465–467).
IFN-g also induces the expression of PD-L1 on neutrophils,
which is involved in the suppression of lymphocyte proliferation
(468). Besides, IFN-g tempts the expression of genes involved in
antigen-presentation (209, 462, 463).

In sJIA patients, the role of IFN-g is incompletely understood.
The levels of IFN-g are moderately increased and are low in
comparison to its upstream inducer IL-18 (168, 341, 379).
An increased number of IFN-g producing T cells was found in
patients. However, a lower IFN-g expression was measured in
these cells. In vitro stimulation of PBMCs resulted in a decreased
IFN-g production in patients when compared to healthy
individuals (340, 342). Likewise, sJIA patients display an absent
IFN-g gene signature in their PBMCs (147, 383, 384), NK cells
(379), and synovial tissues (469). NK cells of sJIA patients
produced less IFN-g due to a defective phosphorylation of the
IL-18 receptor upon signalling (379, 450). Since monocytes of
sJIA patients were able to respond to IFN-g, a limited in vivo
exposure was hypothesized in patients (469). Considering the
regulatory effect of IFN-g on IL-17 activity and downstream G-
CSF production, enhanced neutrophilia may be linked to this low
IFN-g exposure. Indeed, using our mouse model, we recently
described a G-CSF-driven extramedullary myelopoiesis in the
IFN-g KO mice upon CFA-immunisation (Malengier-Devlies
et al., manuscript under revision).
CONCLUDING REMARKS

In homeostatic conditions, neutrophil accumulation and
activation are tightly regulated via distinct regulatory
mechanisms that include neutrophil granulopoiesis, release,
storage, extravasation, and clearance. To meet the high
demand for new neutrophils during severe (systemic)
inflammation, emergency granulopoiesis can be induced by
diverse yet partially redundant growth factors and cytokines.
Given their antimicrobial properties, capacity to release soluble
mediators, and direct cell interactions, this de novo generation of
neutrophils might be lifesaving during infectious inflammation.
However, in the context of autoimmunity, autoinflammation
(including sJIA) or disproportionate infection-induced
inflammation (including COVID-19) (470), excessive
neutrophil production and activation might be destructive to
the host. Results from scRNAseq and CyTOF have greatly
improved our understanding of neutrophil ontogenesis in
homeostatic conditions. However, additional research is
needed to understand neutrophil development in emergency
situations and at extramedullary sites. It remains to be
established whether extramedullary-derived neutrophils have
another functionality or plasticity than neutrophils generated
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in the BM. It will also be important to understand the functional
differences between mature and immature neutrophils that
emerge during the emergency granulopoiesis. Next, advanced
insights on neutrophil functionality, plasticity, and overlap
between diverse pathophysiological situations are warranted.
For example, in sJIA, it remains particularly interesting to
understand and compare the function and phenotype of
neutrophils in the joints and blood. This may help us to
understand their role in the pathophysiology and the
discrimination between the arthritic and febrile phases of the
disease. A better understanding of the different cytokines and
growth factors regulating neutrophil homeostasis would enable
the development of new targeted therapies that prevent
uncontrolled tissue inflammation without impairing the anti-
microbial function of neutrophils. Yet we are not able to
discriminate between a direct effect of the cytokines and
growth factors on the observed disease symptoms or an
indirect role via its neutrophil-regulatory properties.
Neutrophil depletion studies in the sJIA-like mouse model are
an excellent tool to understand the role of neutrophils in the
pathophysiology of sJIA. Unfortunately, depletions were
incomplete and were followed by a fast rebound of new
immature neutrophils (471). In sJIA, we might speculate
whether, similar to what has been reported for IL-1b, there
would exist a window of opportunity in which G-CSF-, GM-
CSF-, IL-17- or IL-18-targeting drugs could be considered (e.g. in
patients that do not respond to IL-1 or IL-6 therapies or during
the arthritic stage of the disease). Next, we could also envisage
studying the clinical effects of drugs targeting neutrophil
migration. This could be drugs that block the main chemokine
receptors expressed by neutrophils (e.g. CXCR1 and CXCR2),
adhesion molecules (e.g. CD11b), or chemoattractants [e.g. IL-8
(CXCL8) in humans or GCP-2 (CXCL6), KC (CXCL1), and
MIP-2 (CXCL2) in mice]. In conclusion, sJIA is a unique
Frontiers in Immunology | www.frontiersin.org 18
childhood autoinflammatory immune disorder characterised by
massive neutrophilia. Neutrophils in sJIA have a hyperactivated
phenotype and are thought to play an important role in the
pathophysiology of sJIA. The exact role of neutrophils on sJIA-
like features including its regulatory cytokines and growth
factors are gradually being revealed but certainly require
further investigation.
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52. Pellmé S, Mörgelin M, Tapper H, Mellqvist U-H, Dahlgren C, Karlsson A.
Localization of Human Neutrophil Interleukin-8 (CXCL-8) to Organelle(s)
Distinct From the Classical Granules and Secretory Vesicles. J Leukoc Biol
(2006) 79(3):564–73. doi: 10.1189/jlb.0505248

53. Ng LG, Ostuni R, Hidalgo A. Heterogeneity of Neutrophils. Nat Rev
Immunol (2019) 19:255–65. doi: 10.1038/s41577-019-0141-8

54. Marini O, Costa S, Bevilacqua D, Calzetti F, Tamassia N, Spina C, et al.
Mature CD10 + and Immature CD10 - Neutrophils Present in G-CSF-
Treated Donors Display Opposite Effects on T Cells. Blood (2017) 129
(10):1343–56. doi: 10.1182/blood-2016-04-713206

55. Kim M, Yang D, Kim M, Kim S, Kim D. A Late-Lineage Murine Neutrophil
Precursor Population Exhibits Dynamic Changes During Demand- Adapted
Granulopoiesis. Sci Rep (2017) 7:39804. doi: 10.1038/srep39804

56. Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, et al.
Identification of an Early Unipotent Neutrophil Progenitor With Pro-
Tumoral Activity in Mouse and Human Bone Marrow. Cell Rep (2018) 24
(9):2329–2341.e8. doi: 10.1016/j.celrep.2018.07.097

57. Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, et al. Single-Cell
Transcriptome Profiling Reveals Neutrophil Heterogeneity in Homeostasis
December 2021 | Volume 12 | Article 766620

https://doi.org/10.1016/j.exphem.2004.08.015
https://doi.org/10.1038/nature10783
https://doi.org/10.1038/nature11885
https://doi.org/10.1038/icb.2015.96
https://doi.org/10.1038/icb.2015.96
https://doi.org/10.1182/blood-2002-06-1780
https://doi.org/10.1016/S1534-5807(02)00201-0
https://doi.org/10.1111/bjh.13938
https://doi.org/10.1126/science.aab2116
https://doi.org/10.1126/science.aab2116
https://doi.org/10.1016/j.cell.2015.11.013
https://doi.org/10.1038/35004599
https://doi.org/10.1073/pnas.0608512103
https://doi.org/10.1038/nature12820
https://doi.org/10.1038/sj.leu.2401808
https://doi.org/10.1189/jlb.0311123
https://doi.org/10.1189/jlb.1003474
https://doi.org/10.1111/imr.12440
https://doi.org/10.1128/MMBR.00057-17
https://doi.org/10.1038/nm1474
https://doi.org/10.1182/blood-2011-12-397091
https://doi.org/10.1128/MCB.21.11.3789-3806.2001
https://doi.org/10.1182/blood.V99.8.2776
https://doi.org/10.1038/sj.onc.1202749
https://doi.org/10.1182/blood-2015-12-684514
https://doi.org/10.1038/s41556-018-0121-4
https://doi.org/10.1038/nature19348
https://doi.org/10.1038/nature19348
https://doi.org/10.1038/ncomms5978
https://doi.org/10.1182/blood-2014-09-600833
https://doi.org/10.1182/blood-2013-12-543850
https://doi.org/10.1182/blood-2013-12-543850
https://doi.org/10.1007/s12185-012-1078-x
https://doi.org/10.3389/fimmu.2014.00448
https://doi.org/10.1182/blood-2002-03-0835
https://doi.org/10.1182/blood-2002-03-0835
https://doi.org/10.1016/j.immuni.2018.02.002
https://doi.org/10.1073/pnas.94.24.13187
https://doi.org/10.1038/nature10107
https://doi.org/10.1189/jlb.0505248
https://doi.org/10.1038/s41577-019-0141-8
https://doi.org/10.1182/blood-2016-04-713206
https://doi.org/10.1038/srep39804
https://doi.org/10.1016/j.celrep.2018.07.097
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Malengier-Devlies et al. Emergency Granulopoiesis in Systemic Inflammation
and Infection. Nat Immunol (2020) 21(9):119–1133. doi: 10.1038/s41590-
020-0736-z

58. Devi S, Wang Y, Chew WK, Lima R, A-gonzález N, Mattar CNZ, et al.
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