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Abstract 

Background:  Long noncoding RNAs (lncRNAs) are non-protein coding transcripts regulating a variety of physiologi-
cal and pathological functions. However, their implication in heart failure is still largely unknown. The aim of this study 
is to identify and characterize lncRNAs deregulated in patients affected by ischemic heart failure.

Methods:  LncRNAs were profiled and validated in left ventricle biopsies of 18 patients affected by non end-stage 
dilated ischemic cardiomyopathy and 17 matched controls. Further validations were performed in left ventricle 
samples derived from explanted hearts of end-stage heart failure patients and in a mouse model of cardiac hypertro-
phy, obtained by transverse aortic constriction. Peripheral blood mononuclear cells of heart failure patients were also 
analyzed. LncRNA distribution in the heart was assessed by in situ hybridization. Function of the deregulated lncRNA 
was explored analyzing the expression of the neighbor mRNAs and by gene ontology analysis of the correlating cod-
ing transcripts.

Results:  Fourteen lncRNAs were significantly modulated in non end-stage heart failure patients, identifying a heart 
failure lncRNA signature. Nine of these lncRNAs (CDKN2B-AS1/ANRIL, EGOT, H19, HOTAIR, LOC285194/TUSC7, RMRP, 
RNY5, SOX2-OT and SRA1) were also confirmed in end-stage failing hearts. Intriguingly, among the conserved lncR-
NAs, h19, rmrp and hotair were also induced in a mouse model of heart hypertrophy. CDKN2B-AS1/ANRIL, HOTAIR and 
LOC285194/TUSC7 showed similar modulation in peripheral blood mononuclear cells and heart tissue, suggesting a 
potential role as disease biomarkers. Interestingly, RMRP displayed a ubiquitous nuclear distribution, while H19 RNA 
was more abundant in blood vessels and was both cytoplasmic and nuclear. Gene ontology analysis of the mRNAs 
displaying a significant correlation in expression with heart failure lncRNAs identified numerous pathways and func-
tions involved in heart failure progression.

Conclusions:  These data strongly suggest lncRNA implication in the molecular mechanisms underpinning HF.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
It is estimated that heart failure (HF) is the cardiovas-
cular disease with the worse rate of morbidity, mortal-
ity, accounting for one of the highest health care costs 
in the western world. Indeed, the 1-year-survival rate of 
patients with end-stage HF is about 50 % [1].

The adverse left ventricle (LV) remodeling process, 
leading to the clinical syndrome of HF, involves several 

deregulated proteins and is characterized in the adult 
heart by the reactivation of fetal cardiac gene expres-
sion [2]. This scenario of transcriptional control is also 
complicated by the addition of epigenetic mechanisms. 
The encyclopedia of DNA elements (ENCODE) project 
indicates that at least 80  % of the genome is functional 
and is transcribed both into protein coding RNAs (about 
1.1–1.5 %) and in a much larger quantity of non-coding, 
regulatory RNAs, arbitrarily divided into long (lncR-
NAs, >200 nt), and short (<200 nt) ncRNAs [3, 4].

While dysregulation and role of short ncRNAs, in par-
ticular of miRNAs, has been extensively explored [5–7], 
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the involvement of lncRNAs in specific physiological and 
pathological processes [5, 8], as well as in cardiovascular 
diseases [9–16], is still in its early stages of study.

In this study, in order to investigate the molecular 
mechanisms underpinning HF during its progression, 
we profiled the expression of 83 lncRNAs, known to be 
implicated in human diseases, in LV biopsies of non end-
stage HF patients.

Methods
Patient selection and tissue collection
The investigation was conducted in conformity with the 
principles outlined in the Helsinki Declaration and with 
the Italian laws and guidelines, and was authorized by 
local Ethics Committee (protocol #2438, 27/01/2009). 
All specimens were taken after informed consent disclos-
ing future use for research. Left ventricle (LV) cardiac 
biopsies from patients affected by non end-stage dilated 
hypokinetic ischemic cardiomyopathy where collected 
during surgical ventricular restoration procedure per-
formed as described previously [17, 18]. For each patient, 
two biopsies were collected from the non-ischemic and 
dysfunctional remote myocardium: one was immediately 
immersed in RNAlater (Qiagen GmbH) and stored at 4 °C 
for <24 h before RNA extraction, and the other one was 
fixed in 10 % neutral buffered formalin (NBF) and paraf-
fin embedded for RNA in situ hybridization and immu-
nohistochemistry assays. HF patients’ characteristics are 
described in Table 1. Peripheral blood mononuclear cells 
(PBMC) were isolated from the peripheral blood of HF 
patients the day before surgery or from healthy controls 
by Histopaque Ficoll (Sigma Diagnostics, St. Louis, MO, 
USA) gradient centrifugation as described previously 
[19].

We have also analyzed 11 post-ischemic end-stage 
heart failure patients [10 males and 1 female, aged 
59  ±  2.4  years (median  ±  SE)]. Among these, 8  LV 
samples were collected by an expert pathologist from 
explanted hearts of patients that underwent cardiac 
transplantation; the remaining 3 end-stage samples were 
collected during the implantation of LV assist device 
(LVAD). Care was taken to avoid necrotic or fibrotic 
areas. Samples of  ~2  mm3 were snap frozen in liquid 
nitrogen and kept at −80  °C until they were analyzed. 
The end-stage HF patients were classified as NYHA class 
3 (82 %) and class 4 (18 %), showed a LV transverse diam-
eter of 130 ±  5.3  mm (median ±  SE), measured by the 
pathologist after explantation, and ejection fraction of 
22 ± 2.9 % (median ± SE). Sample harvesting was con-
ducted after approval of the Ethics Committee of Udine 
(2 August 2011, reference number 47,831), in accordance 
with the Declaration of Helsinki, once written informed 
consent was obtained from each enrolled patient.

The control group was composed by age- and sex-
matched subjects, who had died for causes different 
from stroke, ischemia, or cachexia for chronic diseases 
(n = 17, females/males = 6/10; 58.3 ± 3.4 years old). Left 
ventricle samples were excised and processed with less 
than 30 min cold ischemic time and snap frozen (Xpress-
BANK, Asterand Biosciences).

Mouse transverse aortic constriction (TAC)
All experimental procedures complied with the Guide-
lines of the Italian National Institutes of Health and with 
the Guide for the Care and Use of Laboratory Animals 
(Institute of Laboratory Animal Resources, National 
Academy of Sciences, Bethesda, MD, USA) and were 
approved by the institutional Animal Care and Use Com-
mittee (IACUC n. 709). TAC was performed in 2 months 
old C57BL/6  J male mice with a 27-gauge needle [20]. 
Before all surgical procedures, mice were anesthetized 
with an intraperitoneal injection of 10  mg/kg Xilazine 
(Intervet Farmaceutici, Italy) and 100  mg/kg Ketamine 
(Ketavet 100; Intervet Farmaceutici, Italy). After the 

Table 1  Clinical characteristics of the study population

ACEI angiotensin converting enzymes inhibitor, BSA body surface area, 
DD diastolic diameter, SD systolic diameter, E/A diastolic function ratio, EDV end-
diastolic volume, ESV end-systolic volume, GFR glomerular filtration rate, 
LVEF left ventricular ejection fraction, MI myocardial infarction, NYHA New York 
Heart Association Functional Classification

Characteristics HF patients

Age (years) (median ± SE) 65.0 ± 0.6

Sex (male/female) 17/1

Diabetics (%) 28

BSA (m2) (median ± SE) 1.8 ± 0.02

GFR (ml/min) (median ± SE) 64.2 ± 1.6

Glucose (mg/dl) (median ± SE) 105 ± 1.5

Time from MI (months) (median ± SE) 5.5 ± 10.6

NYHA class (%) 1 = 5; 2 = 55; 3 = 39; 4 = 1

DD (mm) (median ± SE) 62.5 ± 0.5

SD (mm) (median ± SE) 52.0 ± 0.5

LVEF (%) (median ± SE) 26.5 ± 0.4

EDV (ml) (median ± SE) 216.5 ± 2.7

ESV (ml) (median ± SE) 151.0 ± 2.2

E/A (median ± SE) 1.25 ± 0.1

Medications (%)

Oral antidiabetic agents 15

Insulin 20

Statins 75

ACEIs 70

β-Blockers 80

Aspirin 95

Loop diuretics 85

Nitrates 35
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surgery, mice were allowed to recover at 37  °C. Sham 
operated mice received the same procedure except for 
the ligation of the aorta. Only mice showing a pressure 
gradient  >60  mmHg measured by Doppler echocardi-
ography 7 days after TAC were included in the analysis. 
Sham-operated mice were used as controls [21].

Formalin‑fixed and paraffin‑embedded (FFPE) genomic 
DNA isolation and single nucleotide polymorphism (SNP) 
analysis
Genomic DNA was isolated from twenty 10  μm-thick 
paraffin-embedded tissue sections. Following deparaffi-
nization twice for 5  min in xylene, DNA was extracted 
using QIAamp DNA FFPE Tissue kit (Qiagen, USA) 
following manufacturer’s instructions. Four CDKN2-
AS SNPs (RS1333040, RS1333049, RS10757278 and 
RS2383207) were assessed by TaqMan SNP Genotyping 
Assay on ABI 7900 real time PCR platform (Life Technol-
ogies, Thermo Fisher Scientific Inc., MA, USA). 20 ng of 
DNA were amplified in a reaction volume of 25 μl, con-
taining 12.5 μl of 2× TaqMan Master Mix, 1.25 μl of 20× 
Assay working stock solution and 6.25 μl of nuclease-free 
water. Real time PCR conditions were: one cycle of 2 min 
at 50 °C, one cycle of 10 min at 95 °C; 40 cycles of 15 s at 
95 °C and 1 min at 60 °C.

RNA isolation, lncRNA profiling and RT‑qPCR
Total RNA from tissues was extracted using TRIzol (Life 
Technologies, Thermo Fisher Scientific Inc., MA, USA) 
as described previously [17, 22]. Sizing, quantitation and 
quality of the extracted RNAs was checked by Nanodrop 
ND-1000 (Nanodrop, Thermo Fisher Scientific Inc., MA, 
USA) and Bioanalyzer 2100 (Agilent Technologies). Long 
noncoding RNA expression profiles were measured using 
the disease-related human lncRNA Profiler (SBI, Sys-
tem Biosciences) (Additional file 1: Table S1). One µg of 
total RNA was retro-transcribed using the SuperScript 
III Reverse Transcriptase kit (Life Technologies, Thermo 
Fisher Scientific Inc., MA, USA) according to the manu-
facturer’s instructions. cDNAs were analyzed using the 
SYBR-GREEN qPCR method (Life Technologies, Thermo 
Fisher Scientific Inc., USA) according to the manufactur-
er’s instructions. Data are deposited in Gene Expression 
Omnibus repository (GEO GSE77399 http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE77399). After 
median Ct value normalization, relative RNA expres-
sion was calculated with the 2−ΔΔCt method [23]. Signifi-
cantly (p < 0.05) modulated lncRNAs with a Ct ≤ 33 in at 
least one group and displaying a 2−ΔΔCt fold change ≥|1| 
were used for further validation. Validation was car-
ried out with newly designed specific primers by SYBR-
GREEN qPCR (Additional file 1: Table S2), using UBC for 
normalization.

RNA in situ hybridization assay and immunohistochemistry
In situ hybridization was performed using the Quanti-
Gene ViewRNA system (Affymetrix) according to the 
manufacturer’s instructions. Briefly, 3-μm-thick sec-
tions were derived from FFPE-embedded biopsies and 
mounted on Superfrost Plus Gold glass slides (Thermo 
Fisher Scientific). Next, deparaffinized sections were 
hybridized with oligonucleotide probes conjugated with 
alkaline phosphatase (LP-AP) type 1, followed by staining 
with fast blue substrate, counterstaining with Hoechst 
3332 (Sigma-Aldrich Co.) and mounted with Vecta-
Mount AQ medium (Vector Lab., USA).

To identify endothelial cells, serial LV sections were 
deparaffinized, microwave-treated and incubated with 
anti-human CD31 mouse monoclonal antibody (M0823, 
Dako). After incubation with biotinylated secondary anti-
bodies and with ABC complex (Vectastain), the reaction 
was revealed with diaminobenzidine (DAB, vector) and 
counterstained with Hematoxylin.

For both in situ hybridization and immunohistochem-
istry, at least two blinded readers carried out the analysis 
and random images were acquired using an Axio Imager 
M.1 microscope equipped with an Axiocam MRc5 cam-
era (Zeiss) and AxioVision software (Zeiss).

Transcriptomic analysis
To analyze the relationship between lncRNAs and 
mRNAs differentially expressed in the same HF samples, 
we used the dataset GEO GSE26887 [17]. We identified 
the mRNA transcripts significantly correlated to the dif-
ferentially expressed lncRNAs by using Co-LncRNA 
platform [24] and Spearman’s rank correlation test, con-
sidering p ≤ 0.05 as statistical significance threshold. The 
lists of the correlated mRNAs were used to predict the 
enriched pathways by using WebGestalt [25].

For neighboring gene analysis, the 300  kb of genomic 
sequence upstream and downstream the HF modulated 
lncRNAs were identified by using UCSC Genome Browser 
(GRCh38/hg38 assembly) [26]. Significant differential 
expression of neighboring genes lying in these regions was 
determined according to GSE26887 dataset [17].

For the comparison of transcriptomic changes in LV 
and PBMCs of HF patients, the following GEO datasets 
were analyzed: for LV, GSE26887 [17], and for PBMCs, 
GSE9128 [27] and GSE1869 [28]. Enriched pathways 
were obtained from each list of significantly (p ≤  0.01) 
differentially expressed mRNAs and common deregu-
lated pathways were plotted as a Venn’s diagram using 
BioVenn web application [29].

Statistics
Continuous variables are expressed as mean  ±  stand-
ard error. Gaussian distribution was tested by using the 
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Kolmogorov–Smirnov test. For group-wise compari-
sons, Mann–Whitney test (two groups) or t test (two 
groups) were used as appropriate. All tests were per-
formed 2-sided and a p ≤ 0.05 was considered as statisti-
cally significant. For statistical analysis, GraphPad Prism 
v.4.03 software (GraphPad Software Inc.) was used. For 
CDKN2B-AS SNPs analysis, observed allele frequencies 
were compared to reported allele frequencies in Hap-
Map–CEU European using an exact multinomial test 
using R package EMT [30].

Results
Identification of lncRNAs deregulated in HF patients
In order to identify lncRNAs deregulated in HF, LV biop-
sies of 13 HF patients and 12 age-and sex-matched con-
trols were analyzed. Worth noting is that myocardial 
biopsies were harvested from the non-ischemic portion 
of the LV (remote zone) in non end-stage HF patients, 
allowing to investigate the molecular mechanisms under-
pinning the disease during its progression. As expected, 
histological analysis revealed cardiomyocyte hypertrophy 
(Additional file 2: Figure S1B), in keeping with decreased 
alpha-myosin heavy chain (MYH6) and increased Natriu-
retic Peptide A (NPPA) mRNA levels (Additional file  2: 
Figure S1C, D).

Total RNA was extracted from LV biopsies of HF patients 
and controls, checked for quality (Additional file 2: Figure 
S2) and the gene expression levels of 83 disease-related 
lncRNAs (Additional file  1: Table S1), were measured by 
RT-qPCR. LncRNAs profiling showed that 53 and 33 lncR-
NAs were detectable (Ct ≤ 33) in HF patients and controls, 
respectively. We found that 27 lncRNAs were significantly 
modulated (20 up- and 7 down) at least onefold in HF com-
pared with CTR subjects (Additional file  2: Figure S3A). 
Since the profiling results relied on commercial primers 
with undisclosed sequences, after designing new couples of 
unique primers, interrogating the Reference Sequence [31] 
of each lncRNA (Additional file  1: Table S2), significantly 
modulated lncRNAs were validated by RT-qPCR assays 
in more patients and controls (18 and 17, respectively). 
We found that 13 lncRNAs (10 up- and 3 downregulated) 
were significantly modulated in HF patients compared with 
CTR subjects, identifying a HF lncRNA signature (Fig.  1 
and Additional file 2: Figure S3B). LOC285194 (also known 
as TUSC7) was down-modulated, but exhibited only bor-
derline significance (p  <  0.055). One additional limitation 
applies to LOC285194, as well as to EGOT, since the primer 
couples interrogating the relevant reference sequences did 
not interrogate certain shorter isoforms (Additional file 1: 
Table S2).

Unfortunately, the number of patients analyzed pre-
cluded further stratification or a correlation analysis with 
clinical parameters.

CDKN2B-AS gene (also known as ANRIL) is located 
in a region with several SNPs that correlate to increased 
genetic susceptibility to coronary artery diseases and 
type 2 diabetes [32, 33]. In genomic DNA extracted from 
26 HF patients FFPE sections, we analyzed the expres-
sion of four CDKN2B-AS SNPs (RS1333040, RS1333049, 
RS10757278 and RS2383207) already known to be asso-
ciated with cardiovascular diseases [34, 35]. No sta-
tistically significant difference between observed and 
HapMap allele frequencies (Additional file 1: Table S3) or 
correlation with RNA expression levels (data not shown) 
were found, possibly due to the low number of subjects 
analyzed.

Validation in chronic end‑stage HF patients
In order to validate the identified HF lncRNA signature, 
we analyzed 11 RNAs derived from left ventricle samples 
of patients with chronic ischemic end-stage HF. These 
patients exhibited more severe clinical conditions and 
LV dilation compared to the patients used for lncRNA 
profiling.

We found that 9 lncRNAs (CDKN2B-AS1, EGOT, 
H19, HOTAIR, LOC285194, RMRP, RNY5, SOX2-
OT and SRA1) were significantly modulated in a con-
cordant manner in both end- and non end-stage HF 
patients (Fig.  2; Additional file  1: Table S5). HOXA11-
AS was similarly modulated as well, but failed to reach 
statistical significance. Conversely, the expression of 
LOC285194 displaying a borderline significant decrease 
in non end-stage patients was strongly and very signifi-
cantly (p < 0.001) inhibited in end-stage patients. Finally, 
RMST expression level was increased in non end-stage 
HF patients and significantly decreased in end-stage HF 
patients, underlining the differences between the two 
patient groups.

HF lncRNAs modulation in a mouse model of cardiac 
hypertrophy
Cardiomyocyte hypertrophy is a hallmark of post-
ischemic HF patients (Additional file 2: Figure S1). Thus, 
we used a mouse model of cardiac hypertrophy obtained 
by transverse aortic constriction (TAC) to assay the 
expression of the identified lncRNAs. Gene expression 
was analyzed at day 7 after TAC, in order to examine 
early responses to hypertrophy, avoiding other poten-
tially confounding effects. As expected [36, 37], SERCA2 
(atp2a2) transcript levels decreased, while natriuretic 
peptides A and B (nppa and nppb) as well as Actin α1 
(acta) transcripts increased in TAC hearts compared to 
controls (Additional file 2: Figure S4). When the expres-
sion of mouse-conserved lncRNAs (H19, HOXA11-AS, 
RMST, RMRP, SOX2OT and HOTAIR, Additional file 2: 
Figure S5) was assayed, we found that h19, rmrp and 
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hotair were significantly modulated in a manner similar 
to the human counterpart (Fig. 3).

HF lncRNAs expression in the peripheral blood
Peripheral blood mononuclear cells (PBMCs) are a par-
ticularly attractive biomarker source because of the 
accessibility of peripheral blood and its straightfor-
ward preparation. Furthermore, inflammation and the 
underlying cellular and molecular mechanisms seem 
to play a crucial pathological role in the progression 
toward HF [38, 39]. Accordingly, gene ontology analysis 

of the transcriptomic alterations observed in the LV 
and PBMCs of HF patients showed that the majority of 
the dysregulated pathways and functions were in com-
mon between the two tissues (Additional file 1: Table S8; 
Additional file 2: Figure S7).

Thus, we measured the expression of the HF deregu-
lated lncRNAs in PBMCs from 25 HF patients and 18 
healthy individuals by RT-qPCR. Interestingly, we found 
that CDKN2B-AS1, HOTAIR and LOC285194 showed 
similar modulation in PBMCs and heart tissue, suggest-
ing a potential as disease biomarkers (Fig. 4).

Fig. 1  Deregulated lncRNAs in non end-stage HF patients. LncRNAs identified by profiling as deregulated in HF were validated by RT-qPCR in LV 
biopsies of 18 non end-stage ischemic dilated cardiomyopathy (HF) and 17 control subjects (CTR). Dot plots indicate fold change values of each 
subject with respect to controls. The horizontal bars indicate median values (*p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001)
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Cell localization of HF lncRNAs
In situ hybridization assay can provide important infor-
mation about the cellular and sub-cellular distribution of 
lncRNAs. However, this assay is technically challenging, 
especially for low expressed transcripts [40, 41]. We man-
aged to detect RMRP, one of the most abundant among 
the HF lncRNAs, according to the Ct values in RT-qPCR 
(19.8  ±  0.3). Indeed, while absolute Ct values are not 
quantitative, low Ct levels generally correspond to high 
expression levels [42]. Figure  5 shows that RMRP dis-
played a ubiquitous distribution and nuclear intracellular 
localization.

Global H19 levels in the heart did not seem particularly 
high (25.8 ± 0.3). However, we were able to detect H19 in 
left ventricle sections, possibly due to its localized accu-
mulation, mainly interstitial; indeed, the staining of serial 
sections with H19 and anti-CD31 antibody indicated a 
likely vascular localization (Fig. 6). Accordingly, H19 was 
readily detectable by RT-qPCR in cultured endothelial 
cells [43]. In keeping with results obtained in other tis-
sues [44, 45], H19 RNA staining was both cytoplasmic 
and nuclear.

The specificity of H19 and RMRP hybridization signals 
was confirmed by negative controls performed using a 

Fig. 2  Validation of HF lncRNAs in end-stage HF patients. HF lncRNAs were validated by RT-qPCR in LV samples of 11 end-stage HF patients and 
17 control subjects. Dot plots indicate fold change values of each subject with respect to controls. The horizontal bars indicate median values 
(*p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001)
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probe for an exogenous gene, DapB of Bacillus subtilis 
(Fig. 5d, f and Fig. 6f, h).

Interactions between coding and noncoding 
transcriptomic changes
In order to gain insight into the role played by the HF 
lncRNAs, we took advantage of a previous transcriptomic 
analysis performed on the same RNAs using microarray 
(GEO GSE26887) [17].

mRNAs and HF lncRNAs were used for correlation 
analysis, which identified 10,257 and 8852 transcripts dis-
playing significant direct or inverse correlation, respec-
tively, with at least one HF lncRNA (Additional file  1: 

Table S6; Additional file 2: Figure S5). Next, we used the 
list of mRNAs correlating to each HF lncRNA for gene 
ontology analysis, and then selected those enriched path-
ways found in at least three HF lncRNAs. Indeed, we rea-
soned that different HF lncRNAs might have an additive 
effect in modulating specific pathways. We identified sev-
eral important pathways for cardiovascular disease, such 
as insulin, IGF1 and glucose signaling pathways, TGF-β 
pathway, as well as hypoxic and oxygen homeostasis reg-
ulation of HIF-1-α (Fig. 7, and for a complete list, Addi-
tional file 1: Table S7).

LncRNAs can act in cis to regulate neighboring genes 
[46]. Thus we studied the expression of coding genes 
located 300  kb upstream or downstream the deregu-
lated lncRNAs in non end-stage HF LV samples. To this 
aim, we analyzed the differentially expressed mRNAs in 
GSE26887 dataset [17] and identified 19 lncRNA/mRNA 
couples potentially involved in HF disease mechanisms 
(Additional file 1: Table S4).

Albeit correlative, these analyses strongly suggest 
lncRNA involvement in the molecular mechanisms 
underpinning HF.

Discussion
Several lncRNAs have been shown to be involved in spe-
cific physiological and pathological processes [5, 8], as 
well as in cardiovascular diseases [9–16]. We identified 
14 lncRNAs deregulated in non end-stage HF patients. 
The validity of these findings was confirmed by the 
fact that nine of these lncRNAs displayed a concordant 
deregulation in an independent group of end-stage HF 
patients. Interestingly, LOC285194 that was weakly mod-
ulated in non end-stage patients was strongly down mod-
ulated in explanted failing hearts, and RMST displayed 
an inverse modulation in end-stage and non end-stage 
patients. Little is known about LOC285194 and RMST 
functions, but it is possible to speculate that differential 
regulation in the two HF groups might be linked to dif-
ferences in disease progression. LOC285194 was previ-
ously shown to suppress tumor cell growth [47] and is the 
antisense transcript of LSAMP that has been reported to 
be a tumor suppressor gene [48]. Interestingly, LSAMP 
down-regulation in coronary artery diseases is associated 
to atherosclerosis burden [48]. RMST physically interacts 
with the transcription factor SOX2 and together regulate 
a large pool of downstream genes implicated in neuro-
genesis [49].

It is well known that, while miRNAs seem to be highly 
conserved, longer transcripts are under diverse levels 
of evolutionary constraints in mammalian. As a matter 
of fact, some lncRNAs show a high level of nucleotide 
sequence conservation (>60  %) in mammalian [50], and 
others do not display extensive evolutionary conservation 

Fig. 3  Validation of HF lncRNAs in a mouse model of cardiac hyper-
trophy. LV pressure overload was induced by TAC and H19, rmrp and 
hotair RNA levels were measured by RT-qPCR 7 days after surgery. 
Dot plots indicate fold change values of each subject with respect 
to controls. The horizontal bars indicate median values (TAC = 10; 
CTR = 15; *p ≤ 0.05)
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[51], precluding them from being studied using mouse 
models. Nevertheless, in order to investigate the potential 
involvement of the identified lncRNAs in one important 
aspect of HF, we used a mouse model of cardiac hyper-
trophy. In spite of the multiple differences, we found that 
RMRP and H19 levels increased while HOTAIR levels 
decreased in both human failing and mouse hypertrophic 
hearts, thus opening the way for further functional 
studies.

Also interesting is the deregulation of CDKN2B-AS1, 
HOTAIR and LOC285194 in PBMCs derived from HF 
patients. Given the importance of inflammation in HF 
progression [39], it is tempting to speculate that these 
lncRNAs might respond to inflammatory stimuli in both 
myocardium and PBMCs. Moreover, it is also possible 
that these concomitant regulations are, at least in part, 
due to lncRNA transfer from one cell type to another via 
exosomes or other vesicles [52, 53].

Fig. 4  Validation of HF lncRNAs in PBMCs from HF patients and controls. HF lncRNA levels were measured in PBMCs derived from 25 non end-stage 
ischemic dilated cardiomyopathy (HF) patients and 18 age-and sex-matched controls. Dot-plots show CDKN2B-AS1, HOTAIR and LOC285194 levels 
in each patient measured by RT-qPCR; the lines indicate the median values (*p ≤ 0.05, **p ≤ 0.01)
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Since peripheral blood can be obtained with mini-
mally invasive procedures, CDKN2B-AS1, HOTAIR 
and LOC285194 might have a potential as circulat-
ing biomarkers of HF. Further studies in larger patients 
groups are necessary to assess their validity as disease 
biomarkers.

Pathway enrichment analysis highlighted several impor-
tant cardiovascular categories enriched in HF lncRNAs-
correlated mRNAs. Although correlative [54], this analysis 
fits well with previously published functional studies, sug-
gesting that the identified HF lncRNAs might have a role 

in HF progression and prompting validation with more 
direct approaches. Among the significantly downregulated 
lncRNAs, HOTAIR (HOX antisense intergenic RNA) is 
transcribed from the antisense strand of homeobox C gene 
locus, and, in coordination with chromatin modifying 
enzymes, regulates gene silencing [55, 56]. Down-regula-
tion of HOTAIR transcript has been found in aortic valve 
cells exposed to cyclic stretch, a modulation mediated 
through WNT/β-CATENIN pathway [57]. Accordingly, 
we have observed the decrease of HOTAIR in a mouse 
model of cardiac hypertrophy due to pressure overload, 

Fig. 5  Localization of RMRP RNA in failing hearts. Sections were derived from FFPE LV biopsies of HF patients and RMRP RNA was detected by 
in situ hybridization in blue, using bright field microscopy (a, c). As negative control, hybridization was also carried out with a probe for an exog-
enous RNA, DapB of B. subtilis (d, f). Nuclei were detected by HOECHST 3332 counterstaining using fluorescence microscopy (b, e). The merge of 
RMRP and HOECHST 3332 signals c shows that RMRP RNA has a ubiquitous, mostly nuclear distribution. Representative pictures are shown (n = 10; 
calibration bar = 20 µm; magnification 40×)
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indicating a possible involvement of HOTAIR in the left 
ventricle remodeling associated to HF. Moreover, both 
WNT and cardiac hypertrophy pathways were enriched 
categories in the gene ontologies analysis of mRNAs cor-
related to HOTAIR. Equally interesting is another down-
regulated lncRNA, the cyclin kinase Cdk9 inhibitor 7SK, 
which has been recently demonstrated to be involved in 
cardiac hypertrophy [58]. Accordingly, histological and 
biomarkers analysis showed cardiac hypertrophy in the 
non end-stage HF patients studied. Unfortunately, lack of 
conservation between humans and mice precluded the 
analysis of 7SK expression in TAC mice.

CDKN2B-AS1 is the antisense gene of CDKN2B (or 
p15ink4a), which is located in the 50  kb chromosomal 

locus 9p21 [59]. CDKN2B-AS1 represses the transcrip-
tion of the genes in the INK4 locus by direct binding to 
the INK4b transcript and by recruiting the polycomb 
repressor complex (PRC) [60, 61].

CDKN2B-AS1 is the strongest genetic marker of 
human atherosclerosis and is generally considered the 
‘golden standard’ for any genome wide association study 
of atherosclerosis-related traits [32, 33]. We analyzed the 
expression of four well-known cardiovascular diseases-
associated variants, but we were not able to find any fre-
quency association with the HF status, probably due to 
the limited number of patients analyzed.

We found that CDKN2B-AS1 RNA levels increased 
in HF patients compared to controls, but we did not 

Fig. 6  Localization of H19 RNA in HF myocardium. Sections were derived from FFPE LV biopsies of HF patients and H19 RNA was detected by in situ 
hybridization in blue, using bright field microscopy (a, c). Vascular structures were identified in serial sections by staining for CD31, an endothelial 
marker (d). Colored arrows indicate matching H19/CD31 signals. For negative control, in situ hybridization was also carried out with a probe for 
an exogenous RNA, DapB of B. subtilis (f, h). Nuclei were detected by HOECHST 3332 counterstaining using fluorescence microscopy (b, e, g). The 
merge of H19 and HOECHST 3332 signals (c) shows both nuclear and cytoplasmic distribution of H19. Representative pictures are shown (n = 16; 
calibration bar = 20 µm; magnification 40×)
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find any correlation with the analyzed SNPs. Indeed, the 
association of CDKN2B-AS1 RNA expression levels and 
9p21.3 risk alleles is still controversial [62]. Nonetheless, 
CDKN2B-AS1 RNA expression has been shown to stimu-
late cell proliferation, adhesion, and to reduce apoptosis, 
providing a potential atherosclerosis disease mechanism 
[63]. Noteworthily, we found that CDKN2B-AS1 RNA 
was also upregulated in PBMCs of HF patients, further 
implicating CDKN2B-AS1 in HF pathogenic mechanisms.

The steroid receptor RNA activator 1 (SRA1) gene 
generates both steroid receptor RNA activator protein 
(SRAP) as well as several non-coding SRA transcripts, 
depending on alternative transcription start site usage 
and alternative splicing [64, 65]. Friedrichs et  al. [66] 
identified a gene cluster including SRA1 on a 600-kb 

linkage disequilibrium block on chromosome 5q31. 2–3 
associated with human dilated cardiomyopathy in three 
independent Caucasian populations. Moreover, a role in 
heart development has been observed in zebrafish [66]. 
Accordingly, knock-down of SRA1 impairs cardiac func-
tion in zebrafish [66]. SRA1 is also known to stimulate 
cell proliferation as well as apoptosis in  vivo [67], sug-
gesting that SRA1 may be involved in HF pathogenesis.

H19 is a developmentally regulated gene with puta-
tive tumor suppressor activity [68]. Here we showed the 
increase of H19 levels in HF patients, both end-stage and 
non, and confirmed its upregulation in a mouse model of 
cardiac hypertrophy [69]. H19 is expressed during devel-
opment of rat aorta, decreases in adult, and, interestingly, 
increases after vascular injury both in  vivo and in  vitro 

Fig. 7  Pathways enrichment analysis of mRNAs correlating with HF lncRNAs. mRNAs transcripts (GEO GDS4314) and lncRNAs differentially 
expressed in HF were used for correlation analysis. The transcripts correlating with HF lncRNA were analyzed using WebGestalt software for path-
ways enrichment, and enriched pathways in common in ≥3 HF lncRNAs and relevant for cardiovascular physiopathology are shown. Pathways and 
functions deriving by the same HF lncRNA combination are indicated with the same color
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[70], as well as upon hypoxic stimulus [43, 71, 72]. Moreo-
ver, hyperhomocysteinemia, an independent risk factor 
for coronary artery diseases (CAD), increases the expres-
sion of H19 in aorta and vascular smooth muscle cells [73, 
74], indicating that upregulated H19 may participate in 
the progression of CAD, the most common cause of HF. 
Recently, it has also been shown that polymorphisms in 
H19 are correlated with CAD [75] and CAD risk factors, 
such as obesity, high birth weight, and hypertension [76, 
77]. In this respect, the mainly vascular localization of 
H19 in the heart appears particularly significant.

Among the protein coding genes neighbor to the 
lncRNAs, it is interesting the concordant modulation of 
HOTAIR and SMUG1, which is related to free-radicals 
response [78]. Additionally, 7SK is inversely modulated 
compared to GSTA4 and 5, that both are involved in 
gluthatione metabolism [79]. Moreover, we observed that 
Cathepsin D was modulated concordantly to its neigh-
bor lncRNA H19. Cathepsin D is an autophagy-related 
enzyme and it has been found up-regulated in a hamster 
model of dilated cardiomyopathy [80].

Conclusions
We identified 14 lncRNAs that are dysregulated in non 
end-stage HF patients. Validation in other patient groups 
and in animal experimental models corroborated the 
findings, and the deregulation of some of them in the 
peripheral blood suggests a potential as disease bio-
markers. While future investigations of the identified HF 
lncRNA actions and dysfunctions are required, analysis 
of the correlated genes indicates their implication in the 
molecular mechanisms underpinning HF progression.
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