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Bacteria sense temporal changes in extracellular stimuli via sensory signal transducers andmove by rotating fla-
gella towards into a favorable environment for their survival. Each flagellum is a supramolecular motility ma-
chine consisting of a bi-directional rotary motor, a universal joint and a helical propeller. The signal
transducers transmit environmental signals to the flagellar motor through a cytoplasmic chemotactic signaling
pathway. The flagellar motor is composed of a rotor andmultiple stator units, each of which acts as a transmem-
brane proton channel to conduct protons and exert force on the rotor. FliG, FliM and FliN form the C ring on the
cytoplasmic face of the basal body MS ring made of the transmembrane protein FliF and act as the rotor. The C
ring also serves as a switching device that enables the motor to spin in both counterclockwise (CCW) and clock-
wise (CW) directions. The phosphorylated form of the chemotactic signaling protein CheY binds to FliM and FliN
to induce conformational changes of the C ring responsible for switching the direction of flagellar motor rotation
from CCW to CW. In thismini-review, wewill describe current understanding of the switchingmechanism of the
bacterial flagellar motor.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many bacteria possess flagella to swim in liquid media andmove on
solid surfaces. Escherichia coli and Salmonella enterica serovar Typhim-
urium (hereafter referred to Salmonella) are model organisms that
have provided deep insights into the structure and function of the bac-
terial flagellum. The flagellum is composed of basal body rings and an
).

. on behalf of Research Network of C
axial structure consisting of at least three parts: the rod as a drive
shaft, the hook as a universal joint and thefilament as a helical propeller
(Fig. 1A). The flagellar motor of E. coli and Salmonella consists of a rotor
and a dozen stator units and is powered by an electrochemical potential
of protons across the cytoplasmic membrane, namely proton motive
force. Marine Vibrio and extremely alkalophilic Bacillus utilize sodium
motive force as the energy source to drive flagellar motor rotation.
The rotor is composed of the MS ring made of the transmembrane pro-
tein FliF and the C ring consisting of three cytoplasmic proteins, FliG,
FliM and FliN. Each stator unit is composed of two transmembrane pro-
teins, MotA and MotB, and acts as a transmembrane proton channel to
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1. Subunit organization in the flagellar motor. (A) Bacterial flagella. Electron micrograph of flagella purified from Salmonella on the left and its schematic diagram on the right. The
flagellum is composed of the bsal body as a rotary motor, the hook as a universal joint and the filament as a molecular screw. (B) CryoEM image of Salmonella basal body on the left
and its schematic diagram on the right. The purified basal body consists of the C, MS, L and P rings and the rod. A dozen MotA/MotB stator complexes are associated with the basal
body but are lost during purification. The C ring is composed of FliG, FliM and FliN. The N-terminal domain of FliG (FliGN) forms the inner lobe along with the C-terminal cytoplasmic
domain of FliF (FliFC). The C-terminal domain of FliG (FliGC) is located in the upper part of the C ring wall. The middle domain of FliM (FliMM) is located between the middle domain
of FliG (FliGM) and FliN and forms a cylindrical wall of the C ring. A continuous spiral density at the bottom edge of the C ring is made of the C-terminal domains of FliM (FliMC) and FliN.
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couple the proton flow through the channel with torque generation
(Fig. 1B) [1–5].

The flagellarmotor rotates in either counterclockwise (CCW;viewed
from the flagellar filament to themotor) or clockwise (CW) direction in
E. coli and Salmonella. When all the motors rotate in the CCW direction,
flagellar filaments together form a bundle behind the cell body to push
the cell forward. Brief CW rotation of one or more flagellar motors dis-
rupts the flagellar bundle, allowing the cell to tumble, followed by a
change in the swimming direction. Sensory signal transducers sense
temporal changes in extracellular stimuli such as chemicals, tempera-
ture and pH and transmit such extracellular signals to the flagellar
motor via the intracellular chemotactic signaling network. The phos-
phorylated form of CheY (CheY-P), which serves as a signaling mole-
cule, binds to FliM and FliN in the C ring to switch the direction of
flagellar motor rotation from CCW to CW. Thus, the C ring acts as a
switching device to switch between the CCW and CW states of the
motor [2,5].

The stator complex is composed of four copies of MotA and two
copies of MotB. The MotA4/MotB2 complex is anchored to the pepti-
doglycan (PG) layer through direct interactions of the C-terminal
periplasmic domain of MotB with the PG layer to become an active
stator unit around the rotor [4]. A highly conserved aspartate residue
of MotB (Asp-32 in the E. coli protein and Asp-33 in the Salmonella
protein) is located in the MotA4/MotB2 proton channel and is in-
volved in the energy coupling mechanism [6,7]. The cytoplasmic
loop between transmembrane helices 2 and 3 of MotA (MotAC)
contains highly conserved Arg-90 and Glu-98 residues and are im-
portant not only for torque generation but also for stator assembly
around the rotor [8–10].

FliG is directly involved in torque generation [8]. Highly conserved
Arg-281 and Asp-289 residues are located on the torque helix of FliG
(HelixTorque) [11] and interactwithGlu-98 and Arg-90 ofMotAC, respec-
tively [8,10]. Since the elementary process of torque generation caused
by sequential stator–rotor interactions in the flagellarmotor is symmet-
ric in the CCW and CW rotation, HelixTorque is postulated to rotate 180°
relative to MotAC in a highly cooperative manner when the motor
switches between the CCW and CW states of the C ring [12]. This
mini-review article covers current understanding of how such a cooper-
ative remodeling of the C ring structure occurs.

2. Structure of the C Ring

FliF assembles into the MS ring within the cytoplasmic membrane
[13]. The C ring consisting of a cylindrical wall and inner lobes is formed
by FliG, FliM and FliN on the cytoplasmic face of the MS ring with the
inner lobes connected to the MS ring (Fig. 1B) [14]. FliF requires FliG
to facilitate MS ring formation in the cytoplasmic membrane [15]. FliG
binds to FliF with a one-to-one stoichiometry [16]. FliM and FliN to-
gether form the FliM1/FliN3 complex consisting of one copy of FliM
and three copies of FliN [17], and the FliM1/FliN3 complex binds to the
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FliG ring structure through a one-to-one interaction between FliG and
FliM to form the continuous C ring wall [18–20]. Most of the domain
structures of FliG, FliM and FliN have been solved at atomic resolution
(Fig. 2), and possible models of their organization in the C ring have
been proposed (Fig. 1B) [21,22].

2.1. FliG

FliG consists of three domains: N-terminal (FliGN), middle (FliGM)
and C-terminal (FliGC) domains (Fig. 2A) [23]. FliGC is divided into
two subdomains: FliGCN and FliGCC. FliGN is involved in the interaction
with the C-terminal cytoplasmic domain of FliF (FliFC) (Fig. 2B)
[24,25]. Inter-molecular interactions between FliGN and FliGN and be-
tween FliGM and FliGCN are responsible for the assembly of FliG into
the ring structure on the cytoplasmic face of the MS ring [26–29].
FliGM provides binding sites for FliM (Fig. 2C) [18–20]. A highly con-
served EHPQR motif of FliGM is involved in the interaction with FliM
[18,30]. FliGCC contains HelixTorque, and highly conserved Arg-284 and
Asp-292 residues of Aquifex aeolicus FliG, which corresponds to Arg-
281 and Asp-289 of E. coli FliG involved in the interactions with con-
served charged residues of MotAC [8,11], are exposed to solvent on the
surface of HelixTorque [23].

2.2. FliM

FliM consists of three domains: N-terminal (FliMN), middle (FliMM)
and C-terminal (FliMC) domains [31,32]. FliMN contains a well con-
served LSQXEIDALL sequence, which is responsible for the interaction
with CheY-P [33]. FliMN is intrinsically disordered, and the binding of
Fig. 2. Crystal structures of C ring proteins. (A) Crystal structure of FliG derived fromAquifex aeoli
rainbow colors from theN- to the C-terminus. FliG consists of FliGN, FliGM and FliGC domains and
Arg-284 and Asp-292 residues, which correspond to Arg-281 and Asp-289 of E. coli FliG, respecti
interactions with the cytoplasmic loop of MotA. (B) Crystal structure of the FliFC/FliGN comple
(grey) binds to a hydrophobic groove of FliGN (rainbow). (C) Crystal structure of the FliGM/Fli
in FliGM and a well conserved GGXG motif in FliMM are responsible for the FliGM–FliMM inter
FliMC and FliNN subunits are shown in green and cyan, respectively. Leu-68, Ala-93, Val-113 an
113 of FliN are required for the interaction with FliH. (E) Crystal structure of the FliN dimer de
CheY-P to FliMN allows FliMN to become structured [32]. FliMM has a
compactly folded conformation (Fig. 2C), and side-by-side associations
between FliMM domains are responsible for the formation of the C
ring wall [32]. The binding of CheY-P to FliMN affects inter-molecular
FliMM–FliMM interactions, thereby inducing a conformational change
in the C ring responsible for switching the direction of flagellar motor
rotation [34]. A well conserved GGXG motif of FliMM is involved in the
interaction with FliGM (Fig. 2C) [18,30]. FliMC shows significant se-
quence and structural similaritieswith FliN and is responsible for the in-
teraction with FliN (Fig. 2D) [35].
2.3. FliN

FliN is composed of an intrinsically disordered N-terminal re-
gion (FliNN) and a compactly folded domain (FliNC), which struc-
turally looks similar to FliMC [36]. FliN exists as a dimer of dimer
in solution (Fig. 2E) [37] and forms the FliM1/FliN3 complex along
with FliM through an interaction between FliMC and FliN [17].
CheY-P binds to FliNC in a FliM-dependent manner [38]. Leu-68,
Ala-93, Val-113 and Asp-116 of E. coli FliN are responsible for the
interaction with CheY-P (Fig. 2D) [38,39]. The binding of CheY-P
to FliN affects interactions between FliMC and FliN, inducing the
conformational change of the C ring responsible for directional
switching of flagellar motor rotation [38]. FliNN seems to control
the binding affinity of FliNC for CheY-P [38] although it is dispens-
able for the function of FliN [40]. FliN also provides binding sites
for FliH, a cytoplasmic component of the flagellar type III protein
export apparatus for efficient flagellar protein export and assembly
cus (PDB code: 3HJL). TheCα backbone is colour-coded fromblue to red, going through the
two helix linkers, HelixNM andHelixMC. FliGC is divided into FliGCN and FliGCC subdomains.
vely, are located in the torque helix of FliGCC (HelixTorque), which is involved in electrostatic
x derived from Thermotaoga maritima (PDB code: 5TDY). FliFC consisting of two α-helices
MM complex derived from T. maritima (PDB code: 3SOH). A well conserved EHPQR motif
action. (D) Crystal structure of Salmonella FliMC-FliNN fusion protein (PDB code: 4YXB).
d Asp-116 of FliN are involved in the interaction with CheY-P. Val-111, Val-112 and Val-
rived from T. maritima (PDB code: 1YAB).
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[36,39–42]. Val-111, Val-112 and Val-113 of FliN are responsible
for the interaction with FliH (Fig. 2D) [39,41].

2.4. Subunit Organization in the C Ring Structure

Electron cryomicroscopy (cryoEM) image analysis has shown
that the C ring structures of the purified CCW and CW motors have
rotational symmetry varying from 32-fold to 35-fold, and the diam-
eter varies accordingly [43,44]. The C ring diameters of the CCW and
CW motors with C34 symmetry are 416 Å and 407 Å, respectively,
and so the unit repeat distance along the circumference of the C
ring is closer in the CW motor than in the CCW motor [45]. The C
ring produced by a Salmonella fliF–fliG deletion fusion strain missing
FliFC and FliGN lacks the inner lobe, suggesting that FliFC and FliGN

together form the inner lobe (Fig. 1) [45,46]. In agreement with
this, cryoEM images of the C ring containing the N-terminally
green fluorescent protein (GFP) tagged FliG protein show an extra
density corresponding to the GFP probe near the inner lobe [47].
The fliF–fliG deletion fusion results in unusual switching behavior
of the flagellar motor, suggesting that the inner lobe is required for
efficient and robust switching in the direction of flagellar motor ro-
tation in response to changes in the environment [45]. The upper
part of the C ring wall is formed by FliGM and FliGC. FliGM binds to
FliGCN of its adjacent FliG subunit to produce a domain-swap poly-
mer of FliG to form a ring in both CCW and CW motors [26,27,29].
Since HelixTorque of FliGCC interacts with MotAC [8,10], FliGCC is lo-
cated at the top of the C ring wall (Fig. 1). Since FliMM directly
binds to FliGM (Fig. 2C) [18–20], the continuous wall of the C ring
with a thickness of 4.0 nm and a height of 6.0 nm is formed by
side-by-side associations of the FliMM domains (Fig. 1) [32]. A
Fig. 3. Structural basis for the switchingmechanism. (A) Structural comparisonsbetweenwild-t
Tm-FliGMC(ΔPEV). Cα ribbon drawing of Tm-FliGMC (magenta), Tm-FliGMC(ΔPEV) (cyan)
superimposed onto that of the Tm-FliGMC/Tm-FliMM complex (PDB ID: 4FHR). HelixMC is locat
induces a distinct orientation of HelixMC relative to the FliGM–FliMM interface but also goes th
and Asp-290 of Tm-FliG correspond to Arg-281 and Asp-289 of E. coli FliG, respectively. (B)
pylori FliG. Conformational rearrangements of the conserved MFXF motif induces a 180°
correspond to Arg-281 and Asp-289 of E. coli FliG, respectively.
continuous spiral density with a diameter of 7.0 nm along the cir-
cumference at the bottom edge of the C ring is made of FliMC and
FliN (Fig. 1) [17,36].

3. Structural Basis for the Rotational Switching Mechanism

In E. coli and Salmonella, the flagellar motor is placed in a default
CCW state [3,5]. Mutations located in and around HelixMC of FliG,
which connects FliGM and FliGCN, cause unusual switching behavior of
the flagellarmotor [48], suggesting that helixMC is involved in switching
the direction of flagellar motor rotation. HelixMC is located at the FliGM–
FliMM interface and contributes to hydrophobic interactions between
FliGM and FliMM (Fig. 3A) [18,19]. In-frame deletion of three residues,
Pro-Ala-Ala at positions 169 to 171 of Salmonella FliG, which are located
in HelixMC, locks themotor in the CW state even in the absence of CheY-
P (CW-locked deletion) [49,50]. The crystal structure of the FliGM and
FliGC domains derived from Thermotaoga maritima (Tm-FliGMC) with
this CW-locked deletion have shown that the conformation of HelixMC

is distinct from that of the wild-type [19,50,51]. In the wild-type Tm-
FliGMC/Tm-FliMM complex, Val-172 of HelixMC of Tm-FliGMC makes hy-
drophobic contact with Ile-130 and Met-131 of Tm-FliMM (Fig. 3A)
[18,19]. In contrast, disulfate crosslinking experiments have shown
that HelixMC is dissociated from Tm-FliGM in the presence of the CW-
locked deletion (Fig. 3A) [28]. Consistently, the CW-locked deletion of
Tm-FliG reduces the binding affinity of Tm-FliGMC for Tm-FliMM by
about 400-fold [28]. Therefore, it seems likely that the binding of
CheY-P to FliM and FliN induces conformational rearrangements of
the FliGM–FliMM interface, thereby causing dissociation of HelixMC

from the interface to facilitate the remodeling of the FliG ring structure
responsible for directional switching of the flagellar motor.
ype FliGM and FliGC domains of T.maritima (Tm-FliGMC) and its CW-lockeddeletion variant,
and Tm-FliMM (green). The FliGM domain of Tm-FliGMC(ΔPEV) (PDB ID: 3AJC) was
ed at an interface between FliGM and FliMM. In contrast, the CW-locked deletion not only
rough a 90° rotation of FliGCC through a conserved MFXF motif colored in blue. Arg-283
Comparisons between the 3USY (cyan) and 3USW (magenta) structures of Helicobacter
rotation of FliGCC relative to FliGCN to reorient Arg-293 and Glu-300 residues, which
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HelixMC interacts with HelixNM connecting FliGN and FliGM (Fig. 2A)
[23]. The E95D, D96V/Y, T103S, G106A/C and E108K substitutions in
HelixNM of Salmonella FliG result in a strong CW switch bias [52]. A ho-
mology model of Salmonella FliG built based on the crystal structure of
FliG derived from A. aeolicus (PDB code: 3HJL) has suggested that
Thr-103 of HelixNM may make hydrophobic contacts with Pro-169 and
Ala-173 of HelixMC [45]. These observations lead to a plausible hypoth-
esis that a change in the HelixNM–HelixMC interaction mode may be re-
quired for conformational rearrangements of the C ring responsible for
directional switching of the flagellarmotor. A FliF–FliG full length fusion
results in a strong CW switch bias of the E. coli flagellar motor [27].
Intragenic suppressor mutations, which improve the chemotactic be-
havior of the E. coli fliF–fliG full-length fusion strain, are located at the
FliGN–FliGN interface [27], suggesting that a change in inter-molecular
FliGN–FliGN interactions may be required for flagellar motor switching.
Therefore, there is the possibility that conformational rearrangements
of the FliGM–FliMM interface caused by the binding of CheY-P to the C
ring influence the HelixNM–HelixMC interaction, thereby inducing con-
formational rearrangements of FliGN domains responsible for the
switching in the direction of flagellar motor rotation.

The elementary process of torque generation by stator-rotor interac-
tions is symmetric in CCW and CW rotation [12]. A hinge connecting
FliGCN and FliGCC has a highly flexible nature at the conserved MFXF
motif, allowing FliGCC to rotate 180° relative to FliGCN to reorient Arg-
281 and Asp-289 residues in HelixTorque to achieve a symmetric elemen-
tary process of torque generation in both CCWand CWrotation (Fig. 3B)
[53–56]. Structural comparisons between Tm-FliGMC of the wild-type
and Tm-FliGMC with the CW-locked deletion have shown that the CW-
locked deletion induces a 90° rotation of FliGCC relative to FliGCN

through the MFXF motif (Fig. 3A) [50]. Consistently, the binding of
CheY-P to the C ring induces a tilting movement of FliMM, resulting in
the rotation of FliGCC relative to FliGCN [34]. Therefore, it is possible
that such a tilting movement of FliMM may promote a detachment of
HelixMC from the FliGM–FliMM interface, resulting in the 180° rotation
of FliGCC relative to FliGCN.

4. Adaptive remodeling of the C ring

FliM and FliN alternate their forms between localized and freely dif-
fusing ones (Fig. 4), and the copy number of FliM and FliN in the CCW
motor has been found to be about 1.3 times larger than that in the CW
motor [57–60]. Consistently, fluorescence anisotropy techniques have
shown that the CCWmotor accommodate more FliM1/FliN3 complexes
without changing the spacing between FliM subunits [61]. Such ex-
changes depend on the direction of flagellar rotation but not on the
binding of CheY-P to the C ringper se [58]. The timescale of this adaptive
Fig. 4.Adaptive remodeling of the FliG ring in the CCW and CWmotors. Inter-molecular interac
binding of CheY-P to the C ring, conformational rearrangements of the FliGM–FliGC interface occ
FliM1/FliN3 complexes dissociate from the FliG ring.
switch remodeling of the C ring structure is much slower (~ 1min) than
that of the rotational switching between the CCW and CW states (less
than millisecond). Such a structural remodeling of the C ring is impor-
tant for fine-tuning the chemotactic response to temporal changes in
the environments [62–65]. The CW-locked deletion of FliG considerably
reduces the binding affinity of FliGM for FliMM presumably due to
detachment of HelixMC from the FliGM–FliMM interface (Fig. 3A) [28].
Because FliM binds to HelixMC of FliG in the E. coli CCW motor [27],
the dissociation of HelixMC from the FliGM–FliMM interface may pro-
mote the dissociation of several weakly bound FliM1/FliN3 complexes
from the FliG ring when CheY-P binds to the C ring to switch from its
CCW to CW states (Fig. 4).

5. Summary and Perspectives

Switching between the CW and CCW states of the flagellar motor is
highly cooperative [66]. The cooperative switching mechanism can be
explained by a conformational spread model, in which a switching
event is mediated by conformational changes in a ring of subunits that
spread from subunit to subunit via their interactions along the ring
[67–69]. The binding of CheY-P to FliM and FliN affects subunit-
subunit interactions between FliMM domains and between FliMC and
FliN in the C ring to induce a 180° rotation of FliGCC relative to MotAC,
thereby allowing the motor to rotate in CW direction [34]. HelixMC of
FliG located at an interface between FliGM and FliMM plays an important
role in highly cooperative remodeling of the FliG ring structure [28].
However, it remains unknown howHelixMC coordinates cooperative re-
arrangements of FliG subunits with changes in the direction of flagellar
motor rotation. The C ring of the CCW motor can accommodate more
FliM/FliN3 complexes without changing inter-subunit spacing, and di-
rectional switching of the motor induces several weakly bound FliM/
FliN3 complexes from the C ring [57–60]. Consistently, the CW-locked
deletionweakens an interaction between FliGM and FliMM [28]. Because
there is no difference in the rotational symmetry of the C ring between
the purified CCW and CW motors [45], it remains unclear how several
FliM1/FliN3 complexes weakly associate with the C ring when the
motor spins in the CCW direction.

The elementary process of the torque-generation cycle is symmetri-
cal in CCW and CW directions [12]. However, the output characteristics
of the CWmotor are distinct from those of the CCWmotor. Torque pro-
duced by the CCWmotor remains almost constant in a high-load, low-
load regime of the torque-speed curve and decreases sharply to zero
in a low-load, high-speed regime. In contrast, torque produced by the
CW motor linearly decreases with increasing motor speed [70]. This
suggests that directional switching of the flagellar motor may affect
stator–rotor interactions in a load-dependent manner. However,
tions of FliGCN with FliGM of its neighboring subunit produce the CCW ring structure. Upon
ur, resulting in detachment of HelixMC from the interface. As a result, severalweakly bound
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nothing is known about the molecular mechanism. Furthermore, the
switching rate of the flagellar motor also depends on the motor speed
[71,72]. A recent non-equilibrium model of the flagellar motor
switching has predicted that the motor sensitivity to CheY-P increases
with an increase in motor torque [73]. However, it remains unknown
how stator–rotor interactions modulate the binding affinity for CheY-
P. High-resolution structural analysis of the C rings in the CCW and
CW states by cryoEM image analysis will be essential to advance our
mechanistic understanding of the directional switching mechanism of
the flagellar motor.
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