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Abstract

Increasing salinity is one of the major drawbacks for plant growth. Besides the ion itself

being toxic to plant cells, it greatly interferes with the supply of other macronutrients like

potassium, calcium and magnesium. However, little is known about how sodium affects the

translocation of these nutrients from the root to the shoot. The major driving force of this

translocation process is thought to be the water flow through the xylem driven by transpira-

tion. To dissect the effects of transpiration from those of salinity we compared salt stressed,

ABA treated and combined salt- and ABA treated poplars with untreated controls. Salinity

reduced the root content of major nutrients like K+, Ca2+ and Mg2+. Less Ca2+ and Mg2+ in

the roots resulted in reduced leaf Ca2+ and leaf Mg2+ levels due to reduced stomatal conduc-

tance and reduced transpiration. Interestingly, leaf K+ levels were positively affected in

leaves under salt stress although there was less K+ in the roots under salt. In response to

ABA, transpiration was also decreased and Mg2+ and Ca2+ levels decreased comparably to

the salt stress treatment, while K+ levels were not affected. Thus, our results suggest that

loading and retention of leaf K+ is enhanced under salt stress compared to merely transpira-

tion driven cation supply.

Introduction

Soil salinity is one of the most severe abiotic stress that limits the distribution and productivity

of crops worldwide. Salinization of arable soils can have natural causes but is mostly the conse-

quence of unsuitable cultivation practices [1, 2]. Soils are generally classified as saline when the

electrical conductivity of the saturated soil extract is 4 dS m-1 or more [3], equivalent to

approximately 40 mM NaCl [4]. The presence of soluble salts at higher concentrations in the

soil reduces water availability to roots and causes ion toxicity and nutrient deficiency in plants

[1, 5, 6].

Plants acquire nutrients from the environment surrounding their root system. Under salin-

ity, Na+ and Cl- can disrupt nutrient uptake of glycophytes through competitive interactions

or by affecting the membrane selectivity for ions [7]. The presence of NaCl under saline condi-

tions results in nutritional imbalances inside the plant evident as high ratios of Na+/Ca2+, Na+/

K+ and Na+/Mg2+ [8–10]. After uptake by the roots, the delivery of ions from roots to leaves
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occurs through the vascular system of the xylem with the transpiration stream as the transport

vehicle [11]. Since the movement of ions from root to shoot is influenced by the transpiration-

driven water flow [12], shoot ion uptake is affected by both the ion concentration and the rate

of transpiration.

Among woody plants, poplars (Populus spp.) have often been used to investigate the responses

to salt stress [2]. These studies suggested a role of abscisic acid (ABA) in restricting salt uptake

[13, 14]. It is well known that ABA is a central regulator of plant adaptation to osmotic stress

[15]. ABA regulates stomatal opening [16, 17]. The levels of ABA in poplars increase in response

to salinity [18–21]. Overall, higher levels of ABA in salt-tolerant compared to salt-sensitive hybrid

[(P. euphratica versus P. talassica Kom × (P. euphratica + Salix alba L.)] under stress conditions

suggested that ABA-induced stomatal closure may reduce root-to-shoot xylem water flow and

consequently limit the total amount of salt ions transported to leaves [13]. However, enhanced

salt accumulation in roots and elevated xylem loading may counteract the anticipated ameliorat-

ing effect of a reduced transpirational pull on foliar salt accumulation. It is thus still unclear,

whether ABA contributes to decreasing tissue salt enrichment.

In addition to salt accumulation, exposure to enhanced NaCl causes alteration in tissue

concentrations of cationic nutrients such as K+, Ca2+ and Mg2+ [20]. For example, in a poplar

hybrid NaCl treatment caused reductions in Mg2+ and Ca2+ levels in roots and leaves, while

K+ level was unaffected [13]. In some other poplar genotypes, e.g., P. tomentosa and P. × canes-
cens, salinity caused reduction in K+ uptake in roots but no reduction in leaves [19, 21]. Salin-

ity induced reduction in the tissue concentrations of K+, Ca2+ and Mg2+ nutrients was also

reported in other salt-sensitive woody plants e. g. in citrus rootstocks, avocado rootstocks,

cherry etc. [22–25]. These examples show that it is not known if the reduction of nutrients in

tissues under salinity is predominantly due to less uptake by root or if the reduced transport

via the transpiration stream plays role as well.

This study aimed to investigate the effect of reduced transpiration on nutrient accumula-

tion in P. × canescens under salt stress. We hypothesize that reduced transpiration decreases

accumulation of Na+ and contributes to a favorable ion balance in leaves, thereby, protecting

poplars against salinity stress. In addition, we hypothesize that accumulation of Na+ and other

cations is independent from stomatal opening and therefore, enhanced NaCl content in soils

imposes Na+ accumulation independent of transpiration. Gas exchange, growth, ion concen-

trations in leaves and root were measured in P. × canescens and the resultant effect on the

growth of the plants was analyzed as well. Our results suggest that interplay between foliar ion

accumulation and transpiration is moderate.

Materials and methods

Plant material

Plantlets of P. × canescens (clone INRA717 1-B4) were multiplied by in-vitro micropropagation

as described by Leplé and colleagues [26]. Approximately, 1 to 2 cm long stem cuttings having

at least one leaf were placed up-right into glass jars containing half strength Murashige &

Skoog (MS) medium [27] under sterile conditions and incubated in a culture room [16 h light

/ 8 h dark, 150 μmol PAR m-2 s-1 (Osram L 18W/840 cool white, Osram, Munich, Germany),

23 to 25˚C, 40 to 60% relative air humidity] for 5 weeks as described by Müller and colleagues

[28]. Afterward, rooted plants were moved into a greenhouse (Department of Forest Botany

and Tree Physiology, University of Göttingen, Göttingen, Germany), acclimated to ambient

conditions, and raised in aerated hydroponic culture with Long-Ashton (LA) nutrient solution

[28]. The plants were grown with additional light (150 μmol m-2 s-1 PAR) (Lamp: 3071/400

HI-I, Adolf Schuch GmbH, Worms, Germany) to maintain a 16 h photoperiod and at air
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temperatures from 21 to 24˚C and relative air humidity from 70 to 80%. The nutrient solution

was exchanged weekly. After a growth phase of 5 weeks, when the plants had mean height of

29.82 ± 4.24 cm, the experimental treatments were started in September 2017. The experiment

was conducted with a total of 94 plants.

Salt and ABA treatment

The total duration of the treatment period was six weeks (S1 Fig). Before applying saline stress,

the plants were divided into three groups: control, low salt and ABA [(±) ABA, Duchefa Bio-

chemie B.V, Haarlem, Netherlands]. The control group was supplied with LA nutrient solution

as before. The low salt (Ls) group was exposed to 25 mM NaCl in the nutrient solution. The

ABA group was exposed to 10 μM ABA for 1 week and then to 50 μM ABA for 2 weeks in the

nutrient solution (S1 Fig).

After three weeks, groups were divided into the following experimental groups (S1 Fig):

The control group was split into two groups, of which one was kept under control conditions

(control) and the second was stressed with 100 mM NaCl (Hs group). The low salt group was

divided into two groups, of which one was kept with 25 mM NaCl [continuous low salt (cLs)

group] and the second was exposed to 100 mM NaCl (Ls+Hs group). The ABA treated group

was split in four treatments, among which one group was returned to control conditions in LA

nutrient solution [discontinuous ABA (dABA) group]; in the second group, 50 μM ABA treat-

ment was continued [continuous ABA (cABA) group]; the third group was exposed to 100

mM NaCl only [discontinuous ABA plus high salt (dABA+Hs) group] and the fourth group

was exposed to 100 mM NaCl together with 50 μM ABA [continuous ABA plus high salt

(cABA+Hs) group]. This resulted in a total of eight different treatments (S1 Fig). The nutrient

solutions with different salt or ABA amendments as well as the control solutions were

exchanged weekly. The plants were randomized regularly. After three weeks of stress phase, all

plants were harvested (n = 9 to 10 per treatment).

Plant growth measurements

Plant height was recorded twice a week and stem diameter was recorded once a week. The shoot

height was measured from the growing tip to the base of the stem. The stem diameter was mea-

sured by a digital caliper at a marked position approximately 2 cm above from the base of the

plant. Relative height increment and relative diameter increment over the stress phase i.e., last

three weeks of the whole-treatment period were calculated by the following formula:

Relative height increment ¼
Hend � Hstart

Hstart

Relative diameter increment ¼
Dend � Dstart

Dstart

Where Hstart and Hend are the shoot heights, and Dstart and Dend are the shoot diameters at

the time of start and end of stress phase, respectively.

Shed leaves per individual plant were collected during the six-week-long experimental

period and dried at 60˚C for 7 days to determine total leaf loss.

Gas exchange measurement

Net photosynthesis, transpiration, stomatal conductance, sub-stomatal CO2 concentration and

atmospheric CO2 concentration of mature leaves (using the 8th -10th leaf from the apex) were
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measured once a week between 9:00 h and 14:00 h with an LCpro+ portable photosynthesis

system (ADC BioScientific Ltd., Hoddesdon, UK). The measurements were carried out with

constant irradiation of 870 μmol PAR m-2 s-1 and a temperature of 23.1 ± 0.6 ˚C and at

419.7 ± 11.2 μmol mol-1 ambient atmospheric CO2 concentration.

Harvest

At the end of the experiment, destructive harvest was done. Leaves, stem and root of each

plant were weight separately. The dry mass was determined after drying aliquots from each tis-

sue for 7 days at 60˚C. The dry mass of the whole tissue was calculated as:

Total tissue dry mass gð Þ ¼
total fresh mass of the tissue ðgÞ � dry mass of the aliquot ðgÞ

fresh mass of the aliquot ðgÞ

For leaf area measurement, three leaves from the top, middle and bottom part of the shoot

were collected, weighed, and scanned. The area of each leaf was measured from scanned pic-

tures using ImageJ software. Leaf size and whole-plant leaf area were calculated using the fol-

lowing equations:

Leaf size cm2 leaf � 1
� �

¼
leaf area of sample leaves ðm2Þ

number of sample leaves
� 10000

Whole� plant leaf area m2 plant� 1ð Þ

¼
leaf area of sample leaves ðm2Þ � fresh mass of all leaves of the plant ðgÞ

fresh mass of the sample leaves ðgÞ

Analysis of elements

Different elements were measured in the representative aliquots of leaves and fine roots of

a plant (5 or 10 plants per treatment). Dried aliquots of leaf and root tissues were milled

(Retsch, Haan, Germany) into fine powder before digestion. Approximately 40 to 50 mg

of ground sample was digested with 2 ml of 65% HNO3 in a microwave digestion system

(ETHOS.start, MLS GmbH, Leutkirch, Germany). The microwave program used for the

digestion of sample was as follows: 2.5 min at 90˚C (power 1000 W), 5 min at 150˚C

(power 1000 W), 2.5 min at 210˚C (power 1600 W) and 20 min at 210˚C (1600 W). The

resulting solutions were cooled and filled up to 25 ml volume with de-ionized water. The

final volumes were filtered by filter paper (MN 640 w, 90 mm, Macherey-Nagel GmbH &

Co. KG, Düren, Germany) and elements (Na, K, Ca, Mg, S, Mn, Fe and P) were measured

in the filtered extracts by inductively coupled plasma-optical emission spectrometry

(ICP-OES) (iCAP 7000 series ICP-OES, Thermo Fisher Scientific, Dreieich, Germany).

The element concentrations (mg g-1 dry mass) were calculated using calibration standards

(Single-element standards, Bernd Kraft GmbH, Duisburg, Germany) and the sample

weight used for extraction.

To determine a hypothetical concentration of ions in the cellular fluid (assuming equal dis-

tribution of the ions throughout the cell), measured elements were expressed on the basis of

water content of the tissue (mM). The water content and ion concentration were calculated as
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follows:

Water content L g� 1 dry massð Þ ¼
total fresh mass of the tissue � total dry mass of the tissue

total dry mass of the tissue

Concentration of ion mMð Þ

¼
concentration of element ðmg g� 1 dry massÞ in the tissue

atomic mass of that element � water content of the tissueðL g� 1 dry massÞ

The relative changes in the concentration of major cations (K+, Ca2+ and Mg2+) in response

to different treatments were calculated by comparing with controls as follows:

Change in the concentration of ion %ð Þ

¼
concentration of ion ðmMÞ � mean concentration in control ðmMÞ

mean concentration in control ðmMÞ
� 100

Scanning electron microscope (SEM) and energy-dispersive x-ray

microanalysis (EDXA)

Electron microscopy and X-ray microanalysis were done in root tips from selected treatments

(3 or 4 plants per treatment). Two to three fresh root tips (approx. 1 cm long) per plant were

harvested, wrapped with aluminum foil paper and enclosed in mesh wire bags (Haver and

Boecker, Oelde, Germany). A freezing mixture of propane: isopentane (2:1) was prepared in a

small container at the temperature of liquid nitrogen [29]. The wire bags containing root sam-

ples were immediately dipped into the freezing mixture for 2 to 3 min. Afterwards, the bags

were transferred into liquid nitrogen for further storage.

To prepare a frozen root tip for electron microscopy, a small portion of a root tip (1 mm

above from root apex) was cut off and removed with a thin razor blade, and the cut surface

was fixed firmly using freeze adhesive (Tissue freezing medium, Leica Biosystems, Nussloch,

Germany) on the holder of the electron microscope at the temperature of liquid nitrogen. The

holder and sample were then clamped in the cooling stage of the microscope (-25˚C). Samples

were analyzed by a scanning electron microscope (Phenom ProX, Phenom-World B.V., Eind-

hoven, Netherlands) equipped with an energy dispersive spectrometer (EDS) and element

identification (EID) software package. The acceleration voltage of 15 kV and magnifications of

300X, 350X and 2500X were used with an acquisition time of 55 seconds. Element distribution

was analyzed across the root cell layers radially from the center of the vascular cylinder to the

rhizodermis. For this purpose, line scans with 512 pixels resolution were analyzed. To obtain

representative data, at least four line-scan analyses at four separate positions per sample were

recorded. Relative concentration (percentage of weight) of different elements (Na, K, Ca, Mg,

P, Mn, S and Cl) obtained from line scan analyses were separated based on the distribution

within cortex and vascular cells for further comparison.

Statistical analysis

Statistical analyses were performed with the statistical software R (version 3.5.2). One-way and

two-way analysis of variance (ANOVA) was applied followed by Fisher’s test. Normal distribu-

tion of data was tested by plotting residuals and log transformation or square root transforma-

tion was used if data were not normally distributed. Data represent means ± standard error

(SE). If not indicated otherwise, n = 5 biological replicates were investigated. Means were con-

sidered to be significantly different when p� 0.05.

PLOS ONE Accumulation of nutrients in Populus × canescens under salinity

PLOS ONE | https://doi.org/10.1371/journal.pone.0253228 June 24, 2021 5 / 18

https://doi.org/10.1371/journal.pone.0253228


Results

Gas exchange of plants decreases strongly in response to high salt and

moderately in response to ABA

Poplars exposed to high salt (Hs, 100 mM NaCl) showed an about 5-fold decline in stomatal

conductance and transpiration (Fig 1A and 1B) and an about 2-fold decline in net CO2 assimi-

lation (Fig 1C) compared to control plants. Low salt treatment (cLs, 25 mM NaCl) resulted in

less pronounced decreases in gas exchange compared to high salt (Fig 1A–1C). When the low

salt pretreated plants were transferred to high salt conditions (Ls+Hs), the negative impact of

salt was even stronger than in absence of low salt pretreatment (Hs, Fig 1A–1C).

Exposure of poplars to 50 μM ABA (cABA) had a negative influence on gas exchange simi-

lar to that observed in response to low salt stress (cLs, Fig 1A–1C). The ABA effect was fully

reversible when the poplars were transferred after an ABA pretreatment phase to control nutri-

ent solution (dABA, Fig 1A–1C). When poplars grown in the presence of ABA were exposed

to high salt (cABA+Hs), the decline in stomatal conductance, transpiration and net photosyn-

thesis was similar to that of plants exposed to high salt after low salt pretreatment (Ls+Hs, Fig

1A–1C). These treatments had the strongest negative effects on gas exchange. Plants, which

were exposed to high salt with the discontinuation of ABA application (dABA+Hs) showed a

decline in gas exchange similar to that of plants exposed only to high salt (Hs, Fig 1A–1C).

Overall, exposure to high salt stress resulted in a stronger decline in gas exchange than that to

either low salt stress or ABA treatment.

Shoot growth reduces significantly after salt exposure but leaf area declines

in all stress treatments

The influence of salinity and ABA on the growth of the plants was investigated by examining

relative shoot height increment, stem diameter increment, leaf area and biomass (Fig 2). Rela-

tive shoot height and stem diameter increments were significantly lower under high salt treat-

ments, irrespective of with or without ABA (Fig 2A and 2B). Low salt exposure reduced height

growth and diameter increment significantly (Fig 2A and 2B). ABA treatments caused no sig-

nificant alterations in either height or diameter increment (Fig 2A and 2B). Whole-plant leaf

area decreased significantly in response to salt stress as well as to ABA application (Fig 2C).

The size of individual leaves was also reduced significantly in all stress treatments (S1 Table).

Whole-plant biomass (sum of root, stem and leaves) showed a significant reduction in biomass

for all ABA and high salt treated plants (Fig 2D). Loss of biomass due to leaf shedding was

found in non-stressed and stressed plants and there was no significant difference among the

treatments (S1 Table). However, plants showed tendency towards higher leaf loss in response

to high salt and ABA exposure compared to control conditions (S1 Table). The root to shoot

ratio was increased marginally in the presence of high salt and ABA, though difference was not

significant (S1 Table).

Basic cation concentrations are altered in roots and leaves in response to

salinity and ABA

To obtain information how salt stress or ABA treatments affected the ion balance, we esti-

mated the total cation concentrations on the basis of the water content of root or leaf tissues

(Fig 3). High salt exposure caused approximately 3- to 3.5-fold increases in root cation concen-

trations compared to controls (Fig 3A), whereas the increase in leaves was approximately

1.5-fold (Fig 3B). The increase was caused by substantial accumulation of Na+ and partly coun-

terbalanced by decreases in other cations (Fig 3A and 3B). The contributions of the

PLOS ONE Accumulation of nutrients in Populus × canescens under salinity

PLOS ONE | https://doi.org/10.1371/journal.pone.0253228 June 24, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0253228


PLOS ONE Accumulation of nutrients in Populus × canescens under salinity

PLOS ONE | https://doi.org/10.1371/journal.pone.0253228 June 24, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0253228


Fig 1. Stomatal conductance (A), transpiration (B) and photosynthetic rate (C) in the leaf of P. × canescens plants in

response to salinity and ABA treatment. Bars indicate means ± SE. Data were obtained by analyzing all measurements

from five independent plants per treatment (once a week over three weeks of stress period). One-way ANOVA was

conducted. Normal distribution of data was tested by plotting residuals. Different letters obtained from Fisher’s test

indicate significant differences among treatments at p<0.05. Control = constantly grown with nutrient solution only;

Hs = high salt i.e. exposed to 100 mM NaCl for three weeks of stress phase; cLs = continuous low salt i.e. applied with

25 mM NaCl constantly for six weeks of whole-treatment phase; Ls + Hs = low salt plus high salt i.e. applied with 25

mM NaCl for three weeks of pretreatment phase and then replaced with 100 mM NaCl for next three weeks of stress

phase; dABA = discontinuous ABA i.e. treated with 50 μM ABA for three weeks of pretreatment phase and then

replaced with only nutrient solution for next three weeks of stress phase; cABA = continuous ABA i.e. treated with

10 μM ABA in first week and then with 50 μM ABA constantly in the next five weeks of whole-treatment period;

dABA + Hs = discontinuous ABA plus high salt i.e. treated with 50 μM ABA for three weeks of pretreatment phase

and then replaced with 100 mM NaCl for next three weeks of stress phase; cABA + Hs = continuous ABA plus high

salt i.e. 50 μM ABA was applied for three weeks of pretreatment phase and then 50 μM ABA plus 100 mM NaCl was

applied for three weeks of stress phase.

https://doi.org/10.1371/journal.pone.0253228.g001

Fig 2. Relative shoot height increment (A), relative shoot diameter increment (B), leaf area (C) and biomass accumulation (D) of P. ×
canescens plants under salinity and ABA. Bars indicate means ± SE (n = 9 or 10; in case of leaf area, n = 7 or 8). One-way ANOVA was

conducted. Normal distribution of data was tested by plotting residuals and square root transformation (in case of relative height

increment) or log transformation (in case of biomass) was used to meet the criteria. Different letters obtained from Fisher’s test

indicate significant differences among treatments at p<0.05.

https://doi.org/10.1371/journal.pone.0253228.g002
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Fig 3. Concentration of cations in the root (A) and leaf tissues (B) of P. × canescens plants in response to salinity and

ABA. Cations (mM) were calculated as sum of K+, Ca2+, Mg2+, Fe2+, Mn2+ and Na+. Bar represents means ± SE (n = 5

or 10). Average content of specific ion is presented by specific color on the bar. One-way ANOVA was conducted.

Normal distribution of data was tested by plotting residuals and log transformation was used in case of cation content

in root. Different letters obtained from Fisher’s test indicate significant differences among treatments at p<0.05.

https://doi.org/10.1371/journal.pone.0253228.g003
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micronutrient Mn and Fe to these alterations were negligible (Fig 3A and 3B). Details for all

measured elements and their ratios are available in S2 and S3 Tables for root tissue and S4 and

S5 Tables for leaf tissue.

To inspect the influence of salinity and ABA on the major cations K+, Ca2+ and Mg2+ in

greater details, we analyzed the relative changes in comparison to controls conditions (Fig 4).

In roots, salt treatments resulted in almost 80% K+ loss, regardless of low or high salt stress

(Fig 4A), while the foliar K+ level even showed a significant increase (Fig 4B). Interestingly,

ABA treatments also resulted K+ reduction in roots, although relatively moderate (Fig 4A),

whereas no increase was observed in leaves (Fig 4B). Combined treatment of ABA und salt

resulted in a K+ level comparable to the salt only treatment.

The concentrations of Ca2+ were greatly decreased in response to both high salt and low

salt treatments (almost -50%) in roots (Fig 4C), while leaf Ca2+ levels were more reduced

under high salt (up to -46%) than under low salt stress (-35%) (Fig 4D). ABA treatment in the

absence of salt stress caused also decline in Ca2+ concentrations in leaves, but not in roots (Fig

4C and 4D).

The stress treatments tended to decrease the Mg2+ levels in roots compared to controls but

the effects were only significant for low salt stress (cLs) and low salt stress followed by high salt

stress (Ls+Hs) (Fig 4E). In leaves, the negative effect of high salt on the Mg2+ level was more

pronounced than in roots and other treatments. The concentrations of Mg2+ in leaves were

also decreased significantly in ABA treatments (Fig 4F).

Accumulation, but not radial distribution, of cations in root cells declines

in response to salinity

Restricting the radial movement of ions across the root greatly reduces the amounts loaded

into xylem for delivery to upper tissues. Therefore, distribution of ions radially from outer cor-

tex to the endodermis (denominated cortex) and the inner vascular cells of roots were analyzed

by SEM-EDX (Fig 5). Root samples from salt treated plants as well as control plant were com-

pared (Fig 5). Elemental analysis in cortex and vascular cells of fine roots revealed that relative

levels of Na+, K+, Ca2+ and Mg2+ did not significantly vary between cortex and vasculature

under any of the observed treatments (Table 1). In contrast, relative concentrations of Cl- were

moderately decreased in vascular cells compared to the cortex in response to salt stress. The

relative accumulation of Na+ and Cl- in both cells were increased in the presence of high and

low salt stress and the increases were greater in high salt stress than in low salt stress (Table 1).

In contrast, the relative concentration of K+ decreased significantly in both cortex and vascular

cells in response to high and low salt exposure but the response was less pronounced for low

than for high salt stress (Table 1). Ca2+ levels showed similar decreases, regardless of high or

mild salt treatments (Table 1). Mg2+ levels were unaffected by any salt treatments (Table 1).

The distribution of other elements (S, P and Mn) between the cortex and vascular system and

their responses to salinity are shown in S6 Table.

Discussion

Salinity and ABA decreases gas exchange which eventually exerts negative

effects on the growth of plant

As an immediate response to osmotic stress caused by salinity, stomatal aperture decreases in

salt stressed plants [1]. Decrease in stomatal opening eventually reduces CO2 diffusion from

the atmosphere to the site of carboxylation which is an immediate cause for decreased photo-

synthesis under salt stress [30]. In the present study, significant reduction in stomatal
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Fig 4. Changes in the concentration of most abundant cations (K+, Ca2+ and Mg2+) in root and leaf tissues in response to salinity

and ABA. Graph A, C and E represent the changes in K+, Ca2+ and Mg2+ concentrations respectively compared to control in roots.

Graph B, D and F represent the changes in K+, Ca2+ and Mg2+ concentrations respectively compared to control in leaves. In case of

respective ion, mean value of controls was subtracted from each treatment value and then % change compared to control condition
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conductance was observed in response to high and low salt exposure which eventually reduced

net CO2 assimilation for photosynthesis and subsequent water loss via transpiration.

Decreased gas exchange was also found in response to ABA with no salt exposure, since ABA

promotes stomatal closure [31].

Significant decline in shoot height and stem diameter increment in high salt stressed plants

in this study was most likely a result of reduced carbon fixation due to very low photosynthesis.

Moderate reduction in photosynthesis found under low salt exposure negatively affected shoot

growth as well. But the decrease in gas exchange in response to ABA treatment did not affect

stem elongation significantly. However, whole-plant leaf area was negatively affected by both

salt and ABA treatments. Decreased leaf size in response to salt and ABA contributed to the

reduction of whole-plant leaf area here. Leaf shedding is a water-stress avoidance strategy in

plants [32, 33], and is controlled by the interplay of phytohormones, including ABA [33, 34].

Besides, ABA is also involved in other morphological changes for acclimation to low water

availability such as decreased shoot growth, leaf size and increased root growth [35–37]. Since

the root to shoot ratio increased and loss of leaf biomass was not significant in the present

study, the negative effect of salt and ABA on whole-plant biomass was moderate.

Leaf K+ level is maintained under salt stress, whereas leaf Ca2+ and Mg2+

levels are reduced by the influence of transpiration

Accumulated Na+ in root and leaf tissues in response to high and low salt stress eventually

increased the total cation concentrations. Overall, leaves contained higher cation

was calculated. Bar represents means ± SE (n = 5 or 10). For statistical analysis, all treatment values got after subtracting mean value of

control were subjected for one-way ANOVA. Different letters obtained from Fisher’s test indicate significant differences among

treatments at p<0.05.

https://doi.org/10.1371/journal.pone.0253228.g004

Fig 5. SEM imaging of P. × canescens root. Cross section (A) showing different cell layers in root. Sections of root

from 100 mM NaCl treated plant (B) as well as control plant (C) are presented. Bars = 200 μm.

https://doi.org/10.1371/journal.pone.0253228.g005
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concentrations than roots under any stress conditions compared to non-stressed plants. The

increased concentration may be necessary to maintain water uptake by decreasing osmotic

pressure [38]. The decrease in root K+ under salinity is most likely the outcome of competition

between K+ and Na+ for uptake [38–40]. Na+ competes with K+ for the binding site of high

affinity (KUP and HKT) K+ channels as well as low affinity non-selective cation channels [41,

42]. Moreover, Na+ influx into the cells leads to membrane depolarization resulting in leakage

in voltage-gated outward-rectifying channels which leads to K+ loss [43]. However, this reduc-

tion of K+ content in the root has no effect on the radial transport towards the central cylinder

as we did not observe any restriction in radial translocation of K+ from cortex to vascular cells

in the root under salt stress. This suggests that xylem loading of K+ was unaffected [44]. The

dramatic reduction in K+ content in the roots did not negatively affect the K+ content in leaves.

K+ even increased under salt stress conditions in leaves in our study. Maintaining or elevating

K+ levels in leaves is a known mechanism of halophytic plants [45] and has been reported for

wheat, barley [46, 47]as well as in earlier studies for P. x canescens [19] and P. tomentosa [21].

Thus, we may speculate that a high leaf K+ level is an evolutionary conserved mechanism of

plants to acclimate to salt stress.

In contrast, salt exposure caused reduced concentrations of Ca2+ and Mg2+ in roots as well

as in leaves, indicating a clear difference between K+ on the one hand and Ca2+/Mg2+, when it

comes to the translocation of these elements from the root to the shoot. ABA treatment in the

absence of salt did not alter Ca2+and Mg2+ levels in roots, but lead to a significant reduction in

leaves. This observation implies that ABA did not have any negative effect on influx of Ca2+

and Mg2+ into roots, but had negative effects on the transport from root to shoot. It is known

that Ca2+ is relatively immobile within the plant and supply to the young tissues is strongly

dependent on the current acquisition from the growth medium via transpiration stream [48–

50]. Moreover, both Ca2+ and Mg2+ contents in the shoots of barley seedlings (Hordeum vul-
gare) were reduced due to a decrease in transpiration rate [51]. Therefore, it is highly likely

that ABA induced decrease in transpiration rate was a reason for decreased translocation of

Ca2+ and Mg2+ from root to shoot resulting in reduced leaf content of these two elements.

Table 1. Relative concentration of Na, K, Ca, Mg and Cl in the cortex and the vascular tissues of root of P. × canescens from EDX analysis.

Tissue Treatment Relative element concentration (weight %)

Na K Ca Mg Cl

Cortex Control 5.59 ± 0.65 a 49.91 ± 4.02 c 8.08 ± 0.33 b 7.59 ± 0.47 abc 3.57 ± 0.41 a

Hs 31.65 ± 4.29 d 14.91 ± 4.60 a 4.84 ± 0.27 a 6.79 ± 0.43 abc 10.06 ± 0.73 bc

cLs 20.18 ± 3.93 bc 35.59 ± 4.79 b 5.66 ± 1.15 a 4.96 ± 1.46 a 12.01 ± 1.89 cde

Ls + Hs 32.26 ± 3.77 d 19.70 ± 3.74 a 4.46 ± 0.57 a 5.44 ± 1.75 ab 12.42 ± 1.45 cde

cABA + Hs 35.77 ± 4.08 d 16.96 ± 5.38 a 3.98 ± 0.41 a 4.85 ± 1.23 a 15.08 ± 2.32 e

Vascular tissue Control 5.60 ± 0.39 a 49.52 ± 3.72 c 7.80 ± 0.34 b 8.00 ± 0.40 c 3.45 ± 0.39 a

Hs 28.38 ± 4.32 cd 13.96 ± 4.48 a 4.94 ± 0.36 a 7.36 ± 0.33 bc 8.94 ± 0.32 b

cLs 19.98 ± 3.59 b 34.43 ± 4.47 b 4.97 ± 1.25 a 5.35 ± 1.40 abc 9.89 ± 1.44 bc

Ls + Hs 29.88 ± 4.24 d 18.71 ± 3.52 a 4.46 ± 0.50 a 5.76 ± 1.66 abc 10.50 ± 0.36 bcd

cABA + Hs 34.04 ± 3.16 d 15.85 ± 4.73 a 3.97 ± 0.25 a 5.78 ± 1.61 abc 13.54 ± 2.33 de

p-value p(treatment) <0.001 <0.001 <0.001 0.009 <0.001

p(tissue) 0.38 0.74 0.61 0.44 0.03

p(treatment × tissue) 0.99 0.999 0.92 0.999 0.98

Data represent mean ± SE (n = 3 or 4) (four measurements were taken from each plant). Two—way ANOVA was conducted for each element with treatment and tissue

as two main factors. Beta regression model was used for ANOVA and homogenous subsets were found using Fisher´s test. Different lowercase letters in the column of

specific element for both tissues indicate significant differences among treatments at p <0.05.

https://doi.org/10.1371/journal.pone.0253228.t001
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Moreover, reduction in leaf Ca2+ level in ABA treated plants (cABA, -22%) was as strong as

in high salt stress (Hs, -26%), although transpiration rate was comparatively higher in ABA

treatments. This phenomenon suggests a strong influence of transpiration on the ion transport

to the leaves under salinity. Since salt exposure increases ABA levels in the plant [13, 14, 18,

19], participation of ABA in the transpiration-based ion transport reduction might also exist

in the salt treatments. Although we cannot exclude an influence of our treatments on the trans-

port systems for these cations, our findings indicate that lower transpiration rate induced by

salinity plays role in the suppression of Ca2+ and Mg2+ transport to the leaves.

In summary, reduced transpiration under salinity did not decrease the accumulation of

Na+ or K+ in leaves, suggesting a rather transpiration independent translocation to the leaves.

Ca2+ and Mg2+ levels in leaves under salt stress were at least partially dependent on reduced

transpiration rate. Therefore, the present study suggests that the influence of transpiration on

foliar accumulation of nutrients in P. × canescens under salinity is rather modest.
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