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Abstract
In supervised classification problems, the test set may contain data points belonging
to classes not observed in the learning phase. Moreover, the same units in the test
data may be measured on a set of additional variables recorded at a subsequent stage
with respect to when the learning sample was collected. In this situation, the classifier
built in the learning phase needs to adapt to handle potential unknown classes and the
extra dimensions. We introduce a model-based discriminant approach, Dimension-
Adaptive Mixture Discriminant Analysis (D-AMDA), which can detect unobserved
classes and adapt to the increasing dimensionality. Model estimation is carried out via
a full inductive approach based on an EM algorithm. The method is then embedded in
a more general framework for adaptive variable selection and classification suitable
for data of large dimensions. A simulation study and an artificial experiment related
to classification of adulterated honey samples are used to validate the ability of the
proposed framework to deal with complex situations.
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1 Introduction

Standard supervised classification approaches assume that all existing classes in the
data have been observed during the learning phase. However, in some cases there could
be the possibility of having units in the test set belonging to classes not previously
observed. In such situation, a standard classifier would fail to detect the novel classes
and would assign the observations only to the classes it is aware of from the learning
stage. Moreover, the observations to be classified may be recorded on a collection
of additional variables other than the variables already observed in the learning data.
Examples of this situation are: classification of spectrometry data where the test data
may be measured at a finer resolution than the learning set, hence with a increased
number of wavelengths; classification of time-dependent data where variables corre-
spond to points in time and observations are recorded in a continuousmanner, whereby
a given set of observations could have been collected up to a certain data point, while
another set of units could have been recorded up to a successive period of time; classi-
fication of data where some of the variables of the training set are corrupted and cannot
be used to build the classifier, while they are available in the testing stage. In all these
scenarios, the classifier would also need to adapt to the increasing dimensionality. The
combination of unrepresented classes in the training data and additional features in the
test set leads to a complex situation where the model built in the learning stage is faced
with two sources of criticality when classifying the new data: unobserved classes and
extra variables.

In a recentwork, Bouveyron (2014) introduced an adaptivemethod formodel-based
classification when the test data contains unknown classes. Nonetheless, the method is
not capable of handling the situation of additional variables. To deal with this problem,
this work introduces a model-based adaptive classification method for detection of
novel classes in a set of new data that is characterized by an expanded number of
variables with respect to the learning set. The approach is developed in conjunction
with an adaptive variable selection procedure used to select the variables of the test set
most relevant for the classification of the observations into observed and novel classes.
An EM algorithm based on an inductive approach is proposed for estimation of the
model. Variable selection is performed with a greedy forward algorithm that exploits
the inductive characteristics of the approach and make it suitable for high-dimensional
data.

The methodology presented here aims at tackling the problems arising from a
mismatch in the distributions of labels and input variables in training and test data.
This problem is more generally denoted as “dataset shif”, and we point the interested
reader to Quionero-Candela et al. (2009) and Moreno-Torres et al. (2012). In this
work, the mismatch is due to unrepresented classes in the training data and increased
dimensions of the test data.

1.1 Model-based discriminant analysis

Consider a set of learning observations {xs; �̄s}, where xs is the observation of a vector
of random variables and �̄s is the associate class label, such that �̄sc = 1 if observation
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s belongs to class c, 0 otherwise; c = 1, . . . ,C . The aim of supervised classification
is to build a classifier from the complete learning data {xs, �̄s} and use it to assign
a new observation to one of the known classes. Model-based discriminant analysis
(MDA, Bouveyron et al. 2019; McLachlan 2012, 2004; Fraley and Raftery 2002) is
a probabilistic approach for supervised classification of continuous data in which the
data generating process is represented as follows:

�̄s ∼
C∏

c=1

τ �̄sc
c ,

(xs | �̄sc = 1) ∼ N (μc,�c),

(1)

where τc denotes the probability of observing class c, with
∑

c τc = 1. Consequently,
the marginal density of each data point corresponds to the density of a Gaussian
mixture distribution:

f (xs ;�) =
C∑

c=1

τc φ(xs ; μc,�c),

where φ(. ; μc,�c) is themultivariate Gaussian density, withmeanμc and covariance
matrix�c, and� is the collection of all mixture parameters. Then, using themaximum
a posteriori (MAP) rule, a new observation yi is assigned to the class �ic with the
highest posterior probability:

Pr(�ic = 1 | yi ) = τc φ(yi ; μc,�c)∑C
c=1 τc φ(yi ; μc,�c)

. (2)

The framework is closely related to other discriminant analysis methods. If the
covariancematrices are constrained to be the same across the classes, then the standard
linear discriminant analysis (LDA) is recovered. On the other hand, if the covari-
ance matrices have no constraints, the method corresponds to the standard quadratic
discriminant analysis (QDA McLachlan 2004; Fraley and Raftery 2002). Several
extension of this framework have been proposed in the literature in order to increase
its flexibility and scope. For example, Hastie and Tibshirani (1996) consider the case
where each class density is itself a mixture of Gaussian distributions with common
covariance matrix and known number of components. Fraley and Raftery (2002) fur-
ther generalize this approach, allowing the covariance matrices to be different across
the sub-groups and applying model-based clustering to the observations of each class.
Another approach, eigenvalue decomposition discriminant analysis (EDDA,Bensmail
and Celeux 1996), is based on the family of parsimonious Gaussian models of Celeux
and Govaert (1995), which imposes cross-constraints on the eigen-decomposition of
the class covariance matrices. This latter approach allows more flexibility than LDA,
and is more structured than QDA and the methods of Fraley and Raftery (2002), which
could be over-parameterized. In high-dimensional settings, different approaches have
been proposed based on regularization and variable selection: Friedman (1989) andXu
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et al. (2009) propose regularized versions of discriminant analysis where a shrinkage
parameter is introduced to control the degree of regularization betweenLDAandQDA;
Le et al. (2020) and Sun and Zhao (2015) define frameworks where a penalty term is
introduced and the classes are characterized by sparse inverse covariance matrices. It
is also worth to mention that for high-dimensional data, the framework of discrimi-
nant analysis has often been phrased in terms of sparse discriminant vectors, see for
example: Clemmensen et al. (2011), Mai et al. (2012), Safo and Ahn (2016), Jiang
et al. (2018), Qin (2018).

1.2 Adaptivemixture discriminant analysis

The discriminant analysis approaches pointed out earlier assume that all existing
classes have been observed in the training set during the learning phase, not taking
into account that the test data might include observations arising from classes present
in the learning phase. Initial works in the the context of unobserved classes detection
and model-based discriminant analysis are those of Miller and Browning (2003) and
Frame and Jammalamadaka (2007), while examples of applications include galaxy
classification (Bazell and Miller 2005) and acoustic species classification (Woillez
et al. 2012). More recently, building onMiller and Browning (2003) work, Bouveyron
(2014) introduced Adaptive Mixture Discriminant Analysis (AMDA), a framework
for model-based discriminant analysis which allows the modeling of data where the
test set contains novel classes not observed in the learning phase. The AMDA model
considers the data arising from amixture model with observed and unobserved classes
and Bouveyron (2014) proposes two alternative approaches for model estimation. In
particular, the inductive approach, where the classifying function is first estimated on
the learning set and then applied to the test data. Crucially, the core assumption of
the inductive approach is that the parameters estimated on the training data are fixed
when dealing with the test set (see Chapelle et al. 2006; Pang and Kasabov 2004,
for example). The assumption makes the approach most suitable for fast on-line data
classification when the data come in multiple streams. In fact, with this approach, the
learning set does not need to be kept in memory for prediction on a set of new data
points, only the estimated parameters need to be stored.

In what follows we provide a formal description of the problem of unobserved
classes in the test data and give a brief overview of the inductive AMDAmethodology,
as it constitutes the starting block of the main contribution of this paper. The learning
data is composed ofM observations xs and the associated class labels �̄s , while the test
data contains N new observations yi . For ease of presentation, we treat the classes as
sets, with C the set of all classes. The AMDA framework considers the situation where
the data generating process is the same as depicted in (1) but only a subset of classes
is observed in the training set, that is a subset K ⊆ C of classes has been represented
in the learning data. Therefore the test data may contain a set of extra “hidden” classes
H such that K ∪ H = C. The cardinality of these sets (i.e. the number of classes) is
denoted with K , H , and C respectively, such as K + H = C .

The inductive AMDA approach consists of two phases: a learning phase and a
discovery phase. The initial learning phase corresponds to the estimation of a model-
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based discriminant analysis classifier using the training data. The data in the learning
phase are complete, and the parameters estimated in this stage are then employed in the
subsequent discovery phase. The discovery phase searches for H novel classes in the
set of newobservationsyi . In this phase, because of the inductive approach, the learning
data is no longer needed and is discarded. The only relevant quantities to be retained
are the parameter estimates obtained during the learning phase. In this stage, one needs
to estimate the parameters of the unobserved classes in a partially unsupervised way in
order to derive the classification rule as in (2). Since the observations yi are unlabelled,
the following log-likelihood is considered:

L(Y;�) =
N∑

i=1

log

{
K∑

k=1

τk φ(yi ; μk,�k) +
C∑

h=K+1

τh φ
(
yi ; μh,�h

)
}

,

where � denotes the collection of all parameters. The parameters μk,�k for k =
1, . . . , K are those of the classes observed in the training set and have been already
estimated in the learning phase; the bar in the notation indicates that at this stage these
parameters have already been estimated and are fixed. On the other hand, the Gaussian
density parameters μh,�h for h = K + 1, . . . ,C remain to be estimated. Note that
quantities related to the known classes are denotedwith subscript k, while the subscript
h denotes quantities related to the new classes; subscript c denotes both known and
unknown classes. Bouveyron (2014) presents an EM algorithm (Dempster et al. 1977;
McLachlan and Krishnan 2008) for optimization of the above log-likelihood with
respect to the parameters of the unobserved classes, keeping fixed the parameters
estimated in the learning phase.

1.3 Contribution and organization of the paper

The present paper extends the inductive AMDA framework to the case where the test
data includes not only unobserved classes, but also extra variables. The contribution
of this work is twofold. First, we propose a novel inductive model-based adaptive
classification framework which can model the situation where the observations of the
test data may contain classes unobserved during the training stage and are recorded
on an expanded set of input features. Secondly, we incorporate this framework in a
computationally efficient inductive variable selection procedure employed to detect
the most relevant variables for classification into observed and unknown classes.

The paper is organized as follows. The current Sect. 1 introduced the problem of
classifcationwith unknown classes and extra variables, also providing a short overview
of model-based classification via discriminant analysis. In particular, Sect. 1.2 briefly
described the adaptive discriminant analysis methodwhich is the basis of our proposed
method. The following sections presents the novel methodology. Section 2 introduces
the novel adaptive mixture discriminant analysis method capable to handle the com-
plex situation where the new observations include information about unknown classes
and are also measured on a set of additional variables. Section 3 presents an efficient
inductive model estimation approach, based on a novel inductive conditional estima-
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tion procedure employed to infer the parameters of unknown classes and unobserved
variables. Technical details about initialization of the algorithm, assessing conver-
gence, and model selection are described at the end of this section. In Sect. 4, the
proposed method is naturally incorporated in a variable selection approach tailored
for classification of high-dimensional data. Extensive simulation experiments are con-
ducted in Sect. 5, in order to evaluate the performance of the proposed method for
adaptive classification and variable selection. Section 6 presents an application to the
classification of spectroscopy data of contaminated honey samples. The paper ends
with a discussion in Sect. 7.

2 Dimension-adaptivemixture discriminant analysis

The AMDA framework combines supervised and unsupervised learning for detecting
unobserved classes in the test data. However, in a dynamic classification setting, the
new observations could be characterized not only by information about novel classes.
In fact, the units in the test data could also have been recorded on a set of additional
variables other than the ones already observed in the learning data. Typical examples
are situations where the samples in the test data are collected at a finer resolution
compared to the training set, some features are not available or corrupted during the
training phase, or the training samples have been collected only up to a certain time
point while the test set includesmeasurements concerning also subsequent time points.

Formally, we describe the setting of unknown classes and extra variables as follows.
The learning dataX is composed of M observations xs with the associated class labels
�̄s , and the test data Y is composed of N new unlabelled observations yi . As in Sect.
1.2, the test data may contain a set of unobserved classes H such that K ∪ H = C.
However, in this setting we consider the case where only a subset of variables available
in the test data are observed or recorded in the training data. Hence, the test data also
includes extra variables compared to the data set used for training. We consider the
collection of variables observed in learning and test data as sets. In the case where
only a subset of variables is available in the learning set, the test observations yi are
realizations of the set of variables R, while the training observations are recorded on
the subset of variables P ⊂ R. Consequently, the set Q = R \ P denotes the set of
additional variables observed in the test set but not in the training set. The cardinalities
of these sets, i.e. the number of variables in each set, are indicated with P , Q, and R,
respectively, with R = P + Q.

The extra dimensions in the test data induce an augmented parameter space in the
prediction and novel class detection stage of the classifier. Discarding the additional
dimensions available in the test data can potentially damage the classification per-
formance of the model, especially if the extra variables contain useful discriminant
information. In this context, the classifier built in the learning phase needs to adapt in
order to handle the situation where the new data to be classified contains information
about novel classes and extra variables. To the purpose, we introduce Dimension-
Adaptive Mixture Discriminant Analysis (D-AMDA). The model is a generalization
of AMDA and is designed to classify new observations measured on additional vari-
ables and possibly containing information about unobserved classes. Under themodel,
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(a) (b)

Fig. 1 General framework of the inductive estimation approach for Dimension-Adaptive Mixture Discrim-
inant Analysis

the joint densities of each observed and new data point together with observed and
unobserved class labels are given by:

f (xs, �̄s ;�x ) =
K∏

k=1

{
τk φ(xs ;μk,�k)

}�̄sk , (3)

f (yi , �i ;�y) =
[ K∏

k=1

{
τk φ(yi ;μ∗

k ,�
∗
k)

}�ik

]
×

[ C∏

h=K+1

{
τh φ(yi ;μ∗

h,�
∗
h)

}�ih

]
,

(4)

with s = 1, . . . , M , i = 1, . . . , N , and �x and �y are the set of parameters for
training and test observations. As earlier, the subscript k indicates quantities related to
the known classes, while the subscript h denotes quantities related to the new classes.
The parameters μk and �k are the class-specific mean and covariance parameters of
the observed classes in the learning data and related to the subset of variables P . The
parameters denoted with μ∗ and �∗ denotes respectively the class-specific mean and
covariance parameters for both observed and unobserved classes and related to the full
collection of variables of the test data. These parameters are defined on an augmented
space compared to the parameters in (3). Indeed,μk and�k are P-dimensional vectors
and P × P matrices, whileμ∗ and�∗ are R-dimensional vectors and R× R matrices.
As such, the model takes into account that yi may be measured on additional variables
and generalizes the AMDA framework.

Similarly to AMDA, model estimation for D-AMDA is carried out within an induc-
tive estimation framework. Figure 1 provides a sketch of the general framework. In
(a) the training data X and the corresponding collection of labels �̄ are observed. The
aim of the learning stage is to estimate the set of parameters μk , �k and τ of the
density in (3). In (b) only Y is observed and no information about the classification is
given. The test data is partitioned into two parts: YP, the subset of data corresponding
to the variables observed in the training set, and YQ, the subset of data related to the
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additional variables (gray background). In the discovery phase the aim is to estimate
the parameters μ∗

k , μ
∗
h , �

∗
k , �

∗
h and τ of the distribution in (4), as well as to infer the

classification of the new unlabelled data points. The collection of class labels to be
inferred here is composed of the labels indicating the classes observed in the learning
stage and the labels indicating the new classes (gray background). Model estimation
for D-AMDA is detailed in the next sections.

3 Inductivemodel estimation and inference

The use of an inductive estimation approach is appropriate for the proposed D-AMDA
framework, as it allows to only retain the test data once a set of mean and covariance
parameter estimates have been obtained from the training data. Since the training set
is lower dimensional compared to the test data, this can be particularly efficient in
high-dimensional and on-line classification settings. Like in Sect. 1.2, the approach
is composed of a learning and a discovery phase. In this case, the discovery phase
includes a novel estimation procedure employed to account for the extra dimensions.

3.1 Learning phase

The learning phase of the inductive approach consists of estimating parameters for the
observed classes employing only the training set. From Eq. (3), this stage corresponds
to the standard estimation of amodel-based discriminant analysis classifier, performed
by optimization of the associated log-likelihood:

L(X, �̄ ;�x ) =
M∑

s=1

K∑

k=1

�̄sk log
{
τk φ(xs ;μk,�k)

}
,

which reduces to the separate estimation of the class density parameters. Here we
consider the eigenvalue decomposition discriminant analysis (EDDA) ofBensmail and
Celeux (1996), in which the class covariance matrices�k are parameterized according
to the eigen-decomposition�k = λk Dk Ak D

′
k , providing a collection of parsimonious

models. Estimation of this model is carried out using the mclust R package Scrucca
et al. (2016), which also automatically selects the best covariance decomposition
model using the Bayesian Information Criterion (BIC, Schwarz 1978; Fraley and
Raftery 2002). This learning phase is more general than the one in Bouveyron (2014).
In fact, the author considers a QDA model in the learning phase, a particular case
of EDDA corresponding to an unconstrained covariance model (see Scrucca et al.
2016). The EDDA classifier learned in this phase is more flexible and is proven to
perform better than QDA (Bensmail and Celeux 1996), although it will introduce
some complications, which described in the following section.

The learning phase outputs the parameters of the EDDAmodel fitted on the training
dataμk and�k for k = 1, . . . , K .We note again thatwe use the bar symbol to stress the
fact that the parameters estimated in the learning phase are fixed during the discovery
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phase. Since the discovery phase relies only on the test data and these parameters, the
training set can be discarded.

3.2 Discovery phase

The discovery phase looks for novel classes in the test data, given the parameter
estimates from the learning phase. Under the D-AMDAmodelling framework, we also
need to take into account the extra dimensions of the test data. Subsequently, in this
phase we need to estimate two main collections of parameters: the parameters of the
additional variables corresponding to novel and known classes, and the parameters of
the already observed variables related to new and known classes. These characterize
the distribution in (4) and are estimated keeping the parameter estimates from the
learning phase fixed.

Because the labels of the test data are unobserved, in this stage we aim to optimize
the following log-likelihood:

L(Y;�y) =
N∑

i=1

log

{
K∑

k=1

τk φ(yi ;μ∗
k ,�

∗
k) +

C∑

h=K+1

τh φ(yi ;μ∗
h,�

∗
h)

}
, (5)

with
∑K

k=1 τk + ∑H
h=1 τh = 1. Crucially, for k = 1, . . . , K , mean and covariance

parameters of the K observed classes are partitioned into parameters fixed from the
learning phase corresponding to the variables observed in X and parameters corre-
sponding to the additional variables present in the test data:

μ∗
k = (μk μ

Q
k )

′
�∗

k =
[
�k Ck

C
′
k �

Q
k

]
, (6)

where Ck are the covariance terms between additional and observed variables. Such
partition of the parameters of the observed classes will need to be taken into account
during the estimation procedure, as it indirectly induces a constraint on the estimation
of the parameters for the additional variables; see the following Sect. 3.2.2.

Optimization of this log-likelihood in the discovery phase is carried out by resorting
to an EM algorithm (Dempster et al. 1977; McLachlan and Krishnan 2008). From (5)
we have the complete log-likelihood:

L(Y, �;�y) =
N∑

i=1

[
K∑

k=1

�ik log
{
τk φ(yi ;μ∗

k ,�
∗
k)

}

+
C∑

h=K+1

�ih log
{
τh φ(yi ;μ∗

h,�
∗
h)

}]
, (7)

where, �ik and �ih denote the latent class membership indicators to be estimated on the
test data for known and unobserved classes. The EMalgorithm alternates the following
two steps.
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• E Step: After estimation of the parameters at the previous M step iteration, the
estimated conditional probabilities, tic = P̂r (�ic = 1 | yi ) are computed as:

tic = τ̂c φ(yi ; μ̂∗
k , �̂

∗
k)∑K

k=1 τ̂k φ(yi ; μ̂∗
k , �̂

∗
k) + ∑C

h=K+1 τ̂h φ(yi ; μ̂∗
h, �̂

∗
h)

,

for i = 1, . . . , N , and c = 1, . . . ,C .
• MStep: in this step of the algorithm we maximize the expectation of the complete
log-likelihood computed using the estimated probabilities tic of the E step. Due
to the augmented dimensions of the test data, this step is more involved. The
optimization procedure of the M-step is divided into two parts: estimation of
mixing proportions and mean and covariance parameters corresponding to the
unobserved classes, described inSect. 3.2.1, and estimationofmean and covariance
parameters related to the classes already observed in the learning phase, described
in Sect. 3.2.2.

3.2.1 Estimation of mixing proportions and parameters of unobserved classes

The introduction of new variables does not affect the estimation of the mixing propor-
tions, nor the estimation of the parameters corresponding to the new classes. Hence,
in this case the updates are in line with those outlined in Bouveyron (2014). From
Eq. (7), the estimates of mean and covariance parameters of the H hidden classes are
obtained simply by optimizing the term involvingμ∗

h and�∗
h . Therefore, the estimates

of the Gaussian density parameters related to the unknown classes are simply given
by:

μ̂∗
h = 1

Nh

N∑

i=1

tihyi , �̂
∗
h = 1

Nh

N∑

i=1

tih(yi − μ̂∗
h)(yi − μ̂∗

h)
′
,

with Nh = ∑
i tih . For the mixing proportions, two alternative updates are available.

One is based on the re-normalization of the mixing proportions τk as outlined in
Bouveyron (2014), the other on the re-estimation of the mixing proportions for both
observed and unobserved classes on the test data. The two updates correspond to
very different assumptions about the data: the re-normalization update is based on
the assumption that the new classes do not affect the balance of the classes observed
in the training set, while the other update is based on the assumption that the class
proportionsmay have changed in the test data.We opt for this latter approach, since it is
more flexible and avoids the introduction of possible bias due to the re-normalization,
as discussed in Lawoko and McLachlan (1989). The mixing proportions are updated
as follows:

τ̂k = Nk

N
τ̂h = Nh

N
for k = 1, . . . , K and h = K + 1, . . . ,C .
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3.2.2 Inductive conditional estimation procedure

The estimation of mean and covariance parameters μ∗
k and �∗

k of the classes already
observed in the training data is an involved problem, due to the augmented parameter
dimensions and the fact that the parameters from the learning phase need to be kept
fixed. Here we need to estimate the components μ

Q
k , �

Q
k and Ck of the partitions

in (6). As in a standard Gaussian mixture model, a straightforward update for these
would be computing the related in sample weighted quantities. However, this would
not take into account the constraint that the parameters μk and �k have already been
estimated in the learning phase and need to be held fixed. In particular, the covariance
block �k has been estimated in the learning phase via the EDDA model, imposing
constraints on its eigen-decomposition. As it is often the case, if the covariance model
for�k has a particular structure (i.e. is not the VVV using the mclust nomenclature)
the approach would not ensure a valid positive definite �∗

k . A clear example is the
case where the EDDA model estimated in the learning phase is a spherical one with
diagonal matrices �k . In such case, completing the off-diagonal entries of �∗

k with
non-zero terms and without taking into account the structure of the block �k would
not guarantee a positive definite covariance matrix (Zhang 2006). We propose the
following procedure to obtain valid estimates.

Denote an observation of the test datayi = {yPi , yQi }, whereyPi are themeasurements

of the set P of variables of the training data and yQi are the measurements of the setQ
of additional variables observed in the test data. To take into account the structure of
the block�k , the problem of maximizing the expectation of (7) with respect to�∗

k and

μ∗
k can be interpreted as the problem of finding estimates ofμQ

k ,�
Q
k , andCk such that

the joint distribution of observed and extra variables ({yPi , yQi } | lik = 1) ∼ N (μ∗
k ,�

∗
k)

is a multivariate Gaussian density whose marginal distributions are (yPi | lik = 1) ∼
N (μk,�k) and (yQi | lik = 1) ∼ N (μ

Q
k ,�

Q
k ), and with �∗

k being positive definite.
To accomplish this task, we devise the following inductive conditional estimation
procedure:

Step1. Fix the marginal distribution of the variables observed in the learning phase,
(yPi | lik = 1) ∼ N (μk,�k);

Step2. Estimate the parameters of the conditional distribution (yQi | yPi , lik = 1) ∼
N (mik,Ek), wheremik andEk are relatedmean and covariance parameters.

Step3. Find estimates of the parameters of the joint distribution ({yPi , yQi } | lik =
1) ∼ N (μ∗

k ,�
∗
k) using the fixed marginal and the conditional distribution.

Since we are using an inductive approach, Step 1 corresponds in keepingμk,�k fixed.
Next, in Step 2 the parameter estimates of the distribution of the new variables given
the variables observed in the training set are obtained. This allows to take into account
the information and the structure of the learning phase parameters. Then, in Step 3
these estimates are used to find the parameters of the marginal distribution of the set of
new variables Q and the joint distribution of R = {P,Q}, while preserving the joint
association structure among all the variables in R. The proposed method is related
to the well known iterative proportional fitting algorithm for fitting distributions with
fixed marginals (see for example Whittaker 1990; Fienberg and Meyer 2006), and the
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iterative conditional fitting algorithm of Chaudhuri et al. (2007) used to estimate a
multivariate Gaussian distribution with association constraints.

Taking the expectation of the complete log-likelihood in (7), the term involving μ∗
k

and �∗
k can be rewritten as:

N∑

i=1

[
K∑

k=1

tik log
{

φ(yQi | yPi ; mik,Ek) φ(yPi ; μk,�k)
}]

. (8)

In Step 1, parameters μk,�k are fixed from the learning phase. Therefore, the term
log{φ(yPi ; μk,�k)} is alreadymaximized. InStep2 andStep3,wemakeuse of thewell
known closure properties of the multivariate Gaussian distribution (see Tong 1990;
Zhang 2006, for example) in order to maximize the term log{φ(yQi | yPi ; mk,Ek)}.
In Step 2 the focus is on the conditional distribution; for each observation i we can
rewrite:

mik = μ
Q
k + C

′
k�

−1
k (yPi − μk), Ek = �

Q
k − C

′
k �−1

k Ck .

Let us define the scattering matrix Ok = ∑N
i=1 tik(yi − yk)(yi − yk)

′
, with yk =

1
Nk

∑N
i=1 tik yi . We can partition it as:

Ok =
[
Wk Vk

V
′
k Uk

]
,

with Wk the block related to the variables observed in the learning set, Uk the block
associated to the new variables and Vk the crossproducts. Now we maximize (8) with
respect to Ek and Ck . After some algebraic manipulations, we obtain the estimates:

Ĉk = (�−1
k Wk �−1

k )−1(�−1
k Vk),

Êk = 1

Nk

[
Ĉ

′
k �−1

k Wk �−1
k Ĉk − 2V

′
k�

−1
k Ĉk + Uk

]
.

Then, in Step 3we obtain the estimates of the marginal distribution for the set of extra
variables as:

μ̂
Q
k = 1

Nk

[
N∑

i=1

tiky
Q
i − Ĉ

′
k �−1

k

N∑

i=1

tik(yPi − μk)

]
, �̂

Q
k = Êk + Ĉ

′
k �−1

k Ĉk .

Hence μ∗
k and �∗

K are estimated:

μ̂∗
k = (μk μ̂

Q
k )

′
, �̂

∗
k =

[
�k Ĉk

Ĉ
′
k �̂

Q
k

]
.

Further details about the derivations are in Appendix 1. Provided that Ok is positive
definite, the estimate of �k obtained in such way is ensured to be positive definite
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as well due to the properties of the Schur complement (Zhang 2006; Tong 1990). In
certain cases, for example when the number of variables R is large compared to N and
to the expected class sizes, or when the variables are highly correlated, this scattering
matrix could be singular. To overcome this issue, one could resort to regularization. To
this purpose, we delineate a simple Bayesian regularization approach in Appendix 1.

3.3 Technical details

3.3.1 Initialization of the EM algorithm

In order to compute the first E step iteration of the EM algorithm in the discovery
phase, we need to initialize the parameter values. A random initialization has a fair
chance of not providing good starting points. On the other hand, the initialization based
on the model-based hierarchical clustering method discussed in (Scrucca and Raftery
2015) and (Fraley 1998) often yields good starting points, is computationally efficient
and works well in practice. However, we need to take care of the fact that a subset of
the parameters is fixed. We make use of the following strategy for initialization.

First we obtain a hierarchical unsupervised partition of the observations in the test
data using the method of Scrucca and Raftery (2015) and Fraley (1998). Afterwards,
for a fixed number C of clusters and the corresponding partition, we compute the
within-cluster means and covariance matrices, both for new and observed variables.
Let us denote with μ̃P

g and �̃
P
g (g = 1, . . . ,C) the computed cluster parameters related

to the observed variables, with μ̃Q
g and �̃

Q
g those related to the extra variables, and

with C̃g the covariance terms. Now, we find which of the detected clusters match the
classes observed in the training set over the observed variables. For each known class
and each cluster we compute the Kullback-Leibler divergence:

tr

{(
�̃

P
g

)−1
�k

}
+ (μ̃P

g − μk)
′ (

�̃
P
g

)−1
(μ̃P

g − μk) + log
det �̃

P
g

det�k
, ∀ g, k.

Then, we find the first K clusters with the minimum divergence and thus likely cor-
responding to the classes observed in the training data. For these clusters, the set of
parameters related to the observed variables are initialized with the associated values
μk and �k , the set of parameters related to the new variables are initialized with the

same values μ̃
Q
k and �̃

Q
k , and the covariance terms with C̃k . The remaining clusters

can be considered as hidden classes and the related parameters are initialized with the
corresponding cluster means and covariances.

3.3.2 Selection of the number of hidden classes

Similarly to AMDA, also in the D-AMDA framework class detection corresponds to
selection of the number of hidden classes in the test data. As in the learning phase,
the BIC is employed for this purpose. Explicitly, for a range of values of number of
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hidden classes H , we choose the model that maximizes the quantity:

BICH = 2 L(Y; �̂y) − ηH log N ,

where ηH is the number of parameters estimated in the discovery phase, equal to

(H + K − 1) + 2HR + H
(R
2

) + 2K Q + K PQ + K
(Q
2

)
.

3.3.3 Assessing convergence

To determine the convergence of the EM algorithm in the discovery phase we employ
a standard stopping criterion, monitoring the relative change of the value of the max-
imized log-likelihood in (5). Let L(t) be the value of the objective function in (5) at

iteration t . The EM algorithm is stopped when |L(t)−L(t−1)|
1+|L(t)| < ε, where the tolerance

ε = 10−5.

4 Inductive variable selection for D-AMDA

Given the large amount and the variety of sources at disposition, classification of high-
dimensional data is becoming more and more a routine task. In this setting, variable
selection has been proven beneficial for increasing accuracy, reducing the number of
parameters and a better model interpretation (Guyon and Elisseeff 2003; Pacheco et
al. 2006; Brusco and Steinley 2011; Fop and Murphy 2018). We adapt the variable
selection method of Maugis et al. (2011) and Murphy et al. (2010) in order to perform
inductive variable selection within the context of D-AMDA. The aim is to select the
relevant variables that contain the most useful information about both observed and
novel classes. Themethod is inductive in the sense that the classifier model first is built
on the data observed in the learning phase. Then, while performing variable selection
on the new test data, the classifier is adapted by removing and adding variables without
re-estimating the model on the learning data.

Following Maugis et al. (2011) and Murphy et al. (2010), at each step of the vari-
able selection procedure we consider the partition Y = (Yclass,Y prop,Yother), where
Yclass is the current set of relevant variables, Y prop is the variable proposed to be
added/removed to/from Yclass, and Yother are the non relevant variables. Let also � be
the class indicator variable. For each stage of the algorithm, we compare two models:

M1 : p(Y | �) = p(Yclass,Y prop | �) p(Yother),

M2 : p(Y | �) = p(Yclass | �) p(Y prop |Yreg ⊆ Yclass) p(Yother).

In model M1, Yprop is relevant for classification and p(Yclass,Y prop | �) is the D-
AMDA model where the classifier is adapted by including the proposed variable
Y prop. In model M2, Y prop does not depend on the labels and thus is not useful for
classification. p(Yclass | �) is the D-AMDA model on the current selected variables
and the conditional distribution p(Y prop |Yreg ⊆ Yclass) is a regression where Y prop
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depends on Yclass through a subset of predictors Yreg. This regression term encom-
passes the fact that some variables may be redundant given the set of already selected
ones, and thus can be discarded (Murphy et al. 2010; Raftery andDean 2006). Relevant
predictors are chosen via a standard stepwise procedure and the selection avoids to
include unnecessary parameters that would over-penalize the model without a signifi-
cant increase in its likelihood (Maugis et al. 2009a, b). The two models are compared
by computing the difference between their BIC:

BIC1 = BICclass(Yclass,Y prop),

BIC2 = BICno class(Yclass) + BICreg(Y
prop |Yreg ⊆ Yclass),

where BICclass(Yclass,Y prop) is the BIC of the D-AMDA model where Y prop is useful
for classification, BICno class(Yclass) is the BIC on the current set of selected variables
and BICreg(Y prop |Yreg ⊆ Yclass) is the BIC of the regression. The difference (BIC1 −
BIC2) is computed and if it is greater than zero, there is evidence that Y prop conveys
useful information about the classes, hence variable Y prop is added to the D-AMDA
model and the classifier is updated.

The selection is performed using a stepwise greedy forward search where variables
are added and removed in turn. Since we adopt an inductive approach, when the
variables to be added/removed belong to the set of variables already observed in the
learning phase, the classifier is updated in a fast and efficient way. Indeed, if a variable
observed in X needs to be added, the classifier is updated by simply augmenting
the set of parameters with the parameters already estimated in the learning phase.
Analogously, if the variable needs to be removed, the classifier is updated by deleting
the corresponding parameters. Only parameters related to additional variables and
novel classes need to be estimated when updating the D-AMDA model. Parameters
related to known classes and observed variables are updated only via deletion or
addition. Moreover, the forward greedy search employed to add and remove variables
can be easily separated into a collection of parallel model comparison tasks. Therefore,
the variable selection procedure can be implemented exploiting parallel computing,
which considerably reduces the computing time (see Scrucca and Raftery (2018) for
a discussion on the advantages of parallel computing for variable selection for model-
based clustering). As such, the method is suitable for fast on-line variable selection.

The classification procedure is partly unsupervised because of the presence of unob-
served classes. Therefore, while searching for the relevant variables, also the number
H of unknown classes needs to be chosen. As in Maugis et al. (2009a, b); Raftery
and Dean (2006), we consider a range of possible values for H . Then, at every step
BICclass(Yclass,Y prop) and BICno class(Yclass) are computed by maximizing over this
range. Therefore, the method returns both the set of relevant variables and the optimal
number of unobserved classes.

The set of relevant variables needs to be initialized at the first stage of the variable
selection algorithm. We suggest to start the search from a conveniently chosen subset
of size S of the variables observed in the learning phase. To determine such subset,
for every variable in Y corresponding to those already observed in X, we estimate a
univariate Gaussian mixture model for a number of components ranging from 2 to
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G > K . Then we compute the difference between the BIC of such model and the
BIC of a single univariate Gaussian distribution. The variables are ranked according
to this difference from the largest to the lowest value. The starting subset is formed by
selecting the top S variables in the list. Similar initial selection strategies have been
discussed in McLachlan (2004) and Murphy et al. (2010). Note that one could also
initialize the set of relevant variables from all the observed variables of the training
data. Nonetheless, if the number of variables observed in X is large, it is likely that
many of them would be uninformative or redundant, therefore, initialization using
such set might not provide a good starting point for the search.

5 Simulated data experiments

In this section we evaluate the proposed modeling framework for variable selection
and adaptive classification through different simulated data experiments under various
conditions. The objective is to assess the classification performance of the method, its
ability of detecting the novel classes and its ability of discarding irrelevant variables
and selecting those useful for classification.

5.1 Simulation study 1

This simulation study shows the usefulness of using all the variables available in the
test data for class prediction and detection when only a small subset of these are
observed in the training stage.

We consider the well known Italian wines dataset (Forina et al. 1986). The data
consist of 27 chemicalmeasurements froma collection ofwine samples fromPiedmont
region, in Italy. The observations are classified into three classes indicating the type
of wine. Different scenarios are considered for different combinations of number of
variables observed in the training stage and different test data sample sizes. Using
the class-specific sample means and covariances, we generate training data sets with
random subsets of the 27 variables, with the number of variables observed in the
training set P equal to 18, 9, and 3. Then, with the same class-specific parameters, a
test set on all the 27 variables and different sample sizes N is generated. One class
is randomly deleted from the training data, while all 3 classes are present in the
test data. In each scenario, we consider the following models: the EDDA classifier
fitted on the training data with full information, i.e. all 3 classes and all 27 variables,
tested on the full test data, EDDA-full; the EDDA classifier fitted on the training data
considering only a subset of the variables, then tested on the test data containing the
same subset of training variables, EDDA; the AMDA approach of Bouveyron (2014)
fitted on the simulated training data with a subset of the variables and tested on the
test data with the subset of variables observed in the training, AMDA; the presented
D-AMDA framework, D-AMDA. Further details are provided in Appendix 1.

Results are reported in Figs. 2 and 3. The variables in the wine data present a
good degree of discrimination, and the EDDAmodel fitted and tested on the complete
data represents the optimal baseline performance (EDDA-full). On the other hand,
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Fig. 2 Simulation study 1 (Wine data). Classification error computed on the matched classes between the
actual classification of the test data and the estimated one. The values are reported for different number of
variables in the training stage P and test data sample sizes N

the EDDA classifier trained on the partial data cannot account for the unobserved
class in the test data and provides the worst classification performance. AMDA can
detect additional classes in the test data, but it cannot use the discriminant information
potentially available in the additional variables, thus obtaining an inferior classifica-
tion performance compared to D-AMDA. Since the D-AMDA framework adapts to
the additional dimensions and classes, all the information available in the variables
observed in the test set is exploited for classification, of both variables observed during
the training stage and the extra ones present in the test set. This extra information is
beneficial, especially when the number of variables present in the training set is small
(P = 3 in particular), attaining a classification performance comparable to the optimal
baseline.

5.2 Simulation study 2

This simulation study assesses the D-AMDA classification performance and the effec-
tiveness of the inductive variable selection method at detecting variables relevant for
classification. Different scenarios are constructed by defining different proportions of
relevant and irrelevant variables available in the training and the full test data.
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Fig. 3 Simulation study 1 (Wine data). Adjusted Rand index between the actual classification of the test
data and the estimated one for AMDA and D-AMDA. The values are reported for different number of
variables in the training stage P and test data sample sizes N

In all the experiments of this section we consider three types of variables: class-
generative variables, Gen, which contain the principal information about the classes;
redundant variables, Cor, which are correlated to the generative ones; noise variables
Noi, which do not convey any information about the classes. The Gen variables are
distributed according to a mixture of C = 4 multivariate Gaussian distributions. Each
Cor variable is correlated to 2Gen variables selected at random,while theNoi variables
are independent from bothGen and Cor variables.We point out the fact that, as they are
generated, theCor variables actually contain some information about the classification.
Indeed, they are independent of the label variable only conditionally on the set Gen,
not marginally. Thus, in some cases, they could convey the best information available
to classify the data units if some generative variables have been discarded during the
search. Hence, the inclusion of a Cor variable would not necessarily degenerate the
classification performance. In the learning set, 2 of the 4 classes are observed and they
are randomly chosen. All the 4 classes are observed in the test set.

Three experiments are considered, each one characterized by three scenarios.
Throughout the different scenarios, since D-AMDA is partially unsupervised, we use
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the adjusted Rand index (ARI, Hubert and Arabie 1985) to assess the quality of the
classification. We compare the results of the following methods:

• D-AMDA, the D-AMDA model applied on X and the full Y without performing
any variable selection.

• D-AMDA-gen, theD-AMDAmodel applied on the learning and test sets containing
only Gen variables. As only Gen variables are used, this represents the optimal
baseline solution in terms of classification performance.

• D-AMDA-varsel, the D-AMDA model with the forward variable selection applied
to the observed X and Y.

The variable selection performance of D-AMDA-varsel is assessed via the proportion
of times each variable was selected as relevant out of the total number of replicated
experiments. Further details about the parameters of the simulations are inAppendix 1.

To evaluate the computational efficiency of D-AMDA with variable selection, we
also report the computing times of D-AMDA-varsel in Appendix 1. All the experiments
are run on a standard machine with 8 processors, implementing the variable selection
search in parallel. The inductive framework for estimation and variable selection cou-
pled with the parallelization of the forward greedy search is particularly efficient, with
computing times having median values around the range of 20 to 150 seconds across
all scenarios. More details are reported in Appendix 1.

5.2.1 Experiment 1

The test data consist of 100 variables, 10 Gen, 30 Cor and 60 Noi. In the learning set,
20 of the 100 variables are observed. Three scenarios are defined according to the set
of variables observed in the simulated X:

1(a) All the 10 Gen variables plus 10 variables picked at random among Cor and
Noi.

1(b) 5Gen variables selected at random, 5Cor selected at random, plus 10 variables
chosen at random among Cor and Noi.

1(c) 2 Gen selected at random, the remaining 18 variables are chosen at random
among Cor and Noi.

The sample size of the learning set is equal to the sample size of Y and takes values
100, 200 and 400. In all scenarios, the forward search is initialized starting from all
the variables observed in X.

Figures 4 and 5 report the results. In scenario 1(a), the EDDA learning model is
estimated on a set containing all the classification variables. Furthermore, the forward
search is initialized on the same set. This gives a good starting point to the variable
selection procedure, resulting that only Gen variables are declared as relevant and
with an excellent classification performance. The results hold regardless of the size
of the test data samples in practice. In scenarios 1(b) and 1(c), as less Gen variables
are available in the learning phase, the variable selection method declares as relevant
Cor variables more frequently. However, good classification results and good selection
performance are still obtained, especially for larger sample sizes.
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5.2.2 Experiment 2

Also here the test data consist of 100 variables, 10 Gen, 30 Cor and 60 Noi. In the
learning set, 50of the 100variables are observed.Three scenarios are defined according
to the set of variables observed in the simulated X:

2(a) All the 10 Gen variables plus 40 variables randomly chosen among Cor and
Noi.

2(b) 5 Gen variables selected at random, 15 Cor selected at random, plus 30 vari-
ables chosen at random among Cor and Noi.

2(c) 2 Gen selected at random, the remaining 48 variables are randomly selected
among Cor and Noi.

In this experiment, the sample size of the learning set is fixed and equal to 50 for all
the scenarios. The forward search is initialized from 10 of the 50 variables observed
in X, selected using the ranking procedure described in Sect. 4.

This setting is particularly challenging, since the learning set is high-dimensional
in comparison to the number of data points. In practice, this results in a learning phase
where only EDDA models with diagonal covariance matrices can be estimated. Even
if all Gen variables are observed in X, such subset of models are misspecified in
relation to how the data is generated. This represents a difficult starting point for the
D-AMDA model and the variable selection procedure. Indeed, with this experiment
we want to test the robustness of the method against the misspecification of the model
in the learning stage. Results are reported in Figs. 6 and 7. In scenario 2(a), a selection
of reasonable quality is attained, while in scenarios 2(b) and 2(c) Cor variables are
selected almost as often as Gen variables. Overall, in all three scenarios, Noi variables
are never selected and the method achieves a good classification performance even
when Cor variables are selected as relevant almost asmany times as the variables of the
Gen set. This fact is likely due to the variable selection initialization: this initialization
strategy tends to start the selection from a set of good classification variables, and such
set may contain both Gen and Cor variables.

5.2.3 Experiment 3

In this case the test data consist of 200 variables, 20 Gen, 60 Cor and 120 Noi. In
the learning set, 40 of the 200 variables are observed. Three scenarios are defined
according to the set of variables observed in the simulated X:

3(a) All the 20 Gen variables plus 20 variables selected randomly among Cor and
Noi.

3(b) 10 Gen variables selected at random, 10 Cor selected at random, plus 20
variables picked at random among Cor and Noi.

3(c) 4 Gen selected at random, the remaining 36 variables are randomly chosen
among Cor and Noi.

Here, the sample size of the learning set is equal to the one of the test data and
takes values 100, 200 and 400. The forward search is initialized from 10 of the 40
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variables observed in X, selected using the ranking procedure described in Sect. 4.
The experiment is characterized by an high-dimensional test set Y.

Results are reported in Figs. 8 and 9. For larger sample sizes, the variable selection
method tends to correctly identify the relevant variables, especially as the number of
Gen variables involved in the estimation of the EDDA model in the learning phase
increases, as in scenario 3(a). When such number is reduced in scenarios 3(b) and
3(c), Cor variables tend to be declared as relevant more often. However, Noi variables
are never selected and the selection performance is still of sufficient quality for larger
sample sizes. TheD-AMDAmethodwith variable selection obtains good classification
results in all the scenarios.

6 Contaminated honey data

Food authenticity studies are concerned with establishing whether foods are authentic
or not. Mid-infrared spectroscopy provides an efficient method of collecting data
for use in food authenticity studies, without destructing the sample being tested nor
requiring complex preparation (Downey 1996). In this section we consider a food
authenticity data set consisting of mid-infrared spectroscopic measurements of honey
samples. Kelly et al. (2006) collected 1090 absorbance spectra of artisanal Irish honey
over the wavelength range 3700nm − 13600nm at 35nm resolution. Therefore, the
data consists of 285 absorbance values (variables). Of these samples, 290 are pure
honey, while the remaining are contaminated with five sugar syrups: beet sucrose
(120), dextrose syrup (120), partial invert cane syrup (160), fully inverted beet syrup
(280) and high-fructose corn syrup (120). The aim is to discriminate the pure honey
from the adulterated samples and the different contaminants. At the same time, the
purpose is in the identification of a small subset of absorbance values containing as
much information for authentication purposes as the whole spectrum does. Figure 10
provides a graphical description of the data. Except from beet sucrose and dextrose,
there is an high overlap between the other contaminants and the pure honey; this
stems from the similar composition of honey and these syrups (Kelly et al. 2006). The
principal features seem to be around the ranges 8700nm–10,300nm and 10,500nm–
11,600nm, while the spectra overlap significantly at lower wavelengths.

In this section we test the D-AMDA method with variable selection. We construct
an artificial experiment that represents the situationwere the samples in the learning set
were collected at a lower resolution than the ones in test data and the information about
one of the contaminants was missing. We randomly split the whole data into learning
set and test set, in proportions 2/3 and 1/3 respectively. Then, we consider the learning
set as it were generated from absorbance spectra collected at 70nm intervals, retaining
wavelengths 3700nm, 3770nm, 3840nm and so on. Thus, the data observed in the
learning phase are approximately recorded on half of the variables of the test data.
Afterwards, we randomly chose one of the two classes related to the contaminants beet
sucrose and dextrose syrup, and we remove from the learning set the corresponding
observations. In this way we obtain a test set measured on additional variables and
containing extra classes.
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Fig. 10 The Mid-infrared spectra recorded for the pure and the contaminated honey samples (a); class-
conditional mean spectra for pure and contaminated honey samples, zoomed around the range 7500nm–
11,700nm (b)

We replicate the experiment for 100 times, applying the D-AMDA approach with
variable selection, D-AMDA-varsel, and without, D-AMDA. For comparison and for
evaluating the classification performance, we also apply the EDDAmodel to the whole
learning set containing all the contaminants, EDDA-full. Then we use the estimated
classifier on the test data to classify the samples. The EDDA-full classifier uses all
the information available about classes and wavelengths, thus its classification per-
formance can be considered as the optimal baseline. For the variable selection, we
initialize the search from a set of 30 wavelengths selected using the ranking procedure
described in Sect. 4.

Results of the variable selection procedure are reported in Fig. 11. The figure dis-
plays the proportion of times a wavelength has been declared as relevant for separating
the classes of contaminants and the pure honey. The frequently chosenwavelengths are
mostly in the ranges 10,000nm–11,200nm and 8500nm–9300nm. In particular, val-
ues 10,000nm, 10,070nm, 10,140nm, 10,210nm, 10,910nm, 10,980nm, 11,050nm,
and 11,120nm are selected in all the replicates of the experiment. Also wavelengths
in the range 5400nm–5800nm are selected a significant number of times. The peak
in 8250nm corresponds to a wavelength range particularly useful to discriminate dex-
trose syrup from the rest (Kelly et al. 2006). The most frequently selected wavelengths
correspond to the interesting peaks and features of the spectra. Classification results
are presented in Figure 12. As for the simulation settings, because of the extra hidden
class in the test set, we made use of the ARI to compare the actual classification and
the ones estimated byD-AMDA-varsel and D-AMDA. TheD-AMDAmethod selects the
correct number of classes only 34/100 of the times. D-AMDA-varsel selects the right
number of unknown classes 79 out of 100 times, and panel (b) of Figure 12 reports
the boxplot of the classification error of D-AMDA-varsel and EDDA-full in this case.
The classification performance of D-AMDA-varsel is comparable to EDDA-full, but it
makes use of information about less wavelengths and is obtained in a more complex
setting.
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Fig. 11 Proportions of time a wavelength has been selected as a relevant variable over 100 replicates of the
artificial experiment
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Fig. 12 ARI (a) and classification error (b). The classification error is reported for the EDDA model and
the D-AMDA with variable selection. For the error, the boxplot displays values only for the 79/100 times
the D-AMDA correctly selected the number of unknown classes

7 Discussion

We presented a general adaptive mixture discriminant analysis method for classifica-
tion and variable selection when the test data contain unobserved classes and extra
variables. We have shown that our methodology effectively addresses the issues gen-
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erated by the presence of hidden classes in a test data with augmented dimensions
compared to the data observed during the training stage. As such, the method is suit-
able for applications in real-time classification problems where the new data points
to be labelled convey extra information thanks to the presence of additional input
features.

The inductive approach had the advantage of avoiding the storing of the learn-
ing set and of avoiding the re-estimation of the parameters already obtained in the
learning stage. However, when extra variables are observed in the test data, the esti-
mation process is a complex problem, due to the parameter constraints induced by the
initial learning phase. An inductive conditional estimation procedure has been intro-
duced to overcome the issue and obtain valid parameter estimates related to the added
dimensions. The inductive framework results in a fast and computationally efficient
procedure, which has been embedded into a variable selectionmethod for dealing with
high-dimensional data.

The D-AMDA method developed here lies within the framework of novelty detec-
tion and dataset shift. Novelty detection is the identification of unknown classes that a
classification system is not aware of during training (Markou and Singh 2003), while
more in general dataset shift refers to the difference between the joint distribution of
labels and input variables in the training and test sets (Quionero-Candela et al. 2009;
Moreno-Torres et al. 2012). Compared to the AMDA method of Bouveyron (2014),
in addition to the problem of unrepresented classes in the training set, in this paper
we also address the shift due to the increased dimensions of the test data, which leads
to a change in the distributions of input variables in training and test sets through the
different sizes of the parameter spaces. The problem of test and training data having
different dimensions could be viewed as an instance of a particular type of dataset
shift, linked to “covariate shif” (see Moreno-Torres et al. 2012, for more details). To
the best of our knowledge, this problem has only been scantily explored in the litera-
ture, often with a focus to specific related applications. For example, particular cases
of classification of training and test data with different dimensions are those of super-
vised classification of time series of varying lengths (Tan et al. 2019; Bagnall et al.
2017, for recent reviews) and classification of images with occlusions and corruptions
(see for example Zhou et al. 2009; Bao et al. 2013, for an overview of the problem).
The D-AMDAmethod presented here provides scope for future developments to deal
with these specific complex situations.

The proposed D-AMDA framework opens also interesting future methodologi-
cal research directions. A limitation of the D-AMDA approach is that the discovery
phase does not consider particular constraints on the estimated covariance matrices.
The introduction of parsimonious models as in Bensmail and Celeux (1996) and Cap-
pozzo et al. (2020) with adaptive dimensionsmay be object of future research. Another
limitation is that the labels observed in the training data are assumed to be noise free,
as well as that no outlier observations are present in the input features. Recent work by
Cappozzo et al. (2020) proposes a robust version of the AMDA framework to address
these added sources of complexity. Future work may explore the development of a
robust version of D-AMDA, with a particular focus on discarding those additional
dimensions characterized by high levels of noisy and contaminated observations, suit-
able for robust on-line classification.
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8 Software

The R package damda implements the D-AMDA framework with inductive variable
selection presented in this paper. The package is publicly available at one of the authors
webpage: https://michaelfop.github.io/.
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Appendix

A. Details of the inductive conditional estimation

Neglecting the term involving the mixing proportions, the objective function to be
optimized in the M step to estimate μ∗

k and �∗
k is given by:

F(μ∗,�∗) =
N∑

i=1

[
K∑

k=1

tik log
{
φ(yi ;μ∗

k ,�
∗
k)

}]
.

LetOk = ∑N
i=1 tik(yi − yk)(yi − yk)

′
, with yk = 1

Nk

∑N
i=1 tik yi . The above function

can be expressed in term of the covariance matrix as:

F(�∗) =
∑

k

tr
{
Ok(�

∗
k)

−1} +
∑

k

Nk log det�
∗
k .

Let us now consider the partitioned matrices:

�∗
k =

[
�k Ck

C
′
k �

Q
k

]
, Ok =

[
Wk Vk

V
′
k Uk

]
.

Furthermore, define Ek = �
Q
k − C

′
k�

−1
k Ck . Then

(�∗
k)

−1 =
[
�−1

k + �−1
k CkE

−1
k C

′
k�

−1
k −�−1

k CkE
−1
k

E−1
k C

′
k�

−1
k E−1

k

]
,
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and log det�∗
k = log det�k + log detEk . It follows that F(�∗) can be re-expressed

as function of Ek and Ck as follows:

F(E,C) =
∑

k

tr{Wk�
−1
k CkE

−1
k C

′
k�

−1
k } − 2

∑

k

tr{V′
k�

−1
k CkE

−1
k }

+
∑

k

tr{UkE
−1
k } +

∑

k

Nk log detEk + const.

Maximization of F(E,C) with respect to Ek and Ck leads to:

Ĉk = (�−1
k Wk �−1

k )−1(�−1
k Vk),

Êk = 1

Nk

[
Ĉ

′
k �−1

k Wk �−1
k Ĉk − 2V

′
k�

−1
k Ĉk + Uk

]
.

Consequently we have that:

�̂
Q
k = Êk + Ĉ

′
k �−1

k Ĉk .

Given estimates Ĉk and Êk , for the mean parameter μ
Q
k corresponding to the addi-

tional variables, define nowmik = μ
Q
k +C

′
k�

−1
k (yPi −μk). Consequently, the function

F(μ∗,�∗) can be rewritten as:

F(m) =
N∑

i=1

[
K∑

k=1

tik log
{

φ(yQi | yPi ; mik, Êk)
}]

+ const.

By plugging themik expression above in F(m), we can express the latter in terms of
μ
Q
k as:

F(μQ) = −1

2

N∑

i=1

K∑

k=1

tik
{[
yQi − μ

Q
k − Ĉ

′
k�

−1
k (yPi − μk)

]′
Ê−1
k

[
yQi − μ

Q
k

− Ĉ
′
k�

−1
k (yPi − μk)

]} + const.

Taking derivatives of F(μQ) and solving for μ
Q
k we obtain:

μ̂
Q
k = 1

Nk

[
N∑

i=1

tiky
Q
i − Ĉ

′
k �−1

k

N∑

i=1

tik(yPi − μk)

]
.

The above passages prove the derivation of the updating equations of the M step in
Sect. 3.2.2.
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B. A note on regularization

The procedure described in 3.2.2 requires the empirical class scatter matrix Ok to be
definite positive. This may not be the case in situations where the expected number of
observations in a class is small or the variables are highly correlated. Approaches for
Bayesian regularization in the context of finite Gaussian mixture models for clustering
have already been suggested in the literature, see in particular Baudry and Celeux
(2015). We suggest a similar approach, proposing the following regularized version
of Ok :

Oreg

k = Ok + S
N det(S)1/R

(
γ

K + H

)1/R

,

where S = 1
N

∑N
i=1(yi − ȳ)(yi − ȳ)

′
is the empirical covariance matrix computed on

the full test data, and ȳ the sample mean, ȳ = 1
N

∑N
i=1 yi . The second term of the sum

is a matrix whose determinant is proportional to γ /(K + H) and acts as a regularizer.
The coefficient γ controls the amount of regularization and we set it to (log R)/N 2;
see Baudry and Celeux (2015) for further details. Note that in the case where N ≤ R,
the sample covariance matrix S is replaced by the diagonal matrix diag(S).

C. Details of simulation experiments

In this sectionwedescribe inmore details the settings of the simulated data experiments
of Sect. 5 in the main text.

C.1. Simulation study 1

The training data has M = 300 observations in all scenarios. A random subset of
the 27 variables is taken from the data, with the number of variables observed in the
training set equal to P = {18, 9, 3}. The test set is generated using all the 27 variables,
considering different sample sizes N = {50, 100, 200, 300, 500}. Different scenarios
are defined by different combinations of P and N . One class is randomly deleted from
the training data, while all 3 classes are present in the test data. In each scenario, the
followingmodels are considered: EDDA-full, the EDDA classifier fitted on the training
data with full information, i.e. all 3 classes and all 27 variables, tested on the full test
data; EDDA the EDDA classifier fitted on the training data considering only a subset of
the variables, then tested on the full test data; theAMDA approach of Bouveyron (2014)
fitted on the simulated training data with a subset of the variables and tested on the
test data with the subset of variables observed in the training; the presented D-AMDA
framework. Each experiment is replicated 100 times for all combinations of sample
sizes and number of observed training variables. Model selection for AMDA and D-
AMDA is performed using BIC and a range of values of H from 0 to 4. Since AMDA
and D-AMDA are partially unsupervised, we compute the classification error on the
matching classes detected after tabulating the actual classification with the estimated
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one using function matchClasses of package e1071 (Meyer et al. 2019). To
compare AMDA and D-AMDA, we also report the adjusted Rand index (ARI, Hubert
and Arabie 1985). Indeed, the learning in the test set is partly unsupervised, and a
number of hidden classes different from 1 could be estimated. The results are reported
in Figs. 2 and 3 in the main text.

C.2. Simulation study 2

The data are generated according to the following settings and parameters. Gen
variables are distributed according to a mixture of C = 4 multivariate Gaussian
distributions with mixing proportions (0.3, 0.4, 0.4, 0.3). Mean parameters are ran-
domly chosen in (−7, 7), (−4.5, 4.5), (−0.5, 0.5), (−10, 10). For each class, the
covariancematrices are randomly generated from theWishart distributionsW(G, 	1),
W(G+2, 	2),W(G+1, 	3),W(G, 	4), whereG denotes the number of generative
variables. The scale matrices are respectively defined: 	1, is such that ψ j j = 1 and
ψ j i = ψi j = 0.7; 	3, is such that ψ j j = 1 and ψ j i = ψi j = 0.5; 	2 = 	4 = I.
Cor variables are generated as Xg1 + Xg2 + ε, where Xg1 and Xg2 are two randomly
chosen Gen variables and ε ∼ N (0, 1). In Simulations 1 and 2, Noi variables are
generated asN (0, 	), where 	 is such that ψ j j = 1 and ψ j i = ψi j = 0.5; thus they
are correlated to each other, but not to Cor and Gen variables. In Experiment 3, the
Noi variables are generated all independent of each other. The 2 classes observed in
the learning set are randomly chosen from the set of 4 classes with equal probabilities.

We considered three different sample sizes for the test data, respectively 100, 200
and 400. Each scenariowithin each experiment and for each sample sizewas replicated
50 times. Throughout the different scenarios, we compared the results of the follow-
ing methods: D-AMDA, the D-AMDA model applied on X and the full Y without
performing any variable selection; D-AMDA-gen, representing the optimal baseline
solution, which corresponds to the D-AMDA model applied on the learning and test
sets where only Gen variables are observed; D-AMDA-varsel, the D-AMDA model
with the forward variable selection applied to the observed X and Y.

We used the ARI to assess the quality of the classification of all methods, while the
variable selection performance of D-AMDA-varsel was assessed via the proportion of
times each variable was selected as relevant out of the 50 replicated experiments. The
results are reported in the Figs. 4, 5, 6, 7, 8, and 9 in the main text.

D. Computing times

To evaluate the computational efficiency of D-AMDA with variable selection, we
report the computing times of the Simulation Study 2 experiments of Sect. 5. All
the experiments were run on a standard machine with 8 processors (a Dell laptop
Intel® Core i7-8650U CPU @1.90GHz×8). The code implementing the proposed
framework is mainly written in R, with parts of the estimation procedure written
in C++; the greedy forward search is implemented using the standard parallelization
functionalities of R. Figure 13 shows the computing times (in seconds) for all scenarios
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of Simulation Study 2. The inductive framework for estimation and variable selection
coupled with the parallelization of the forward greedy search is particularly efficient,
with computing times having median values around the range of 20 to 150s across all
scenarios.

Wewant to note that evaluating the effective runtime and speed of amethod is a very
difficult task; we point the interested reader to Kriegel et al. (2017) for a discussion.
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