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We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS)
device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects’ forehead, covering
the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental
paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in
which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We
compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the
hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system
is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations,
such as in neurorehabilitation.

1. Introduction

Brain-computer interfaces (BCIs) assist people who can-
not use their muscles to communicate with the external
environment. One of the early uses of BCIs was to aid
communication with people who have severe impairment
of muscle movement, for instance, late-stage (“locked-in”)
patients with amyotrophic lateral sclerosis (ALS, also known
as Lou Gehrig’s disease) [1]. Thanks to the rapid advance
of neuroimaging modalities, BCI technology has broadened
its application areas into the game industry, entertainment,
and social neuroscience, for example, by providing alternative
communication methods [2–6].

BCIs can be established by means of several brain imag-
ing modalities, such as near-infrared spectroscopy (NIRS)
[7], electroencephalography (EEG) [8], functional magnetic
resonance imaging (fMRI) [9], magnetoencephalography

(MEG) [10], and electrocorticogram (ECoG) [11]. Invasive
BCI systems, such as ECoG-based BCIs, generally involve
risks associated with the surgical operation for implanting
microelectrodes in the brain and are thus limited for many
potential BCI users. MEG- and fMRI-based systems only
allow stationary and time-limited use due to their cost,
complexity, size, and restricting environment. More compact
and economical neuroimaging technologies, such as EEG or
NIRS, hold the promise of providing lightweight, portable
BCI systems for continuous use in more unrestrained and
natural settings outside the lab, creating the opportunity for
many new applications, such as neurorehabilitation.

EEG-based BCI systems have been most commonly used
for rehabilitation training and for providing communication
and control channels to individuals with limited motor
functions [12–15]. A lightweight EEG-based BCI system with
acceptable performance has been established but is often
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prone to drawbacks such as low signal-to-noise ratio (SNR)
and susceptibility to motion artifacts and volume conduction
[16–19].

NIRS is an emerging neuroimagingmodality that records
the cortical hemodynamic response based on changes in
local optical transmission as measured by pairs of near-
infrared light sources and detectors placed on the scalp
surface [20]. This method is less sensitive to motion artifacts
compared to EEG [21]. NIRS has by now been recognized as
a promising neuroimaging modality that has overcome some
of the drawbacks of EEG [22]. Recently, portable and cost-
effective NIRS systems have become available [23] and have
been actively used in the field of rehabilitation [24–26]. A
defining characteristic of NIRS is the inherent delay of the
measured hemodynamic response on the order of several
seconds (typically > 5 s) [27], which limits its use in time-
critical BCI applications and which requires a relatively long
interstimulus interval (ISI) to gain task-relevant responses of
reasonable quality.The resulting increase of the experimental
time not only drops the overall information transfer rate
usually quantified by bit rate per minute but can also exhaust
the NIRS-based BCI users more easily [28].

To overcome the disadvantages of these individual meth-
ods, NIRS-EEG hybrid (HYB) BCI systems have been sug-
gested to take advantage of superior performance provided
by combining both modalities [29–36]. However, despite the
comparatively low cost and compactness of both EEG and
NIRS systems, the experimental setup of a hybrid system still
poses practical challenges, even in a laboratory environment.
Until now, each system required an individual amplifier,
recording platform, and its own leads, which need to be
affixed to the scalp with reliable optical and electrical contact.
This poses added challenges and leads to generally increased
setup times for HYB systems [32, 37, 38].

To date, to the best of our knowledge, no study that
aims to reduce the complexity of hybrid NIRS-EEG BCI
systems and validate their performance has been reported. In
this study, we implement a lightweight and portable NIRS-
EEG hybrid instrument and demonstrate its use for a hybrid
BCI that has the potential for mobile and continuous use.
We recorded NIRS and EEG signals simultaneously while
the subject performed a word-picture matching test using
simplemental arithmetic (MA), which is similar to the task in
Power et al. [39]. The proposed hybrid system was validated
by comparing its classification accuracies to those of the
unimodal systems (EEG and NIRS).

2. Materials and Methods

2.1. Subjects. Eleven right-handed healthy subjects partici-
pated voluntarily in the experiment (1 male and 10 females,
average age: 25.7 ± 3.2 years [mean ± standard deviation]).
None of them had a history of neurological, psychiatric, or
other disorders that might affect the experimental results. A
written experiment summary was given to the participants,
and each participant signed a written consent form prior to
the experiment and obtained a financial reimbursement after

the experiment. This study was approved by the Ethics Com-
mittee of the Institute of Psychology and Ergonomics, Berlin
Institute of Technology (approval number: SH 01 20150330).

2.2. Apparatus. In the experiment, 14 EEG electrodes and
eight NIRS probes (5 sources and 3 detectors) were placed on
the scalp bymeans of a stretchy fabric cap (EASYCAPGmbH,
Herrsching am Ammersee, Germany). The EEG system used
was an EPOC device (Emotiv Inc., San Francisco, USA) and
was selected for easy setup, wireless form factor, and, in
particular, its economical price.The system had been verified
in previous studies to show comparable performance to other
commercial EEG devices with much higher prices [40–49].

In its original state, the EPOC uses a rigid headpiece of
headphone-like appearance, which would not have allowed
easy integration with NIRS. In a recent study, Debener
et al. [50] demonstrated performance enhancement of the
EPOC system by replacing the original head gear with a
traditional fabric cap and ring electrodes. Following Debener
et al.’s instructions, we dismantled the original hardware
and moved the amplifier electronics into a small custom
plastic case attached to the back of the cap. To provide
good skin contact, we used passive Ag-AgCl ring electrodes
(EASYCAP GmbH) with conductive gel. To measure task-
related brain activation, a custom channel layout was chosen
according to the international 10-10 system [51]. Fourteen
electrodes were placed on frontal (F7, F3, Fz, F4, and F8),
motor/temporal (C3 and C4/T7 and T8), and parietal (P7,
P3, Pz, P4, and P8) areas. Reference and ground electrodes
were attached on the left (TP9) and right (TP10) mastoids,
respectively. The EEG signals were sampled at a 128Hz
sampling rate with provided software named “test bench”
from the manufacturer. A portable NIRS system (NIRSport,
NIRx Medical Technologies, NY, USA) was used to map
hemodynamic responses. Five sources and three detectors
were located over the prefrontal area around Fpz, Fp1, and
Fp2 with an interoptode distance of 30mm. Adjacent pairs
of source and detector optodes comprised nine physical
channels. NIRS signals were recorded at a 12.5Hz sampling
rate with NIRStar software, provided by the manufacturer.
Figure 1 shows the channel layout of NIRS optodes and EEG
electrodes and the headgear setup on a phantom head.

2.3. Experimental Protocol. Subjects sat still in a comfortable
armchair in front of a 24-inch LCD monitor. NIRS and EEG
signals were acquired simultaneously from each subject while
performing MA as a cognitive task and rest condition as a
baseline task (BL). During MA, the subjects were instructed
to subtract a single-digit number (between 6 and 9) from a
random three-digit number and subtract it again from the
result over and over as fast as possible until the trial ended
(e.g., 544−7 = 537, 537−7 = 530, and 530−7 = 523). During
the BL task, they were instructed not to think anything to
maintain a low cognitive load state, while moving the body
as little as possible. Even though the subject was instructed
not tomove the head and body, unintended subtle movement
and unavoidable ocular movement might occur during the
experiment. The quality of the EEG signal is easily affected
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Figure 1: Channel layout of near-infrared spectroscopy (NIRS; Ch1–
Ch9) and electroencephalography (EEG; (a)) and a headgear setup
on a phantom head (b). Five sources (red circles, 1–5) and three
detectors (green circles, 1–3) are located around Fp1, Fpz, and Fp2.
Fourteen electrodes are located at Fz, F3, F4, F7, F8, C3, C4, T7, T8,
Pz, P3, P4, P7, and P8. Reference and ground electrodes are located
on TP9 and TP10, respectively.

by such artifacts, while the quality of the NIRS signal is less
vulnerable to them.

Figure 2 presents a timing sequence of a single trial. The
experiment was designed as a Stroop word-picture test. A
similar task was used in Power et al. [39]. A single trial was
composed of task presentation (congruent or incongruent
task, 2 s), followed by initial MA problem presentation (2 s),
task period (10 s), and rest period (15–17 s). At the task
presentation stage, two pictures (e.g., animals, fruits, and
sport activities) were displayed on the screen side by side, and
the name of either of the two objects was shown on the top of
the screen. First, the left picture was highlighted using a red
box.After 2 s, a randomMAproblem replaced theword.After
2 s, the problem was replaced by a black fixation cross with a

short beep (250ms) and the task period started. After the task
period, a rest period with a random length of 15–17 s started
with a short beep (250ms), in which a large black fixation
cross was displayed in the middle of screen. After the trial
was finished, the same procedure was iterated with the right
picture highlighted instead of the left one. If the displayed
name matched the picture (congruent), subjects were asked
to perform the MA task. On the other hand, if they were
not matched (incongruent), subjects were asked to try not
to think anything as a baseline task during the task period.
During the rest period, subjects were instructed to relax and
think nothing (BL). Therefore, congruent and incongruent
trials were presented in a row as a pair, either “congruent first-
incongruent later” or “incongruent first-congruent later,” for
the same picture set. They were presented in a random order.
A single trial consisted of both MA and BL trials, and a
session consisted of 10 trials (i.e., 10 MA + 10 BL). After
finishing a single session, a short break was given in which
subjectswere allowed tomove their bodies but not to leave the
seat. The session was repeated three times constituting three
sessions. Overall, although the number of “congruent first-
incongruent later” and “incongruent first-congruent later”
trials might not be equal within each session, a total of 30MA
and 30 BL were acquired across the three sessions.

2.4. Data Analysis

2.4.1. Point-Biserial Correlation Coefficient. A point-biserial
correlation coefficient (r-value) is a measure of correlation
between a dichotomous variable and a continuous variable.
The r-value was estimated to determine the spectral and
spatial distribution of separability. The r-value at the time of
interest is defined as [52]

𝑟 (𝑡) =
√𝑁1 ⋅ 𝑁2
𝑁1 + 𝑁2

𝐸 [𝑥 | 𝑦 = 1] − 𝐸 [𝑥 | 𝑦 = 2]

𝜎 [𝑥 | 𝑦 ∈ {1, 2}]
, (1)

where 𝑡 ∈ [1, 2, . . . , 𝑇] and t is the length of the time of
interest and 𝑁1 and 𝑁2 denote the total number of trials of
class 1 and class 2 (MA and BL in this study), respectively.
𝑥 denotes the data points that belong to class label 𝑦 = 1 or
2. 𝐸[⋅] and 𝜎[⋅] are mean and standard deviation operators,
respectively. The 𝑟-value was also utilized to calculate the
most discriminative frequency band for the EEG feature
extraction and a spatial distribution of separability for the
NIRS temporal response.

2.4.2. Preprocessing. Offline EEG and NIRS data analyses
were performed using MATLAB 2013b (The MathWorks,
Natick, USA), in particular with the EEGLAB toolbox and
BBCI toolbox [2, 53]. For NIRS data, raw light intensity
signals were band-pass filtered (3rd-order Butterworth zero-
phase filter with a passband of 0.01–0.2Hz). Concentration
changes of oxyhemoglobin (Δ[HbO]) and deoxyhemoglobin
(Δ[HbR]) were then calculated according to the modified
Lambert–Beer law [54, 55]. Baseline correction was per-
formed using 5 s of prestimulus period. For EEG, the data
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Figure 2: Timing sequence diagramof a single trial for the Stroopword-picturematching test.Thewhole processwas done twice consecutively
for congruent and incongruent tasks, which comprised a single trial. “Congruent first-incongruent later” and “incongruent first-congruent
later” tasks were randomly presented. At the task presentation, the left- or right-side picture was sequentially selected. The name of either
picture was displayed for 2 s. At initial mental arithmetic (MA) problem presentation, an example of a three-digit number minus a one-digit
number (6 to 9) was shown instead of the name for 2 s. In a task period starting with a short beep (250ms) and black fixation cross, subjects
performedMA or baseline (BL) task if the word and picture were matched (congruent) or mismatched (incongruent), respectively. After 10 s,
a rest period started with a short beep (250ms), and a large black fixation cross was displayed at the center of the screen.

were rereferenced according to the common average refer-
ence method. Subject-dependent band-pass filtering (3rd-
order Butterworth zero-phase filter) was performed using the
point-biserial correlation coefficient. The subject-dependent
passbands showing the highest r-values were determined by
a heuristic method [56]. The passbands were selected in 𝛼- (1
of 14 subjects), 𝛽- (2 of 14), 𝜃- to 𝛼- (4 of 14), 𝛼- to 𝛽- (3 of 14),
and 𝜃- to 𝛽-bands (4 of 14).

2.4.3. Classification. Weperformed a single trial classification
of NIRS and EEG data to discriminate MA- and BL-related
responses [29, 57]. To examine classification accuracy change
with respect to different timewindows, a sliding timewindow
was used to extract the features of both modalities (window
size: 5 s, step size: 1 s) between−5 and 25 s from stimulus onset
to account for the hemodynamic delay with respect to brain
activation [58]. The relatively long window size was chosen
to consider the relatively slow hemodynamic responses com-
pared to EEG, thereby increasing the performance of each
modality as well as the HYB system. Both NIRS and EEG
features were calculated for each sliding time window. All
NIRS and EEG channels were used for feature extraction and
classification (9 and 14 channels). For NIRS, the mean values
and average slopes of Δ[HbO] and Δ[HbR] of each channel
were calculated as NIRS features, which are widely used for
NIRS data classification [7]. For EEG, the common spatial
pattern (CSP) algorithmwas applied to the preprocessed EEG
data. EEG features were calculated as the log-scaled variance
of CSP-filtered data (first and last 2 components containing
the most discriminative information). The feature vectors

of each sliding time window were independently used for
the classification. Tenfold cross-validation was performed 10
times for each sliding window.

For classification, shrinkage linear discriminant analysis
(sLDA) was used [52]. The shrinkage parameter was esti-
mated as described previously [59, 60]. In order to confirm
the advantage of adding EEG data to NIRS data, the correct
answer ratio was estimated not only for the EEG orNIRS data
individually but also for a combination of both modalities.
For the latter case, a metaclassification approach based
on sLDA was used. Normalization is not necessary when
concatenating EEG and NIRS features for metaclassification.
This is because, for metaclassification, both EEG and NIRS
individual classifiers yield LDA-projected EEG and NIRS
featureswith the same scale, which are combined for the input
of the metaclassifier. The detailed information regarding the
metaclassifier is provided in Fazli et al. [32].

3. Results

3.1. Grand Average of EEG and NIRS Data Patterns. Grand
average event-related (de)synchronization (ERD/ERS) pat-
terns evoked by MA, BL, and their difference (i.e., MA-BL)
at the two midline sites (Fz and Pz) in the frequency band
of 4–35Hz (theta to beta band) are shown in Figure 3. Fz
and Pz represent frontal and parietal areas, respectively. Two
dotted lines at t = 0 and 10 s denote the onset of task and rest
time, respectively. During MA (0–10 s), ERDs were broadly
observed ranging from 𝜃- to 𝛽-band, while clear ERS patterns
appeared in a narrow band around 10Hz. On the other
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Figure 3: Grand average time-frequency analysis results for event-related (de)synchronization (ERD/ERS) in the frequency band of 4–35Hz
in frontal ((a) MA, BL, and MA-BL at Fz from left to right) and parietal areas ((b) MA, BL, and MA-BL at Pz from left to right).

hand, fewer ERD/ERS patterns were observed during BL
task. Thus, the distinct difference of ERD/ERS between MA
and BL was widely observed in the corresponding frequency
band. In Figure 3, 𝛼-band or 𝛽-band (8–30Hz) is included
in the passband of 12 (85.7%) or 9 (64.3%) of 14 subjects,
respectively. Figures 4(a)–4(d) show the grand average of CSP
patterns that correspond to the eigenvectors for the highest
and lowest two eigenvalues (𝜆) for CSP [56]. Note that frontal
and parietal areas are mainly associated with task-relevant
activation. Figures 5(a) and 5(b) show the grand average time
courses of the NIRS responses and the time-dependent scalp
plot of log(𝑝) significance values based on the r-value, respec-
tively. The red and blue solid lines in Figure 5(a) correspond
to MA-related and BL-related activation, respectively, with
log(𝑝) significance values indicated in the horizontal color
bar below the curve plots. Two channels with the highest
significance for each chromophore are presented, where
Δ[HbO] gradually decreases and Δ[HbR] increases after
onset time and they start returning to the baseline after about
15 s during MA. Compared to MA, no distinct responses are
observed during BL task. Figure 5(b) represents spatial maps
of log(𝑝) significance values for the NIRSmeasurements.The

color bar on the right side indicates the scale of log(𝑝). In the
color bar, red (positive) and blue (negative) colors indicate
the higher values of MA-related data and BL-related data,
respectively. In the scalp plot, significant Δ[HbR] patterns on
the left hemisphere are mostly due to MA, while Δ[HbO]
shows a bilateral pattern. Interestingly, significant Δ[HbO]
patterns appear (10–15 s) and disappear (20–25 s) with a slight
delay compared with Δ[HbR].

3.2. Classification. Table 1 denotes the maximum accuracies
of each subject among the tested time windows. Eight of
eleven subjects showed the EEG accuracy exceeding the BCI
performance threshold (>70% for binary communication
[61]) and scored 82.0 ± 11.2% on average. All subjects
exceeded the threshold accuracy when NIRS data was used
(HbR +HbO) and scored 85.7±4.9%on average. For all three
cases combining EEG data with NIRS data, classification
performance was significantly improved (e.g., HbR: 81.4 ±
7.2% versus HbR + EEG: 86.3 ± 8.4%; Wilcoxon rank-sum
test, 𝑝 < 0.05). Since HbR + HbO scored the highest mean
accuracy among the tested NIRS chromophores (HbR, HbO,
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Figure 4: Grand average spatial patterns for all corresponding eigenvalues: 𝜆 = (a) 0.36, (b) 0.41, (c) 0.67, and (d) 0.77. Note that the signs of
the spatial patterns are irrelevant.

Table 1: Maximum classification accuracies of each subject for near-infrared spectroscopy (NIRS), electroencephalography (EEG), and their
possible combination (HYB) after onset of task period.

Subject EEG HbR +EEG HbO +EEG HbR + HbO +EEG
VP001 66.8 86.3 86.0 86.7 84.7 89.0 87.5
VP002 85.8 78.2 86.0 85.2 84.8 84.3 85.8
VP003 88.7 87.2 91.5 87.5 90.2 90.5 93.3
VP004 67.5 82.2 82.0 72.2 77.7 83.0 82.5
VP005 88.3 80.8 88.3 83.0 90.0 82.0 88.3
VP006 96.7 90.5 97.3 85.8 96.7 93.5 98.0
VP007 93.8 86.8 93.7 89.5 94.2 90.3 93.7
VP008 88.2 81.8 89.7 90.5 92.0 89.8 91.8
VP009 61.5 62.3 64.5 74.3 75.2 78.3 77.0
VP010 86.8 83.2 90.3 76.7 90.3 83.3 91.2
VP011 78.3 76.5 79.5 79.5 82.0 78.5 81.2
Mean 82.0 81.4 86.3∗∗ 82.8 87.1∗ 85.7 88.2∗

Std 11.2 7.2 8.4 5.9 6.5 4.9 5.9
∗𝑝 < 0.05 and ∗∗𝑝 < 0.01 (Wilcoxon signed rank-sum).
∗HbR/HbO: deoxyhemoglobin/oxyhemoglobin.
∗Std: standard deviation.

and HbR + HbO), HbR + HbO represents the NIRS result
hereafter. The classification of HbR + HbO + EEG could
enhance the accuracy by 2.5% and 6.2% compared to NIRS
and EEG alone, respectively.

The grand average classification accuracies with error
bars indicating the standard errors are presented in Figure 6.

During the task period (gray shaded period), EEG accuracy
reached the highest value at t = 6 s. Due to the hemodynamic
delay, NIRS showed the highest value 4 s after the end of the
task (t = 14 s). The classification performance of the hybrid
modality was significantly higher than that of EEG or NIRS
for most time periods or was at least comparable. In Figure 6,
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red and blue asterisks represent time windows in which the
classification accuracies of the HYB were significantly higher
than those of EEG or NIRS alone, respectively.

Figure 7 shows the performance comparison between the
NIRS and HYB.The comparisons were made where the EEG,
HYB, and NIRS scored the maximum accuracy according to
the results shown in Figure 6 (t = 6, 11, and 14 s, resp.). At t = 6,
the performance comparison between the EEG andHYBwas

also provided (see red circles). The number on the upper left
side denotes the percentage of the improved results by HYB.
All subjects’ performanceswere improved byHYBat t =6 and
11 s (𝑝 < 0.01). At t = 14 s, theHYBwas not capable of showing
significantly better performance than NIRS (𝑝 = 0.482). This
might be caused by less contribution of EEG features to the
performance after t = 10 s, when less task-relevant activation
was produced after the task period.
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below indicate the time periods in which the accuracies of HYB
were significantly higher than those of NIRS (red) and EEG (blue),
respectively. Error bars along with the solid lines show the standard
errors.

4. Discussion

We aimed to establish a lightweight hybrid BCI system by
combining a portable NIRS with an economical EEG system.
The classification results verified that the simultaneous use of
EEG and NIRS data was beneficial to improve classification
performance. In particular, all subjects (except one: VP001)
showed increased performance when the hybrid modality
was used (see Table 1). Some previous studies have already
confirmed that a hybrid BCI system combining NIRS with
EEG can improve system performance, but they used station-
ary and bulky devices, thereby limiting application outside
the laboratory setting [32, 37]. Since our hybrid system
was implemented by combining a portable NIRS with an
economical EEG system, it can be widely used and easy to
handle not only in laboratory settings but also in out-of-lab
scenarios.

Even though we verified the feasibility of the hybrid
neuroimaging system in a typical BCI scenario, it may also
be used for neurorehabilitation purposes, such as restoring
motor functions lost in neurological disorders. In this study,
MA was selected as a cognitive task to demonstrate the
usability of our system because it is one of the stable
and consistent cognitive tasks that can produce distinct
task-relevant brain activation. As the light and convenient
NIRS optodes can easily be reorganized to configure the
channels, they are able to measure signals from different
brain areas such as motor or occipital areas. However,
we must note that careful hair preparation is necessary
to avoid interference with the signal acquisition in this
case.

In this study, we implemented a MA-based BCI system
to demonstrate the feasibility of our hybrid EEG-NIRS
neuroimaging device.This device generally showed low oper-
ation speed (10 s is theoretically required for producing one
command) compared to other paradigms, such as P300 and
steady-state visual evoked potential (SSVEP) [62]. However,
as the EEG electrodes and NIRS optodes of our hybrid
device can be easily reorganized, BCI systems employing
other brain areas or paradigms could also be implemented
using our hybrid neuroimaging device. For example, it is
possible to develop an SSVEP-based BCI system by moving
the recording sensors of our hybrid system to occipital
areas. It has been well documented that an SSVEP-based
BCI system shows high operation speed, and, in particular,
a recent study demonstrated that the simultaneous use of
EEG and NIRS can further increase the operation speed of
an SSVEP-based BCI system [63]. Thus, our hybrid EEG-
NIRS recording device may also be used to develop a high-
speed BCI system for other BCI paradigms by appropriately
modifying the configuration of recording sensors.

It is generally acknowledged that increased Δ[HbO] and
decreased Δ[HbR] are induced in task-relevant brain areas
during performance of the corresponding task. As seen in
Figure 5(a), the opposite pattern to the typical NIRS signal
pattern was observed, in that the increasing trend of Δ[HbR]
was synchronized with the decreasing trend of Δ[HbO]
from the task onset. Note that these opposite patterns are
also frequently shown in the literature [64, 65]. Particularly,
significant Δ[HbO] decrease and Δ[HbR] increase were
observed during MA tasks in frontal areas [64–66].

As mentioned previously, system performance improve-
ment with respect to the classification accuracy was not
accomplished by HYB after t = 14 s. This likely results from
the lack of task-relevant EEG signals after task termination,
and, therefore, EEG does not contribute to the enhancement
of system performance at this time. Moreover, before t =
6 s, because of inferior temporal responsiveness of NIRS due
to inherent hemodynamic delay, the system performance
improvement is also not observed. It is worth mentioning
that, because of the delayed responses of NIRS, it would be
hard to implement a high-speed BCI system using solely
NIRS; nevertheless, NIRS is helpful as a second modality
when incorporated in a hybrid BCI with EEG. Based on
changing performance over time, an optimal task time length
can be determined between 6 and 12 s for HYB. However,
for t = 6 s, the degree of performance improvement is less
than that for t = 12 s, while 12 s may degrade the usability
of the NIRS system owing to the relatively long task time.
The tradeoff between the time period to make a decision and
performance should be considered based on whether system
speed or performance is preferred.

5. Conclusion

Recently, various easily wearable commercial EEG devices
have been released [67–70]. These devices have lightweight
and easy-to-use configurations. They are used in the field of
rehabilitation as well as in entertainment. In this study, we
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Figure 7: Comparisons of classification performances betweenNIRS andHYB (blue circles) at t =6 (a), 11 (b), and 14 s (c). At t =6, comparison
of classification performances between EEG and HYB (red circles) and between NIRS and HYB (blue circles) is provided. The three time
points are selected when EEG, hybrid, and NIRS show the highest classification accuracies according to the results shown in Figure 6. Circles
above the red diagonal indicate that the performance is improved by HYB compared with NIRS/EEG. Percentage values indicate the percent
of subjects showing performance improvement by HYB compared with NIRS (black) or EEG (red). 𝑝 values indicate significance of the
performance improvement by HYB compared with NIRS (black) or EEG (red).

verified the usefulness of a lightweight hybrid BCI system by
combining a portable NIRS and a cost-effective EEG system.
Our hybrid EEG-NIRS system allowed for improved classifi-
cation performance. Despite probable doubt with respect to
system stability and reliability of the economical EEG system,
we verified that the proposed system is capable of stably
enhancing the system performance. The concurrent use of
the portable NIRS and EEG systems can help us to use the
combined system more practically in a cost-effective way.
Therefore the proposed system has a high potential for future
BCI research in out-of-lab scenarios at low cost.
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