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Abstract: Melanoma, a highly aggressive skin tumor, exhibits notable features including heterogeneity, a high mutational load, and 
innate immune escape. Despite advancements in melanoma treatment, current immunotherapies fail to fully exploit the immune 
system’s maximum potential. Activating immunogenic cell death (ICD) holds promise in enhancing tumor cell immunogenicity, 
stimulating immune amplification response, improving drug sensitivity, and eliminating tumors. Nanotechnology-enabled ICD has 
emerged as a compelling therapeutic strategy for augmenting cancer immunotherapy. Nanoparticles possess versatile attributes, such as 
prolonged blood circulation, stability, and tumor-targeting capabilities, rendering them ideal for drug delivery. In this review, we 
elucidate the mechanisms underlying ICD induction and associated therapeutic strategies. Additionally, we provide a concise overview 
of the immune stress response associated with ICD and explore the potential synergistic benefits of combining ICD induction methods 
with the utilization of nanocarriers. 
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Introduction
Melanoma is one of the most aggressive skin cancers. In the last 50 years, its incidence has risen faster than other malignancies 
at a much higher rate of 7%-8% per year. Also, from 1990 to 2018, the number of patients with metastatic melanoma has 
increased by 258%.1 Patients usually have poor prognoses, low survival rates, and limited treatment options. Immune defense, 
consisting of immune cells, is the main way to maintain the host’s stress response on injury and exogenous substances.2,3 

Immune checkpoint inhibitors (ICIs) and Chimeric antigen T cells (CAR-T cells), pericytes, tumor vaccines, and other 
emerging tumor immunotherapeutic tools utilize immune cell-specific or non-specific immune stress responses for immu-
notherapeutic purposes have made a significant breakthrough in the field of oncology in recent years without a doubt seen.4–6 

However, high costs, complex preparation processes, and a series of therapeutic hazards associated with off-target effects 
(local inflammation, cytokine release syndrome, and neurotoxicity) have limited their application in clinical work.7 Also, 
studies on melanoma have shown that immunosuppressive factors in solid tumors diminish the effects of ICIs and cell-based 
therapy-based immunotherapy.8 Nanoparticles have emerged as promising drug delivery vehicles due to their multifunctional 
features, including enhanced stability, prolonged blood circulation, and tumor-targeting ability. Moreover, there has been 
a growing body of research on functionally specific nanoparticles that aim to enhance the specificity of immunogenic cell 
death (ICD) inducers and improve the efficiency of ICD induction in vivo.

As a new type of immunogenic cell death modality, ICD acts as a “natural tumor vaccine” because of its ability to induce 
a cycle of tumor cell death. A large number of tumor cell-associated damage associated molecular patterns (DAMPs) generated 
during the ICD process activates a series of immunogenic responses that reshape the tumor immune microenvironment (TME). 
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Ultimately DAMPs cause an immunocyte effect on tumor cells by increasing the cytotoxic activity of tumor-associated immune 
effector cells.9 The ICD process involves a wide variety of signaling pathways, receptors and cytokines. Thus, an in-depth 
analysis of the mechanisms underlying the release of DAMPs and the secretion of related cytokines would contribute to the 
efficient transition from “cold” to “hot” tumors and to the development of a rational co-induction strategy. This review explains 
the persistent activating effect of ICD on anti-tumor immune response by introducing the ICD-related immune-stress response, 
and immune response mechanism (Figure 1). Subsequently, the advantages and potential of nanocarrier-mediated multiple 
induction of ICD (chemotherapy, radiation therapy, photodynamic therapy, photothermal therapy, magnetic fluid therapy) and 
combined treatments are described. Finally, we conclude by discussing the progress of ICD-based combination therapy strategies 
for melanoma treatment, as well as the current status of ICD-related marker content testing in the clinical treatment of melanoma 
and other skin tumors. The important value of the ICD mechanism in the treatment process of melanoma as well as other skin 
tumors was analyzed. We would like to promulgate the further application and development of the ICD mechanism in tumor 
treatment by standardizing ICD-related efficacy reference indexes. Meanwhile, we also hope this review could become 
a reference for designing more rational, efficient, and sustainable combination treatment strategies based on preclinical research.

DAMPs Associated with ICD
ICD is a stress cell death model that mainly acts through apoptosis or necrosis, autophagy, and endoplasmic reticulum 
(ER) stress response.10 DAMPs are broadly classified into constitutive DAMP (CDAMP) and inducible endogenous 
DAMP (IDAMP), depending on the release mechanism. CDAMP is an immunogenic endogenous molecule released 
from its constituent structures prior to cell death; IDAMP is an inducible endogenous DAMP (IDAMP) produced by 

Figure 1 Major ICD inducers and the process of ICD immune activation against tumors.
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potential cell death pathways during cell death.11,12 CDAMP mainly consists of HMGB1, ATP, CRT, HSP70, HSP90, 
ANXA1, while IDAMP mainly consists of IFN, CCL2, CXCL1, CXCL10, etc.13–15 During autophagy, lysosomes secrete 
large amounts of adenosine triphosphate (ATP), which acts as a chemokine to attract myeloid immune cells, such as DC 
precursors to the tumor. In the meantime, ER stress induces calreticulin (CRT) translocation, allowing CRT to act as 
a “eat me” signal.16 CRT then draw DCs to take up tumor-associated antigens (TAA) and cross-present them to cytotoxic 
T cells before the immune response of cytotoxic T cells is activated.17 In addition to ATP and CRT secretion, ICD also 
releases other characteristic DAMPs membrane-linked protein 1 (ANXA1), high mobility group protein 1 (HMGB1), and 
heat-shock protein (HSP) to boost the immune responding effect (Figure 2). Therefore, the detection of relevant DAMPs 
is of great value for the identification of ICD-inducing drugs and the detection of relevant therapeutic prognosis.18

CRT
CRT is a calcium-binding chaperone protein on the endoplasmic reticulum lumen, which mainly participates in maintaining 
intracellular Ca2+ stability and affects the protein folding process in the endoplasmic reticulum.19 During the ICD process, 
CRT migrates, clusters, and is exposed by the ER to the damaged cell membrane surface. The process involves ER stress, 
a fusion of ER with the cytoplasmic membrane, translocation of ER-resident protein (CNX), apolipoprotein on the 
cytoplasmic membrane; upregulation of eIF2α phosphorylation, unfolded protein response (UPR), and activation of cysteinyl 
aspartate specific proteinase 8 (Caspase 8).20,21 The translocated CRT acts as a “eat me” signal, attracting APCs to uptake and 
process tumor cell remnants, and activates the migration and antigen presentation of antigen presenting cells (APCs) by 
binding to the surface receptor CD91/LRP1, ultimately stimulating the immune response of cytotoxic T cells (CTL).

HMGB1
HMGB1 is a class of non-histone chromatin-binding proteins responsible for DNA transcription, replication, and repair. It 
mainly functions in the late stages of the cell death process. HMGB1 leaks into the extracellular compartment during ICD and 
acts as a “danger” signal accompanying the permeabilization of the nuclear and plasma membranes.22 HMGB1 mainly binds 
to Toll-like receptor 4 (TLR4) on the surface of DCs after releasing from tumor cells, stimulating myeloid differentiation pro- 
response gene 88 (MYD88) cascade signaling, facilitating DC processing of TAA and presentation to CTL.23 HMGB1 also 
triggers an inflammatory response following binding to TLR2/ TLR4 receptors and receptors for advanced glycosylation end 
products (RAGE) receptors.24 For example, when HMGB1 binds to RAGE, the secretion of type I interferon (IFN) and pro- 
inflammatory cytokines is stimulated, which induces monocyte-macrophage polarization toward the inflammatory 
phenotype.25 Studies have also shown a tight association between HMGB1 and ROS secretion.26

Figure 2 Release of DAMPs and binding of related receptors during ICD. DAMPs: CRT, ATP, ANXA1, HMGB1; Receptors: LRP1, P2RY2/P2RX7, FPR1, TLR2/ TLR4, LOX1.
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HSP
In the past, HSPs have been considered highly conserved emergency proteins that have an important role in protein synthesis 
and the folding of stress-responsive protein synthesis. However, recent studies have shown that HSPs are secreted extra-
cellularly when ICD occurs and engage in organismal immune regulation.27 HSPs can be classified into six major classes 
according to their molecular weight: HSP10 (HSPE), HSP20 (HSPB), HSP40 (DNAJA, DNAJB, DNAJC), HSP60 (HSPD), 
HSP70 (HSPA), and HSP90 (HSPC).28 high-molecular-weight-HSP (HMW-HSP) consisting of HSP60, HSP70, and HSP90, 
is the most ardently expressed during cellular stress.29 Most HSPs are expressed in the cytoplasm or organelles during ICD, 
while HSP70 and HSP90 can also translocate to the plasma membrane and participate in the recruitment of immune cells 
during this process.30 HSP70 and HSP90, exposed on the cell membrane surface, interact with the APC surface receptors 
CD91, LOX1, and CD40 to promote TAA-dependent cross-presentation of MHC-I molecules and ultimately activate the 
immune response in CTL.31,32

ATP
ATP is the most plentiful intracellular small molecule metabolite, and its release in healthy cells is mainly through 
lysosomal cytokinesis. Although the detailed mechanism of active ATP secretion by tumor cells during ICD is not well 
defined, studies have discovered a close correlation between ATP secretion and autophagy.33 It has been shown that the 
membrane-linked protein pannexin 1 (PANX1) is involved in the release of cellular ATP. Cysteinyl aspartate specific 
proteinase 3 (Caspase-3), which performs apoptosis, is associated with the C-terminal auto-inhibitory domain of 
pannexin 1; caspase-3 could cut PANX1 to a protein fragment (tPANX1). Then, tPANX1 constitutes an active channel 
to facilitate the extracellular release of ATP.34,35 According to studies related to ICD inducer mitoxantrone and 
oxaliplatin treatment, complex crosstalk of signaling pathways, such as cytoprotective signaling pathways, ER stress, 
CRT exposure, apoptotic protein caspase enzyme cascade reaction, PANX1 activation, autophagy, transshipment and 
release of ATP vesicles, lysosomal cytokinesis, LAMP1, VAMP1 activation, membrane blebbing membrane exudate 
actin (ROCK1, myosin II) expression are the main determinants of ATP release. The immune effectiveness caused by the 
release of ATP during ICD is reflected in the recruitment of APC by ATP, the activation of inflammatory vesicles and the 
stimulation of monocyte polarization.18,36

ANXA1
ANXA1 is one of the essential DAMPs in the event of ICD. Unfortunately, the exact mechanism of ANXA1 release 
during ICD is not completely established.37 ANXA1 is an important homing factor that can bind to the G protein-coupled 
receptor formyl peptide receptor (FPR1) expressed by myeloid-derived immune cells, including DCs. After receptor 
binding reactions, ANXA1 turns into a chemotactic factor, which drives immature DCs to migrate toward dying tumor 
cells, and, in turn, phagocytose and tackle tumor cells.38 ANAX1 secretion also affects the extracellular exposure process 
of CRT, leading to improved infiltration of myeloid-derived DC and CTL at tumor sites.39

Immune Cell “Normalization” Based on ICD
The “immunosuppressive tumor microenvironment” (ITM) in melanoma treatment assists the immune escape of tumor 
cells and reduces the immune response. For example, associated fibroblasts (CAFs) in ITM promote matrix metallopro-
teinase (MMP) secretion and cause downregulation of NKG2D ligands MICA and MICB expression, thereby reducing 
the NK cell-mediated killing effect.40–42 Reversing ITM within melanoma, reducing tumor cell escape, and gaining 
immune cell boosting “leverage” are important guidelines for ICD combination therapy strategies.

Tumor-associated immune cells are widely distributed and have essential roles in tumor immunotherapy.43–46 ICD 
induction strategy differs from the immune checkpoint and immune cell therapy in that means of ICD induction, such as 
chemotherapy, radiotherapy, and thermotherapy have powerful penetration ability and can trigger strong immune-stress 
effects locally in the tumor. In detail, ICD is characterized by the release of damage-associated molecular patterns 
(DAMPs) such as CRT, ATP, and HMGB1 from dying cells. This process promotes the maturation of dendritic cells 
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(DCs) and differentiation of macrophages, ultimately leading to the activation of effector T cells and their proliferation in 
response to immune stress. (Figure 3).

TAMs
Macrophages are mononuclear immune cells with phagocytic ability, mostly distributed in the lungs, liver, skin, and bone 
marrow.47 They are sensitive to the onset of diseases, such as cancer and skin damage, and are the “forerunners” of the 
body’s immune response.48 Tumor-associated macrophages (TAMs) are macrophage species that accumulate at tumor 
sites and regulate TME by releasing basic fibroblast growth factor (bFGF), angiogenic factor (VEGF), platelet-derived 
growth factor (PDGF), transforming growth factor beta (TGFβ), angiopoietin (Ang1, Ang2), interleukins (IL-1, IL-8, IL- 
6), tumor necrosis factor-alpha (TNF-α), and tumor necrosis factor (TGF, TGFβ), angiopoietin (Ang1, Ang2), thymidine 
phosphorylase (TP), matrix metalloproteinases (MMP-9, MMP-2), nitric oxide (NO) and other endogenous factors to 
interfere with the process of tumor cell genesis and development.49,50

TAMs are mainly categorized into two phenotypes, TAM1 and TAM2, in accordance with the levels of expression of 
specific receptors on its surface. TAM2, which lacks the expression of specific receptors hemoglobin scavenger receptor 
(CD163) and high expression of mannose receptor (CD206), can assist tumor escape from immune system surveillance.51 

In ICD-based combination therapy, the DAMPs bind to TLR2 or TLR4 on the surface of TAM to induce inflammatory 
phenotypic polarization of TAM. In addition, the combination of the immune adjuvants imiquimod (R837) and R848, 

Figure 3 Release of ICD-associated DAMPs from tumor cells and their catalytic “functionalization” to immune cells.
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which can activate TLR7 receptors and stimulate the NF-κB signaling pathway, enhance TAM remodeling, the release of 
inflammatory immune factor and immune reactions of DC, CTL.52,53

DCs
Dendritic cells (DCs) are the main “monitors” in TME, mainly engaged in antigen uptake and presentation during the ICD 
process.54 The numerous DAMPs during ICD bind to PPR, Toll-like receptors on the DCs surfaces, fostering the maturation of 
DCs and the active processing presentation function of TAAs.9 Mature DCs express high levels of MHC-I/II molecules, 
CCR7, and have the capacity to actively migrate to draining lymph nodes.55 Ultimately, DCs co-present tumor-associated 
antigens and their plasma membrane expressing MHC-I/II molecules to T cells, activating CD8+ T cells.56,57

The immature phenotype of DCs in melanoma, which expresses high levels of the co-suppressor molecules PD-L1, PD-L2 
and B7S1, secretes indoleamine 2,3-dioxygenase (IDO), IL-10, and IL-6. This phenomenon suppresses the antigen-specific 
T cell immune response, leading to a proliferation of Treg cells in tumors and lymph nodes.58 Considering the high correlation 
of DC maturation to increased T cell activation in TME,59 heme, hydrogen peroxide oxidase, glucose oxidase (Gox) and 
carbonic anhydrase IX (CA IX) were used to Stimulate DC maturation by improving hypoxia and reduce lactic acid 
accumulation in TME.60–62

T Cells
T cells, as the immune immune-functional killer cells of the body, are the “tumor terminators” in tumor immunotherapy.63 

T cells in lymph node tissue are normally present as naive (TN) but rapidly proliferate and differentiate into CTL after being 
stimulated by TAAs.64 The secretion of DAMPs (including HMGB1, ATP, and ANAX1) during ICD can accelerate the 
proliferation and differentiation of T cells, with an enhancement of CTL infiltration at the tumor site and activation of a broad 
anti-tumor immune response.65,66

Molecular mechanisms related to the T cell immune response have demonstrated that the immune checkpoint 
molecule CTL-associated antigen 4 (CTLA-4), the programmed cell death 1 (PD-1) receptor and its ligand PD-L1/PD- 
L2, are key mediators in activating the T cell immune response and blocking the escape of tumor cells.67 When the T cell 
receptor (TCR) and CD28 binding occurs, CTLA-4 translocases to the cell membrane and participates in the competition 
of ligands on the surface of APC to inhibit the proliferation and activation of T cells.68 The PD-1/PD-L1/PD-L2 signaling 
pathway affects T cell cytokine secretion and tumor permeability, inhibits TCR signaling and messaging between T cells 
and APCs, and weakens the anti-tumor immune response of T cells. Therefore, the application of ICBs has made 
considerable progress in tumor immunotherapy research. Yet, mutations caused by PD-L1 overexpression in melanoma 
cells could contribute to the ineffectiveness of PD-(L) 1 blockade in the therapeutic studies of immune checkpoint 
blockers (ICIs).69 Since the predictive factors of antigenic response primarily utilized for immune checkpoint inhibitor 
treatment response are limited to individuals, not all somatic mutations could lead to the emergence of immunogenic 
neoantigens, which may be addressed by the broad anti-tumor immune effect elicited by ICD.

Multimodal Treatment Strategy Based on ICD
ICD induction strategies, including common chemotherapeutic agents, photothermal therapy, photodynamic therapy, RT 
therapy, etc. can trigger a “vaccine-like” function at the tumor site and activate adaptive immune stress. In recent years, 
the development and application of novel nanocarriers driven by nanotechnology have also accelerated the progress of 
melanoma research on ICD-induced multimodal therapeutic strategies. Diverse nanocarriers, including biomimetic cell 
membranes like macrophage membranes, erythrocyte membranes, exosomes, protein carriers like lactoferrin, albumin, 
structurally stable polymeric nano micelles like liposomes, chitosan, as well as inorganic nanocarriers carrying electric 
charges, have been developed.70,71 Polymeric nanomedicines supported by nanocarriers have become the main research 
direction to enhance the induction efficiency of ICD and improve the effect of tumor treatment.72

Chemotherapy
Chemotherapy has been used as one of the classical anti-tumor treatments. Clinical chemotherapeutic agents that have 
also been identified as ICD inducers include cyclophosphamide, methotrexate, doxorubicin, oxaliplatin, and other 
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platinum derivatives.38,73 For instance, DOX has an induction impact on ICD-related mechanisms such as autophagy, 
CRT externalization, and HMGB1 emission from B16F10 cells.74 Nanocarrier-mediated induction of chemotherapy using 
PH-sensitive boronic acid ester phenylboronic acid complexes to structurally modify platinum metal nanoparticles can 
target thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes to stimulate the occurrence of the ICD 
cascade.75 Besides simple structural modifications, polymeric nanomaterials coupled with chemotherapeutic drugs, the 
investigators coupled 5-fluorouracil with oxaliplatin to form the nano-delivery system Nano-Folox, which exhibit 
stronger ICD induction and therapeutic effects than single drugs;76 the coupling of 1st generation N-(2-hydroxypropyl) 
methacrylamide (HPMA) with epirubicin (EPI) solved the problem of poor biocompatibility and metabolism of EPI, 
prolonged the circulation time of EPI, and thus enhanced the ability of EPI to perform ICD-inducing functions in tumor 
sites.77 Moreover, high-density lipoprotein (sHDL) consisting of apolipoprotein A1 (ApoA1) mimetic peptide and 
phospholipid encapsulated with DOX nanoparticles and polyethyleneimine-lithospermic acid conjugate (PEI-LCA) 
encapsulated with paclitaxel, both improved the drug self-targeting and ICD induction efficiency (Figure 4).78,79

Radiotherapy
Radiotherapy(RT), as one of the traditional tumor treatments, is used to treat tumor by causing damage to double- 
stranded DNA (dsDNA) by ionizing radiation.81,82 RT-induced ICD causes an increase in the level of ROS secretion and 
ER and mitochondrial stress responses, resulting in the accelerated release of DAMPs from tumor cells.83–85 The 
accumulation of cDNA activates the cGAS/STING pathway, which stimulates IFN-I secretion and the recruitment of 
DC to reach the tumor site. ICD-associated DAMPs present TAAs to CD8+ T cells and exert systemic anti-tumor 
immune effects through lymphatic circulation.86

Figure 4 Schematic illustration of the DOX@LINV for tumor inhibition based on immunogenic tumor nanovesicles (TNVs) synergistic with the DOX-induced ICD effect. 
(A) Preparation of DOX@LINV by the confusion of TNVs with artificial liposomes. (B) Mechanism of immunochemotherapy based on the DOX@LINV for tumor 
suppression. (C) SDS–PAGE of B16F10 cells, B16F10-derived nanovesicles, and LINVs. (D) Western blotting of specific antigen preservation on TNVs and LINVs. (E) 
Representation flow cytometry plots of mature DCs after a 24 h treatment. (F) ATP, (G) HMGB-1, and (H) CRT release from B16F10 cells analyzed with the ELISA kit after 
24 h of incubation (n = 3, *p < 0.05; **p < 0.01). (I) CRT expression after treatment evaluated by CLSM. Scale bar: 50 μm. Reprinted from Hu M, Zhang J, Kong L, et al . 
Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer ImmunochemotherapyImmunogenic hybrid nanovesicles of liposomes and tumor- 
derived nanovesicles for cancer immunochemotherapy. Acs Nano. 2021;15(2):3123–3138. Copyright © 2021, American Chemical Society.80
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The main limitations faced by RT treatment include endogenous antioxidant resistance factors and irradiation absorption 
capacity. Hence, addressing the lack of OH production and the imbalance of oxygen supply and demand in solid tumors during 
RT treatment, accelerating the secretion of ROS and H2O2, and depleting endogenous antioxidant substances (catalase, super-
oxide dismutase and glutathione), are the main mechanisms to reshape the immune microenvironment for enhancing the effect of 
ICD. In recent years, the metal nanoparticles, such as platinum (Pt), ruthenium (Ru), iridium (Ir), copper (Cu), gold (Au), iron 
(Fe), and calcium (Ca), which provoke the Fenton catalytic effect and have the role of catalytic H2O2 decomposition and GSH 
depletion, have shown excellent oxidative stress amplification ability to become ideal drugs that deserve further research and 
development for RT-ICD treatment.87,88 In addition to reversing the endogenous tumor suppressive environment, utilizing 
different irradiation types, irradiation time, dose, and frequency to improve the intensity of irradiation uptake is also an effective 
mean to enhance the ICD-inducing effect of RT.89 The effect of different forms of irradiation mediated by protons, photons, and 
carbon ions on the secretion levels of ICD-DAMPs (CRT, HSP70, and HMGB1) in common human-derived cancer cell lines 
(CNE-2, A549, U251, and Tca8113) at different durations were analyzed by a previous correlational study.90 The effects of 
various radiation doses on the expression of apoptosis-related receptor-interacting serine/threonine-protein kinase 1 (RIPK1), 
RIPK3 and mixed lineage kinase domain-like protein (MLKL) in tumor cells were also observed.91 For example, low-dose 
radiation therapy (HFRT) has shown significant activation of MLKL, which has been investigated in related tumor treatment 
studies.92 Therefore, a reasonable format of RT irradiation, with optimal dose and duration, could effectively increase the 
efficiency of ICD-DAMPs production and reduce the risk of immune resistance elements arising during RT treatment.

In studies that focused on reversing TME and sensitizing ICD-inducing ability in RT therapy, researchers have constructed 
supramolecular self-assembled nanoplatforms of gadolinium (Gd3+) and 5′-guanosine monophosphate (5′-GMP) to homoge-
neously integrate heme (PANHEMATIN) and peroxidase into Gd3+/5′-GMP NCPs (Gd-NCPs), finally forming the novel 
radiosensitizer nanoplatform Hemin@ Gd3+/5′-GMP NCP (H@Gd-NCP) (Figure 5).93 Some researchers have designed Cu- 
NCPs self-assembled with Cu2+ and 5′-guanosine monophosphate (5’-GMP), where Cu-based nanoparticles possess a wider pH 
range and Fenton affect catalytic activity.94 Moreover, for more stable CaCO3 nanoparticles, researchers have designed curcumin 
(CUR)-doped CaCO3 nanoparticles (PEGCaCUR), modified with PHM-sensitive polyethylene glycol (PEG), to obtain 
PEGCaCUR nanoparticles.95

In summary, the heme-enhanced peroxidase overexpression products H2O2 and Cu2+ and Ca2+ own Fenton effect 
were utilized to disrupt the antioxidant barrier to accelerate oxidative stress, enhancing the ICD-inducing ability of RT. 
Secondly, the optical-acoustic/fluorescent dual-mode imaging advantage of metal kinase grains provides unlimited 
potential for the application of RT diagnosis and treatment combination as well as further development.

Photodynamic Therapy
Photodynamic therapy(PDT) mainly relies on the conversion of photosensitizer from a single-linear ground state to an excited 
state under an appropriate wavelength of light, which eventually generates single-linear oxygen and directly damages proteins 
and lipid molecules in tumor cells to trigger cytotoxic effects, eventually leading to tumor cell death.96 In addition to the direct 
or indirect killing effect on tumor cells, the strong oxidative stress induced by the existing photosensitizers pheophorbide 
A (PPa), temoporfin, chlorin e6 (Ce6), hypericin, could lead to the appearance of ICD, thus encouraging the further 
development of PDT.97,98

The planar structure of conventional photosensitizers could be disrupted in aqueous/cellular environments due to π-π stacking 
of intermolecular interactions, which could significantly reduce their ROS generation efficiency. Therefore, researchers have 
developed novel photosensitizers with aggregation-induced emission (AIE) properties, AIE photosensitizers with peripheral 
intramolecular moving units (eg, benzene rings as rotors) and three-dimensional molecular structures.98 The stable steric 
structure of the AIE photosensitizer allows the irradiation energy to be concentrated as much as possible to stimulate fluorescence 
emission and ROS production from the selected target site, such as the AIE photosensitizers (TPE-DPA-TCyP, TPA-DCR) 
exhibit superior ROS generation efficiency, and ICD induction ability than Ce6.99

Nanocarrier-mediated coupling of the AIE photosensitizer TPEBTP with up conversion nanoparticles (UCNPs) increases 
lymph node drainage and T-cell activation. The oxygen-rich carrier HPOC nanoparticles made by protein cross-hybridization 
can be encapsulated with Ce6, increasing the effect of photosensitizer cell incorporation and stimulation efficiency.100–102 

Based on the development of ICD-based PDT combinatorial tools, the investigators used a novel oxidized reduced liposome 
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Figure 5 Schematic illustration of the nano-ligand polymer for radio sensitization by amplifying intracellular oxidative stress. (A) Schematic diagram of the preparation of nano- 
ligand polymer. (B) H@Gd-NCP H@Gd-NCPs enhance the mechanism of checkpoint blockade immunotherapy. (C) Immunofluorescence of CRT antibody. (D) Western blot of 
HMGB1. (E) Detection of HMGB1 release by ELISA kit (n = 3, ***p = 0.0001, ***p = 0.0001, **p = 0.0014). (F) Detection of ATP secretion by luciferin-based ATP assay kit (n = 3, 
***p = 0.0001, ***p = 0.0003). (G) Flow cytometry analysis of DCs maturation in tumor-draining lymph nodes (TDLNs) after radiotherapy (0 or 6 Gy × 1, n = 6, **p = 0.0063). N. 
S. represented non-significance, and **p < 0.01, ***p < 0.001. Reprinted from Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic 
cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12(1):145. Creative Commons.93
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(RAL) self-assembled from phospholipid-porphyrin conjugates encapsulated with a checkpoint blocker IDO inhibitor (NLG- 
8189) that depletes glutathione (GSH) and enhances the ICD-inducing activity of RAL to boost the local immune response of 
tumors.103 Self-assembled smart nanovesicles (pRNVs) containing photosensitizer (HPPH) and IDO inhibitor IND designed 
using pH-responsive block copolymer polyethylene glycol-b-cationic polypeptide (PEG-b-cPPT) to stimulate HPPH by 
exploiting the ability of pRNVs to release drugs in response to an acidic environment, ultimately achieving enhanced 
induction of ICD and tumor immune response of CD8+ T cells (Figure 6).99,104

Photothermal Therapy
Photothermal therapy (PTT) mainly harnesses photosensitive materials’ huge thermal conversion effect after near- 
infrared (NIR) irradiation to ablate tumors. The ablation of tumors by PTT is also accompanied by the emergence of 
ICD.66 So far, common photothermal conversion nanomaterials include gold nanoparticles gold nanoshells (GNShs), 
gold nanorods (GNRs), gold nanocages (GNCs), gold nanostars (GNSs)) carbon nanomaterials (Sin-Gle wall carbon 
nanotubes (SWCNTs), graphene), semiconductor nanoparticles (copper sulfide (CuS), molybdenum disulfide (MoS2)), 
and organic near-infrared dyes (indocyanine green (IGC), IR780, IR820), all of which exhibit excellent photothermal 
transformation efficiency.105–107

Considering the high photothermal effect of PTT and the efficiency of ICD induction, the release of endogenous 
markers (CRT, HMGB1, ATP) of ICD at different excitation temperatures (thermal dose) was examined. For example, 
the ICD induction efficiency of PBNP-PTT at various thermal windows and using self-assembled gold nanoparticle 
liposomes at diverse IR intensities (NIR(I) and NIR(II) bio windows) were analyzed in relation to the excitation 
temperature.108,109 Designing the optimal strategy of photothermal conversion and ICD induction is expected to provide 
more safety and security for the clinical application of PTT.

Figure 6 Preparation and mechanism of pRNVs/HPPH/IND. (A) Construction of pH-Responsive Nanovesicles (pRNVs/HPPH/IND) via Co-assembly of HPPH, IND, and pH- 
Responsive Polypeptide. (B) Single low dose i.v. Injection of pRNVs/HPPH/IND to promote host immunity and induce tumor cell death. CRT release from B16F10 cells after 
24 h incubation analyzed with CLSM (C) and flow cytometry (D) Scale bar: 40 µm. (E) Apoptosis in B16F10 cells induced by different formulation via flow cytometry Symbol 
(+) denotes laser irradiation at 671 nm (100 mW/cm2, 1 min). Reprinted from Yang W, Zhang F, Deng H, et al. Smart Nanovesicle-Mediated Immunogenic Cell Death 
through Tumor Microenvironment Modulation for Effective Photodynamic Immunotherapy. ACS Nano. 2020;14(1):620–631. Copyright © 2020, American Chemical 
Society.104
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In an ICD-based PTT conjoint treatment strategy, some investigators designed super-molecular cationic gold nanorods 
equipped with a heat-inducible promoter (HSP) CRISPR/Cas9 plasmid to enhance the activation of the immune response 
effect of ICD under PTT induction by inducing Cas9 plasmid targeting PD-L1 guide RNA9 (sgRNA) and activating the 
reprogramming of PD-L1 gene by sgRNA transcription in NIR-II near-infrared optical window (NIR-II, 1000–1350 nm). 
Other investigators designed the co-encapsulate ferroptosis inducer and exosome inhibitor GW4869 in semiconductor 
polymer PFG MPNs with excellent photothermal conversion performance to enhance the vaccination effect on B16F10 
cells by exploiting the ICD-inducing ability of PFG MPNs under NIR-II irradiation in coordination with the Fenton effect 
and PD-L1 blocking effect of GW4869.110 The NIR-II light-modifiable polymeric nano-agonist APNA was also 
employed, which consists of a NIR-II light-absorbing semiconductor polymeric backbone as a photothermal transducer 
that couples a thermally unstable cleavable junction (7,8′-azobis[7-(8-imidazolin-848-yl)propane]:VA-2) to conjugate 
with a potent toll-like receptor type 7 and 8 (TLR7/8) agonist (Resiquimod: R848). RO44 can promote the maturation 
and polarization of APCs and enhance the anti-tumor immune effect of APNA after the photothermal effect triggering 
ICD (Figure 7).111 The discovery of a robust link between photothermal conversion and immune response in related 
studies provides a reference for further development of ICD-based combination therapy strategies.

Magnetic Fluid Hyperthermia
Magnetic fluid hyperthermia (MFH) is a treatment that produces thermal energy by putting the rapid oscillation of 
magnetic nanoparticles (MNPs) in an alternating magnetic field (AMF).112 With the application of highly specific 
magnetic nanomaterials, the capability of local heating and excellent tumor permeability of MFH make it a potential 
treatment for tumor. The approval by European regulatory authorities (CE mark of conformity) for the clinical treatment 
of glioblastoma multiforme and the Phase II clinical study of prostate cancer may propel MFH into an essential next- 
generation tumor therapy.113–115

The elimination of tumor cells by magnetothermal therapy is mainly attributed to the thermally invasive ability of 
MFH on tumor cells. In recent years, researchers have discovered the immunogenicity of tumor cell death induced by 
MFH.116 The heat-induced ICD occurs in the controlled temperature range (>43°C) of MFH, causing HSP secretion, 
which stimulates immune cell responses, including DCs and macrophages, resulting in the activation of the immune 
response capacity of CD8+ T cells.117

In therapeutic studies of magnetic thermotherapy, the AC induction heating power of magnetic thermotherapy at AC 
magnetic fields in the biosafety range (Happl-fappl < 3.0–5.0×109 A m-1 s-1) is a standard measure of MNPs materials and 
their structures.118 The investigators expected to control the cation concentration and occupancy by doping (Fe2+, Fe3+ and 
M2+ (M=Mn, Zn, Co, Mg or Ni)) in Fe3O4 SPNPs and changing the MNPs particle size, dimensions, and shapes to improve 
magnetic susceptibility, magnetic exchange energy and enhance the AC induction heating effect.119 Some researchers have 
designed Mg0.13-γFe2O3 MNPs with a hundred times higher magnetothermal conversion efficiency than commercial 
Fe3O4.120 In ICD-based combination therapeutic strategies, some investigators have used Ferrimagnetic vortex-domain 
iron oxide nanorings (FVIOs) modified with iron oxide nanoparticles (IONPs) in combination with PD-L1 checkpoint 
blockade to enhance ICD-induced tumor-immune response and therapeutic efficacy (Figure 8).116 Other researchers 
investigated using MNPs synthesized by FVIOs-GO and PEGylated FVIOs, combined with checkpoint blockers, to 
amplify the immune activating effect of magnetothermal therapy on tumor sites.121

Preclinical Study on ICD-Based Therapy in Melanoma
This review summarized data from the Web of Science core collection of 222 articles on ICD-based melanoma treatment 
in the last five years, retrieving the following characteristics: article title, journal title, year of publication, and author and 
institution of interest. The obtained data were charted in a bibliometric network using the VOSviewer software tool 
(Research Centre for Science and Technology, Leiden University, The Netherlands); each induction mean was matched to 
a frame on the network diagram, and the width of the reciprocal lines between each frame indicated the correlation, blue 
clusters were PTT-based ICD induction means, red clusters were DOX-based chemotherapy induction means, and green 
clusters were PDT-based ICD induction means. According to data analysis about ICD-induced melanoma treatment from 
the Web of Science core collection over the last five years, the current combination treatments (PDT, PTT, and 
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Figure 7 Preparation and mechanism of APNA. (A) Chemical structure of pBODO-PEG-VR and preparation of APNA. (B) Mechanism of anti-tumor immune response by 
APNA-mediated NIR-II photothermal immunotherapy. (C) Immunofluorescent images of Cas-3 (green), HMGB1 (green), and CD80/CD86 (Orange) in tumor sections at 
different photothermal depths after different treatments. Nuclei staining indicated by DAPI (blue). Scale bar: 20 µm. (D) DC maturation (gated on CD11c+ DCs) in tumor- 
draining lymph nodes from mice after different treatments. (E) Representative flow cytometry plots of CD8+ T cells and CD4+ T cells in tumor-infiltrating CD45+ 
lymphocytes in primary tumors from mice after various treatments. (F) Representative flow cytometry plots of CD8+ T cells and CD4+ T cells in tumor-infiltrating CD45+ 
lymphocytes in distant tumors from mice after various treatments. Reprinted from Jiang Y, Huang J, Xu C, Pu K. Activatable polymer nanoagonist for second near-infrared 
photothermal immunotherapy of cancer. Nat Commun. 2021;12(1):742. Creative Commons.111
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chemotherapy) based on ICD are important treatment strategies (Figure 9). In addition, the relevant DAMPs markers for 
ICD detection in melanoma (CRT, HSP70, HMGB1, and ATP) summarized in this paper are important evaluation criteria 
for basic research. While traditional melanoma treatments face many bottlenecks, such as recurrence, metastasis and drug 
resistance, combining ICD induction and checkpoint blockade inhibitors to remodel ITM and enhance immune response 
has become a prospective melanoma treatment strategy. As shown in (Table 1), ICD induction means (PDT, PPT, and 
chemotherapy) are mostly combined with immunotherapy means such as immune checkpoint inhibitors to improve 
immune cell responses such as DC and CTL to maintain a broad immune activation effect at the tumor site and 
throughout the body.

ICD-Based Clinical Treatment Progress
The viability of induction of ICD by chemotherapy, radiotherapy, and cryoablation was confirmed. The application of the ICD 
in combination with carboplatin plus paclitaxel (CP) standard-of-care chemotherapy regimen, a combination of the che-
motherapeutic agent melphalan, stereotactic radiotherapy (SBRT) with the PD-L1/PD-1 blockers nivolumab and CTLA-4 
checkpoint blockers have been already approved for the treatment of solid tumors such as melanoma. Besides the evaluation of 
the treatment effect by monitoring the absolute lymphatic count of Foxp3+ Treg cells, Th1/Th2/Th17, and plasmacytoid 
dendritic cells, myeloid-derived suppressor cells and their IDO expression have also been well investigated (Table 2). Yet, the 
lack of clarity in clinical studies regarding the means of monitoring ICD-associated factors has hindered further investigation 
into the significance and value of ICD around combined immunotherapy therapies for tumors. Standardization of ICD efficacy 
criteria are top priority for relevant clinical studies, referring to the Detection of Circulating Biomarkers of Immunogenic Cell 
Death (ICD) clinical study. ICD biomarkers may involve tumor-associated pro-tumor factors like IL1A, IL10, IL6, TGF-B, 
VEGFA, VEFGC, IDO enzyme, CXCL12, IL8; immune cell-associated pro-tumor factors like IL10, IDO enzyme, TGF-B, 
IL4, IL5, IL13, TNF, M-CSF, GM-CSF, and IL8, Chemokines like IFN-a, IFN-b, CXCL9, CXCL10, CXCL1, CCL2; immune 
cell-associated anti-tumor cytokines or chemokines like IL1B, IL12p70, IL15, IFNG, IL22, IL23, IL17A, IL2, CCL4, CCL5, 
CXCL13, CCL8, CCL19, CXCL11, CCL12 CXCL11, CCL12, CCL17, CCL23, CCL22, CCL13, CCL24, CCL1, CCL26, 
CXCL2, CXCL16, etc. (NCT02921854, Complete). Therefore, the further studies should identify key components. 
Furthermore, the vigorous translation of ICD induction tools from basic research may enrich the treatment of clinical 
melanoma and other tumors.

Figure 8 (A) Mechanism of the FVIO-mediated mild magnetic hyperthermia can activate the host immune systems and efficiently cooperate with PD-L1 blockade to inhibit 
the potential metastatic spreading as well as the growth of distant tumors. (B and C) Quantification of CRT exposure on the surface after treatment by flow cytometry 
(***p < 0.001). (D) Quantification of CRT exposure on the surface by RT-PCR analysis (*p < 0.05, **p < 0.01, ***p < 0.001). (E) Representative multispectral fluorescence 
images of distant tumors after treatment. Scale bar: 100 μm. Reprinted from Liu X, Zheng J, Sun W, et al. Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic 
Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. ACS Nano. 2019;13(8):8811–8825. Copyright © 2019, American Chemical Society.116
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Conclusion and Future Directions
Nanocarrier-enabled ICD, considered as one of the promising strategies for cancer immunotherapy, has demonstrated 
significant potential in tumor therapy, including the treatment of melanoma as mentioned previously. However, the 
stability, efficiency of ICD induction, and toxicity are all potential factors need to be considered for the effective 
application of nanomedicines in vivo. Therefore, the search for rational and stable nanocarriers is an important progress 
of step in the development of ICD-induced therapeutic strategies. We believe that the development of a single multi-
functional nano-platform as an ideal vehicle for multiple ICD-inducing agents is a promising direction. We were 
delighted to find some researchers have achieved successful results in this area, such as copper kinase particles, which 
not only exhibit a photothermal effect but also possess their own catalytic Fenton effect, thereby accelerating the 
destruction of the local antioxidant immunosuppressive environment of the tumor.132 Additionally, MnO2 nanoparticles 

Figure 9 Overview of the literature visualization analysis on ICD induced therapies on melanoma in the last five years from the Web of Science. (A) Network visualization. 
(B) Density visualization.
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Table 1 Preclinical Studies of Nanocarrier-Mediated ICD for Melanoma Treatment

Treatment Components Cell-line DAMPs-Release Ref.

PDT combine-therapy TPEBTPy, UCNPs, αPD-1 B16F10 CRT, HSP70, HMGB1 [100]

HPPH, IND B16F10 CRT [104]

ICG, DOX B16F10 HSP, CRT [122]

Ru (II) (ML19B01, ML19B02) B16F10 CRT, ATP [123]

PPT combine-therapy BRAi, ASP NPs SMM57 HMGB1, HSP27, HSP70 [124]

CpG, R848, Au NRs B16F10 CRT [125]

Fe3+, IR820, CTLA-4 B16-OVA CRT, HMGB1 [126]

AuNR, DOX, B7-H1 B16F10 CRT, HMGB1, ATP [127]

MIT, CEL BPD6, D4M HMGB1 [128]

PD-L1, ZnPc, sAMPc B16F10 Unknown [129]

MnO2, OVA, MPO B16-OVA Unknown [130]

PDA, CpG B16F10 CRT, HMGB1 [131]

CuS, Cas9 RNP B16F10 Unknown [132]

Au, SiO2, ZnO, DOX B16F10 CRT, HMGB1, ATP [133]

ARs, sgRNA B16F10 CRT, HMGB1, HSP [134]

PST, MOF, Mn2+ B16F10 CRT [135]

STVN B16F10 HMGB1, ATP, HSP [136]

Chemotherapy DOX, R837 B16F10 Unknown [137]

Chromomycin A3, DOX B16F10 CRT, HMGB1, ATP [74]

DOX, p19Arf/IFNβ B16F10 CRT, HMGB1, ATP [138]

DOX, shRNA B16F10 CRT, HMGB1 [139]

IMQ B16F10 CRT, HMGB1, ATP [140]

CQ, NLG919, SPN B16F10 Unknown [141]

PTX, αPD-1 B16F10 CRT [142]

DOX, Caffeine B16F10 CRT, HMGB1 [143]

siPD-L1, DOX, P / LNVs B16 CRT, ATP, HMGB1 [144]

OXA, POM-1 B16F10 CRT, HMGB1, ATP [145]

Mit, CpG B16F10-OVA HMGB1 [146]

DOX, Wnt5a trap cDNA B16F10 CRT, HMGB1 [147]

PYM, αPD-1 B16 CRT, HMGB1, ATP [148]

DOX, MSP B16F10 CRT, HMGB1, ATP [149]

(Continued)
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Table 2 Clinical Studies of Nanocarrier-Mediated ICD for Melanoma Treatment

Study Brief Title Intervention Outcome Measures Recruitment 
Status

Identifier

Safety of Navoximod and 
NLG802 With SBRT 

Treatment of Advanced Solid 

Tumors

● Radiation: SBRT
● Drug: Navoximod. Other Name: 

(GDC-0919; previously NLG919)
● Drug: NLG802 (Indoximod 

Prodrug)

● RP2D [Time Frame: Up to 90 days 

(patient)]
● AE and SAE [Time Frame: Up to 

1 year (patient), up to 4 years 

(cohort)]
● ORR [Time Frame: Up to 1 year 

(patient), up to 4 years (cohort)]
● PFS [Time Frame: Up to 4 years]
● OS [Time Frame: Up to 4 years]
● Local control per RECIST version 

1.1 [Time Frame: Up to 4 years]
● Local control by irRECIST [Time 

Frame: Up to 4 years]

Withdrawn NCT05469490

RAPA-201 Therapy of Solid 

Tumors

● Biological: RAPA-201 Rapamycin 
Resistant T Cells Autologous 

Rapamycin-Resistant Th1/Tc1 

Cells
● Other Name: RAPA-201 cells
● Drug: Chemotherapy Prior to 

RAPA-201 TherapyCP Regimen

● Overall Response Rate [Time 
Frame: One (1) year after the last 

dose of RAPA-201 cells.]
● PFS and OS [Time Frame: One 

(1) year after the last dose of 

RAPA-201 cells]
● QOL [Time Frame: One (1) year 

after the last dose of RAPA-201 

cells.]
● T Cell Immune Reconstitution 

[Time Frame: One (1) year after 

study start]

Recruiting NCT05144698

(Continued)

Table 1 (Continued). 

Treatment Components Cell-line DAMPs-Release Ref.

Alternol B16F10 CRT, HMGB1, ATP [150]

Phenolic MnO2, DOX B16F10 CRT, HMGB1, ATP [151]

SN38, αPD-1 B16F10 CRT, HMGB1, ATP, HSP [152]

Others P2Et B16F10 CRT, HMGB1, ATP [153]

CY-1-4 B16F10 CRT, HMGB1 [154]

T-VEC 624-mel, 888-mel, 938-mel CRT, ATP [155]

Abbreviations: PDT, Photodynamic therapy; CRT, calreticulin; HSP, heat-shock protein; HMGB1, high mobility group protein 1; ANXA1, membrane- 
linked protein 1; ATP, adenosine triphosphate; UCNPs, up conversion nanoparticles; αPD-1, anti-programmed death-1 antibody; HPPH, 2-(1-hexylox-
yethyl)-2-devinyl pyropheophorbide-a; IND, indoximod; ICG, indocyanine green; Dox, doxorubicin; CTLA-4, cytotoxic T lymphocyte-associated 
protein 4; AuNR, Au nanorod; MIT, mitoxantrone; CEL, celastrol; OVs, oncolytic viruses; ZnPc, zinc phthalocyanine; PDA, polydopamine; CuS, copper 
sulfide; PST, polyserotonin; MOF, metal-organic-framework; STVN, vanadyl nanocomplex; IMQ, Imiquimod; CQ, chloroquine; SPNCN, semiconducting 
polymer nanocomplexes; PTX, paclitaxel; OXA, Oxaliplatin; PYM, pingyangmycin; PPT, Photothermal therapy; MSP, PD-L1 antagonistic peptide; DMA, 
2,3-dimethylmaleic anhydride; P2Et, polyphenol-rich extract from Caesalpinia spinosa; T-VEC, Talimogene laherparepvec; SBRT, Stereotactic Body 
Radiotherapy.
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Table 2 (Continued). 

Study Brief Title Intervention Outcome Measures Recruitment 
Status

Identifier

Study of SQZ-AAC-HPV in 
Patients With HPV16+ 

Recurrent, Locally Advanced 

or Metastatic Solid Tumors

● Biological: SQZ-AAC-HPV AACs 

cell therapy
● Drug: Ipilimumab
● Drug: Nivolumab

● Number of participants with 

TEAEs (all, related, serious, and of 
special interest) as assessed by 

CTCAE version 5.0 [Time Frame: 

Up to 1 year after LPFV]
● Number of participants with DLT 

[Time Frame: Through Day 28]
● Number of participants with DLT 

[Time Frame: Through Day 28]
● PFS [Time Frame: Through the 

start of a new anticancer therapy, 
up to 2 years after the first dose of 

investigational product]
● OS [Time Frame: Through the 

start of a new anticancer therapy, 

up to 2 years after the first dose of 

investigational product]
● ORR [Time Frame: Through pro-

gression per RECIST v1.1 or start 

of new anticancer therapy, up to 2 
years after the first dose of inves-

tigational product]
● DoR [Time Frame: Through the 

start of a new anticancer therapy, 

up to 2 years after the first dose of 

investigational product]
● BoR [Time Frame: Through start 

of a new anticancer therapy, up to 

2 years after the first dose of 
investigational product]

● DCR [Time Frame: Through the 

start of a new anticancer therapy, 
up to 2 years after the first dose of 

investigational product]
● Amount of IP from individual 

patient blood collection - batch 

yield [Time Frame: From leuka-

pheresis through manufacture, 
a maximum of 28 days]

● Amount of IP from individual 

patient blood collection - product 
failures [Time Frame: From leuka-

pheresis through manufacture, 

a maximum of 28 days]

Recruiting NCT04892043

(Continued)
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have found to induce ICD and activate the cGAS-STING pathway, therapy promoting DC maturation.130 Furthermore, 
UCNPs have been shown to promote the secretion of ROS and possess imaging potential, converting NIR light to visible 
light.100,156 New agents, such as gaseous molecules, including nitric oxide (NO), hydrogen (H2), carbon monoxide (CO), 
hydrogen sulfide (H2S), and sulfur dioxide (SO2), were found to be potent ICD inducers. These groundbreaking 
discoveries have significantly contributed to the advancement of ICD-based combination therapies.

Table 2 (Continued). 

Study Brief Title Intervention Outcome Measures Recruitment 
Status

Identifier

Trial of SBRT With 
Concurrent Ipilimumab in 

Metastatic Melanoma

● Radiation: SBRT. Other Name: 

SABR
● Drug: Ipilimumab. Other Name: 

Yervoy

● Preliminary anti-tumor activity fol-

lowing escalating doses of radia-
tion combined with ipilimumab 

using the immune-related response 

criteria irRC [Time Frame: 2 
years]

● Overall survival [Time Frame: 2 

years]
● Progression-free survival [Time 

Frame: 2 years]
● Immunomonitoring (absolute lym-

phocyte count) [Time Frame: 2 

years]
● Immunomonitoring (frequencies of 

Foxp3+ Treg-cells) [Time Frame: 2 

years]
● Immunomonitoring (functional 

analysis looking at shifts in Th1/ 

Th2/Th17) [Time Frame: 2 years]
● Immunomonitoring (plasmacytoid 

dendritic cells and myeloid- 

derived suppressor cells and their 

IDO expression) [Time Frame: 2 
years]

Completed NCT02406183

Isolated Hepatic Perfusion in 
Combination With 

Ipilimumab and Nivolumab in 

Patients With Uveal 
Melanoma Metastases

● Procedure: Isolated hepatic 
perfusionThe procedure is per-

formed under general anaesthesia. 

The caval vein is isolated infrahe-
patically above the renal veins and 

suprahepatically between the dia-

phragm and the pericardium. 
A catheter is placed in the retro-

hepatic portion of the caval vein 

for perfusion outflow. The portal 
vein is clamped, and the proper 

hepatic artery is cannulated via 

the gastroduodenal artery.
● Drug: Ipilimumab
● Drug: Nivolumab

● ORR [Time Frame: 2 years]
● CBR [Time Frame: 2 years]
● PFS [Time Frame: 2 years]
● hPFS [Time Frame: 2 years]
● OS [Time Frame: 2 years]
● TTR [Time Frame: 2 years]
● DoR [Time Frame: 2 years]

Active NCT04463368

Abbreviations: RP2D, Recommended Phase 2 Dose; AE, Adverse Events; SAE, Serious Adverse Events; ORR, Objective response rate; PFS, Progression-free survival; OS, 
Overall survival; CP Regimen, Carboplatin + Paclitaxel Regimen; QOL, Quality of Life; AACs, Activating antigen carriers; TEAEs, treatment-emergent adverse events; LPFV, 
Last Patient, First Visit; DLT, dose-limiting toxicity; DoR, Duration of Response; BoR, Best overall Response; DCR, Disease-control rate; IP, investigational product; CBR, 
Clinical benefit rate; hPFS, Hepatic progression-free survival; TTR, Time to response.
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Enhancing the efficacy of tumor immunotherapy is a pressing concern in clinical studies, particularly in the context of 
monoclonal antibody-based blocker immunotherapy. Objectively, the translation of nanocarrier-mediated induction in the 
clinic has been hindered by the inadequacy of ICD evaluation metrics, such as the assessment of the release of relevant 
immune substances, and the limitations of ICD induction strategies, such as safety concerns. Additionally, there are still 
numerous challenges and limitations for ICD from bench to bedside. Currently, there are only a few clinically approved 
drugs that can effectively stimulate a strong immune response, and the complete dynamics of these drugs in relation to 
ICD-guided immunotherapy remain unclear. Moreover, the impact of immune checkpoint blockade (ICB) therapy on the 
auto-tumor immune response can exhibit considerable inter-patient variability.157,158

Personalized design for patients may be necessary to address the heterogeneity of tumors. Additionally, it is important 
to clarify the role of each step in immune responses and the interplay among pathways. Consequently, there is an urgent 
need to explore sustainable and efficient strategies for activating immune responses. The clinical application of ICD 
combination therapy requires the establishment of rational, accurate, and reliable evaluation criteria to assess its 
effectiveness.

In this comprehensive review, we discuss various classical research tools based on ICD therapy, aiming to provide 
valuable insights for researchers working in this field and foster the continued advancement of ICD-based research in the 
treatment of melanoma.
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