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Abstract
Objectives: Serum creatinine (SCr) is the primary biomarker for assessing kidney function; however, it may lag behind true kidney function, 
especially in instances of acute kidney injury (AKI). The objective of the work is to develop Nephrocast, a deep-learning model to predict next- 
day SCr in adult patients treated in the intensive care unit (ICU).
Materials and Methods: Nephrocast was trained and validated, temporally and prospectively, using electronic health record data of adult 
patients admitted to the ICU in the University of California San Diego Health (UCSDH) between January 1, 2016 and June 22, 2024. The model 
features consisted of demographics, comorbidities, vital signs and laboratory measurements, and medications. Model performance was eval-
uated by mean absolute error (MAE) and root-mean-square error (RMSE) and compared against the prediction day’s SCr as a reference.
Results: A total of 28 191 encounters met the eligibility criteria, corresponding to 105 718 patient-days. The median (interquartile range [IQR]) 
MAE and RMSE in the internal test set were 0.09 (0.085-0.09) mg/dL and 0.15 (0.146-0.152) mg/dL, respectively. In the prospective validation, 
the MAE and RMSE were 0.09 mg/dL and 0.14 mg/dL, respectively. The model’s performance was superior to the reference SCr.
Discussion and Conclusion: Our model demonstrated good performance in predicting next-day SCr by leveraging clinical data routinely col-
lected in the ICU. The model could aid clinicians in in identifying high-risk patients for AKI, predicting AKI trajectory, and informing the dosing of 
renally eliminated drugs.

Lay Summary
Assessment of kidney function is important in critically ill patients. Serum creatinine (SCr) is the most common biomarker used for this purpose; 
however, it may lag behind kidney function. To overcome this limitation, we have developed and prospectively validated a machine learning 
model to predict next-day SCr in critically ill adult patients using data derived from the University of California San Diego Health System. The 
model features consisted of demographics, comorbidities, vital signs, laboratory measurements, and medications. When tested, our model 
demonstrated good performance in predicting next-day SCr by leveraging data routinely collected in the hospital system. The model could aid 
clinicians in identifying high-risk patients for kidney dysfunctions and guide the dosing of drugs affected by kidney function.
Key words: serum creatinine; acute kidney injury; machine learning; deep learning; critical care. 

Background
Acute kidney injury (AKI) is a major source of mortality and 
morbidity in hospitalized patients.1–4 It has been estimated 
that 40%-60% of patients will experience at least one AKI 
event during their intensive care unit (ICU) stay.5,6 The man-
agement of AKI is an ongoing challenge, especially in crit-
ically ill patients.7 Drugs cleared by the kidneys often have a 
narrow therapeutic window for efficacy without causing 
adverse reactions.8 The margin for error is even lower in 
the presence of nephrotoxic drugs, where the therapeutic 
window is frequently shifting due to AKI.9–13 Accurate 

assessment of glomerular filtration rate (GFR) is crucial when 
initiating and adjusting the dose of renally eliminated drugs 
in patients with AKI.14–17 Broadly, there are 2 ways to esti-
mate kidney function: measuring the urinary clearance of sol-
utes and estimating clearance based on observed serum levels 
of solutes. Because solute clearance varies based on a person’s 
body size, clearance can be indexed to body surface area to 
produce an estimated GFR as another measure of kidney 
function.18

A common urine-based method of estimating kidney 
function is creatinine clearance (CrCl), which measures the 
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clearance using a 24-h urine collection paired with a serum 
creatinine (SCr) measurement.19–21 The inconvenience of col-
lecting urine over such a long time period limits its utility in 
clinical settings.22–24 To mitigate this limitation, several stat-
istical equations have been developed to estimate kidney 
function using a single SCr measurement, including the 
Cockcroft-Gault (CG),25 and Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) equations.26–28 Both 
the CrCl and the SCr-based estimation equations rely on the 
assumption of steady-state SCr. While this assumption is rea-
sonable in ambulatory settings, it is rarely met in the ICU, 
where substantial fluctuations in kidney function occur on 
35%-40% of patient-days in the ICU.29 The reason these 
equations are inaccurate during AKI is that the change in SCr 
lags behind the true kidney function, especially in rapidly 
progressing AKI.30–32 If we could anticipate the future SCr, 
then the SCr-based estimation equation would more accu-
rately reflect the GFR.

While many machine learning models have been previously 
developed to predict the onset of AKI based on SCr change, 
these models typically do not estimate future SCr.33–36 This 
limits the utility of these models in predicting AKI trajectory, 
differentiating between transient and persistent AKI, and 
informing the dosing of renally eliminated drugs. Achieving 
an accurate and dynamic prediction of kidney function could 
address these constraints. In this study, we aim to develop 
and validate Nephrocast, a deep-learning model capable of 
accurately predicting next-day SCr levels in critically ill adult 
patients.

Materials and methods
Study cohort
Data were extracted from the electronic health record (EHR) 
system of the University of California San Diego (UCSD) 
Health System between January 1, 2016 and June 30, 2023 
for Nephrocast development and internal validation. The 
UCSD Health System consists of 2 academic medical centers, 
including a Level I Trauma Center, that provide critical care 
across a wide range of specialties, including medical, cardio-
vascular, and surgical ICUs. Data were collected from July 1, 
2023 to November 31, 2023 to perform temporal validation. 
Nephrocast was validated prospectively using data collected 
from January 1, 2024 to June 22, 2024. In this study, patients 
were eligible for inclusion if their age was ≥18 years old and 
had spent a minimum of 24 h in an ICU. Patients were 
excluded if they had a diagnosis of chronic kidney disease 
(CKD) stage 5 or end-stage kidney disease (ESKD). Patient- 
days were excluded if the patient received renal replacement 
therapy (RRT) on the prediction day or the last 7 days from 
the prediction day, and if the ICU stay extended beyond 14 
days. The University of California San Diego Institutional 
Review Board (IRB) approval was obtained with the waiver 
of informed consent (#800257).

Outcome definition
The outcome variable, next-day SCr, was defined as the SCr 
value measured at 6:00 AM on the next patient-day. If no 
measurement was available at 6:00 AM, the closest SCr meas-
urement within a 6-h range was selected. If the SCr measure-
ment for the following day was missing within a 6-h window 
centered around 6:00 AM, no prediction was made during 
model training.

Clinical features as predictors
Variables consisted of 50 vital signs and laboratory measure-
ments, 6 demographic features, 11 Systemic Inflammatory 
Response Syndrome (SIRS) and Sequential Organ Failure 
Assessment (SOFA) criteria, 11 medication features, and 62 
comorbidities. Vital signs and laboratory variables were com-
piled at an hourly resolution into non-overlapping bins with 
the median value utilized for variables with multiple measure-
ments per hour. Old values were carried forward for up to 24 
h if no new measurements were available. All remaining miss-
ing variables were imputed using the mean. For each vital 
sign and laboratory measurement, an additional 2 features 
consisting of the slope of change and mean value over the 
previous 72 h were calculated.

Model development and validation
The initial model of Nephrocast consisted of a feedforward 
neural network with 2 hidden layers of size 128 and 64 units. 
To enhance temporal focus and capture relevant time-based 
patterns, we integrated a multi-headed attention layer. This 
attention mechanism allowed the model to prioritize critical 
timestamps, improving its predictive accuracy. The final layer 
of the model produces a single value, representing the pre-
dicted next-day SCr. Training was conducted using L2 regu-
larization and the Adam optimizer, with hyperparameters 
optimized through Bayesian hyperoptimization.37,38

To evaluate the Nephrocast’s performance, we employed 
10-fold cross-validation, ensuring robust and unbiased per-
formance assessment with a 90:10 split at the encounter level 
for training and testing in each fold. This approach grouped 
each encounter’s prediction days entirely into either the train-
ing or testing set to prevent data leakage and ensure the integ-
rity of our evaluation. The best-performing model from 
cross-validation was further used for temporal validation.

To validate Nephrocast in a production environment for 
real-time performance assessment, we leveraged an existing 
cloud-based infrastructure designed to directly access 
UCSDH EHR data using Fast Healthcare Interoperability 
Resources (FHIR) and Health Level 7 (HL7) standards with 
OAuth 2.0 authentication, as previously described by Bous-
sina et al.39 The schematic diagram of this “silent mode” pro-
spective validation environment is shown in Figure 1. The 
input feature set (including demographics, comorbidities, 
vital signs, laboratory measurements, and medications) was 
extracted by the platform from January 1, 2024 to June 22, 
2024 and passed to Nephrocast to predict next-day SCr 
levels.

To interpret the model’s predictions, we calculated feature 
importance scores, which quantify the relative contribution 
of each input feature to the model’s output. Higher impor-
tance scores indicate a greater influence of the corresponding 
feature on the predicted outcome. For instance, a feature 
with a high importance score suggests that variations in this 
feature have a substantial impact on the predicted next-day 
SCr, underscoring its clinical relevance.40

Evaluation of predicted SCr
In the context of this research, reference SCr was defined as 
the laboratory measured SCr on the day of making the pre-
diction. Predicted SCr was defined as the SCr predicted by 
Nephrocast for the next patient-day. Measured SCr was 
defined as the laboratory measured SCr on the next patient- 
day. To further illustrate these terms, consider a hypothetical 
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scenario involving a patient in the ICU whose SCr levels on 
the second and third days of their ICU stay are 1.0 mg/dL 
and 1.5 mg/dL, respectively. The goal is to predict SCr on the 
third day. In this case, the reference SCr would be 1.0 mg/dL, 
and the measured SCr would be 1.5 mg/dL. The predicted 
SCr would be Nephrocast prediction for day 3.

Error was defined as the difference between predicted SCr 
and measured SCr. 

Error ¼ Predicted SCr � Measured SCr:

Errors were summarized using mean absolute error (MAE) 
and root mean squared error (RMSE), with the latter being 
more sensitive to large errors. 

MAE ¼
PN

i¼1 jPredicted SCri � Measured SCrij

N
;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Predicted SCri � Measured SCrið Þ
2

N

s ;

where N is the number of analyzed SCr observations.
Similar to the approach of Huang et al, reference SCr 

served as a baseline model, and its performance was com-
pared against that of measured SCr to assess the clinical use-
fulness of the model. This comparison was made under the 
assumption that the SCr level would remain consistent 
between prediction’s day and next-day, reflecting standard 
clinical practice.41 Additionally, we trained a multivariable 
linear regression model with L2 regularization using Neph-
rocast’s predictors, and its performance was evaluated 

against that of Nephrocast. To assess the performance of the 
Nephrocast in patients with significant fluctuating kidney 
function, we evaluated the Nephrocast performance on days 
of unstable kidney function, defined as those in which there 
was a change of 30% or 0.3 mg/dL or more in SCr concentra-
tion between the reference SCr and the measured SCr on the 
following patient day. Bland-Altman plots were used to 
assess the difference between predicted and measured SCr.42

AKI definition and staging
AKI was defined according to the 2012 Kidney Disease 
Improving Global Outcomes (KDIGO) AKI guidelines crite-
ria using the peak-to-baseline SCr ratio.8 Baseline SCr was 
defined as SCr at hospital admission. The urine output crite-
rion was not implemented due to the sparsity of data.

Descriptive analyses and software
Patient characteristics were described and summarized using 
descriptive statistics such as mean (SD), median (interquartile 
range [IQR]), or counts (%), where appropriate. Continuous 
variables were analyzed using the Wilcoxon rank-sum test. 
All hypotheses were two-sided, and significance levels were 
set at the 5% level. Python 3.10 was used for analysis. 
NumPy 1.23.5 was used for all data preprocessing. The deep 
learning model was implemented using TensorFlow 2.13.0.43

Results
Study population
A total of 25 243 encounters met the eligibility criteria in the 
training dataset, corresponding to 95 111 patient-days. In the 

Figure 1. Schematic diagram of the Nephrocast prospective validation pipeline. Abbreviations: AWS ¼ amazon web services; EC2 ¼ elastic compute 
cloud; FHIR ¼ fast healthcare interoperability resources; HL7 ¼ health level 7; RDS ¼ relational database service.
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training set, males represented 60.8% of the cohort with a 
median (IQR) age of 61.5 (48.4-71.5) years. The most com-
mon ethnicity was White (12 781, 50.63%). The median 
(IQR) days of ICU stays was 3.67 (2.26-6.54). During their 
hospital stay, 94.4% of the patients were admitted to the 
medical ICU at some point, and about 37.8% of the patients 
were admitted to the surgical ICU at some point during their 
hospital stay. The median (IQR) baseline SCr was 0.68 (0.52- 
0.89) mg/dL. Overall, 10.5% of patients had a diagnosis of 
CKD. The median (IQR) SOFA II score was 5.3–8 The mortal-
ity rate during hospital stay was 6.16%. The percentage of 
patients who developed AKI was 46.4%, and the percentage 
of patients with AKI stage I, II, and III were 25.5%, 12.8%, 
and 8.1%, respectively. The percentage of unstable measure-
ments represented 11.5% of all measurements (Table 1). The 
demographic and clinical characteristics of the temporal and 
prospective validation cohorts were comparable to those of 
the training cohort.

Model performance
Nephrocast exhibited a small prediction error and outper-
formed reference SCr in internal testing, temporal validation, 
and prospective validation (Table 2). The median (IQR) 
MAE and RMSE across all days in the internal test dataset 
were 0.09 (0.085-0.09) mg/dL and 0.15 (0.146-0.152) mg/dL 
compared to MAE of 0.13 (0.131-0.135) mg/dL and RMSE 
of 0.25 (0.245-0.253) mg/dL for reference SCr. In unstable 
days, the median (IQR) MAE and RMSE in the internal test 
set were 0.20 (0.197-0.203) mg/dL and 0.31 (0.307, 0.327) 
mg/dL, respectively, and were superior to the MAE of 0.54 
(0.532-0.548) mg/dL and RMSE of 0.67 (0.663, 0.694) mg/ 
dL of reference SCr. The model performance in the training 
set is shown in Table S1.

The model performance was comparable between training 
and validation. In temporal validation, Nephrocast’s MAE 
and RMSE across all days were 0.08 mg/dL and 0.14 mg/dL, 
respectively, and were superior to reference SCr MAE of 
0.13 mg/dL and RMSE of 0.25 mg/dL. In unstable days, the 
temporal validation MAE and RMSE were 0.19 mg/dL and 
0.31 mg/dL, respectively, and were superior to reference SCr 
MAE of 0.54 mg/dL and RMSE of 0.66 mg/dL. In the pro-
spective cohort, Nephrocast’s MAE and RMSE across all 
days were 0.09 mg/dL and 0.14 mg/dL, respectively, outper-
forming the reference SCr MAE of 0.13 mg/dL and RMSE of 
0.23 mg/dL. In unstable days, Nephrocast’s MAE and RMSE 
were 0.18 mg/dL and 0.28 mg/dL, respectively, and superior 
to the reference SCr MAE of 0.50 mg/dL and RMSE of 
0.60 mg/dL.

When compared to the regularized multivariable linear 
regression model, Nephrocast performance was statistically 
superior (Table S2). The difference was specifically notable in 
days of unstable kidney function (MAE¼ 0.20 versus 0.24; 
RMSE¼0.31 versus 0.43 mg/dL; P<.01). Additionally, 
Nephrocast demonstrated consistent performance through-
out the first 8 days of ICU stay (Figure 2) and across a wide 
range of SCr value changes (Figure 3) in both stable and 
unstable days.

Feature importance
A total of 241 features were assessed (Table S3). The top 
15 most important continuous and categorical features 
across all days are shown in Figure 4. The most important 
continuous feature was the ICU length of stay. In total, 3 

features were related to SCr, 2 features were related to hos-
pital and ICU length of stay, and the remaining features 
were for laboratory results and vital signs. The most impor-
tant categorical feature was gender. Four features were 
components of the SIRS score, 2 features were for ICU unit 
type, and the remaining features were related to comorbid-
ities, and medical conditions. The top 15 most important 
features on unstable days are shown in Figure S1. In those 
days, SCr-related features ranked as the most important 
continuous features.

Discussion
In this study, we developed Nephrocast, a deep-learning 
model to predict next-day SCr in critically ill adult patients 
using EHR data. The model demonstrated good performance 
in internal testing, temporal validation, and prospective 
validation. It also exhibited consistent performance across 
different clinical scenarios, including stable days, unstable 
days, throughout the first 8 days of ICU stay, and over wide 
ranges of SCr concentrations. Our model outperformed 
reference SCr and penalized multivariable linear regression as 
baseline models, especially in days of unstable kidney 
function, demonstrating the advantage of deep learning 
methods. The results of prospective validation support the 
potential integration of Nephrocast into clinical workflows 
to evaluate its operational and clinical impact.

To date, limited work has been done to predict kidney 
function using machine learning techniques. Huang et al con-
structed a machine-learning model to predict next-day CrCl 
derived from measured 24-h urine collection, achieving an 
impressive RMSE of 18.1 (95% CI 17.9-18.3) mL/min in 
external validation; however, their model depends on prior 
CrCl measurements to make the next day prediction.41

Unlike 24-h urine collection, SCr is inexpensive to measure 
with a short laboratory turnaround time, making it the pri-
mary biomarker to estimate kidney function in hospital set-
tings.44,45 In clinical practice, renal drug dose adjustments 
have relied on estimates derived from the CG equation, and 
more recently, estimated GFR based on MDRD and CKD- 
EPI equations.46 Although these equations assume steady- 
state SCr, they persist in clinical practice as the main method 
to guide dose adjustments in patients with AKI due to the 
lack of practical alternatives.47 Non-steady state equations 
such Jelliffe and kinetic GFR provide a more accurate assess-
ment of kidney function for patients in AKI.48,49 These equa-
tions require 2 discrete SCr measurements at 2 different 
times. This situation presents an opportunity to incorporate 
predicted SCr from our model into these equations, thereby 
enhancing the ability to estimate GFR with greater accu-
racy.50 Regardless of the clinician’s choice of equation, a reli-
able prediction of SCr is required to estimate kidney function 
accurately in patients who are not in a steady state.

Emerging evidence suggests that AKI classification based 
on early SCr trajectory could provide clinically meaningful 
insights into AKI risk stratification. Takkavatakarn et al have 
recently shown that in critically ill patients with sepsis, 8 dis-
tinct SCr trajectories exist. These trajectories varied signifi-
cantly in their risk for acute kidney disease (AKD), AKD or 
mortality by day 7, and AKD or mortality by hospital dis-
charge.51 Similarly, Bhatraju et al evaluated the SCr trajec-
tory in the first 72 h of ICU in critically ill patients with AKI 
and demonstrated that patients with non-resolving AKI 
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trajectories had a higher risk of mortality compared to resolv-
ing AKI trajectories.52 By accurately predicting next-day SCr 
levels, our model could inform clinicians early about the SCr 
trajectory, enabling a patient-specific approach to AKI 
management.

There is ongoing discussion regarding when antimicrobial 
dose adjustments should be deferred for the first 24-48 h in 
hospitalized patients with acute infections with known AKI, 
especially for agents with a wide therapeutic index, such as 
β-lactams.53,54 Crass et al argued that because AKI resolves 

Table 1. Patient characteristics.

Variable Training (N¼25 243) Temporal validation (N¼1378) Prospective validation (N¼ 1570)

Patient-days, (N) 95 111 5153 5454
Age, median (IQR), years 61.5 (48.4-71.5) 61.1 (46.1-70.8) 63.5 (50.6-73.2)
Sex, n (%)

Male 15 348 (60.8%) 831 (60.3%) 937 (59.7%)
Female 9905 (39.2%) 547 (39.7%) 633 (40.3%)

Ethnicity, n (%)
Black 1913 (7.58%) 99 (7.18%) 99 (6.31%)
White 12 781 (50.63%) 644 (46.73%) 782 (49.81%)
Asian 1477 (5.85%) 88 (6.39%) 109 (6.94%)
Other 9072 (35.94%) 547 (39.64%) 580 (36.94%)

SOFA score, median (IQR) 5 (3-8) 5 (3-8) 5 (2-9)
ICU length of stay, median (IQR), days 3.67 (2.26-6.54) 3.83 (2.35-7.18) 3.77 (2.49-6.80)
Unit type, na

MICU 23 817 1454 1563
Other 4687 273 246

ICU mortality, N (%) 1555 (6.16%) 61 (4.43%) 81 (5.16%)
Baseline SCr, median (IQR)b 0.68 (0.52-0.89) 0.65 (0.49-0.87) 0.67 (0.51-0.89)
AKI, stage, n (%)c

I 6443 (25.5%) 382 (27.7%) 421 (26.8%)
II 3230 (12.8%) 182 (13.2%) 234 (14.9%)
III 2049 (8.1%) 121 (8.8%) 130 (8.3%)

Unstable patient-days, n (%)d 10 948 (11.51 %) 616 (11.95%) 633 (9.81%)
Comorbidities, n (%)

Anemia 1211 (4.8%) 86 (6.2%) 116 (7.4%)
Chronic kidney disease 1281 (10.5%) 97 (7.0%) 114 (7.3%)
Coronary artery disease 2034 (8.1%) 115 (8.3%) 178 (11.3%)
Diabetes 2438 (9.7%) 150 (10.9%) 211 (13.4%)
Hypertension 3697 (14.6%) 236 (17.1%) 321 (20.4%)
Liver disease 116 (0.5%) 10 (0.7%) 21 (1.3%)
Severe sepsis/septic shock 2039 (8.1%) 103 (7.5%) 103 (6.6%)

Mechanical ventilation, N (%) 11 468 (45.43%) 667 (48.40%) 769 (48.98%)

a Patients may undergo transfers to various units throughout their hospitalization.
b Baseline SCr was defined as the first measurement during hospital stay.
c AKI was defined according to the 2012 Kidney Disease Improving Global Outcomes (KDIGO) criteria using the peak-to-baseline SCr ratio8.
d Unstable patient-days were defined as those in which there was a change of 30% or 0.3 mg/dL or more in SCr concentration between the reference SCr 

and the measured SCr on the following patient-day.
Abbreviations: AKI ¼ acute kidney injury; ICU ¼ intensive care until; MICU ¼medical intensive care unit; SCr ¼ serum creatinine; SICU ¼ surgical intensive 
care unit; SOFA ¼ sequential organ failure assessment.

Table 2. Summary of model performance on all days and unstable days.

All days Unstable days

Test set

Nephrocast Reference SCr P-value Nephrocast Reference SCr P-value

MAE, median (IQR), mg/dL 0.09 (0.085, 0.09) 0.13 (0.131, 0.135) <.01 0.20 (0.197, 0.203) 0.54 (0.532, 0.548) <.01
RMSE, median (IQR), mg/dL 0.15 (0.146,0.152) 0.25 (0.245, 0.253) <.01 0.31 (0.307, 0.327) 0.67 (0.663, 0.694) <.01
Temporal validation
MAE, mg/dL 0.08 0.13 N/A 0.19 0.54 N/A
RMSE, mg/dL 0.14 0.25 N/A 0.31 0.66 N/A
Prospective validation
MAE, mg/dL 0.09 0.13 N/A 0.18 0.50 N/A
RMSE, mg/dL 0.14 0.23 N/A 0.28 0.60 N/A

Reference SCr was defined as the measured SCr on the day of making the prediction. Predicted SCr was defined as the predicted SCr by our model for the 
next patient-day. Measured SCr was defined as the laboratory measured SCr on the next patient-day. Model error was defined as the difference between 
predicted SCr and measured SCr, which was compared against the difference between reference SCr and measured SCr. Error was summarized using MAE 
and RMSE. Unstable patient-days were defined as those in which there was a change of 30% or 0.3 mg/dL or more in SCr concentration between the 
reference SCr and the measured SCr on the following patient-day.
Abbreviations: IQR ¼ interquartile range; MAE ¼mean absolute error; RMSE ¼ root mean squared error; SCr ¼ serum creatinine.
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in >50% of patients within 48-72 h and SCr lags behind 
changes in GFR, such dosage adjustments based on equations 
that were derived from patients with CKD or normal renal 
function could result in subtherapeutic antimicrobial concen-
trations and potentially decreased clinical response.55 Unlike 
other AKI models, which only predict AKI onset, our model 
predicts next-day SCr; thus offering insights into the onset 

and recovery of AKI, and potentially informing clinicians fac-
ing decisions regarding dosage adjustments. For example, in 
patients with a recent onset of AKI, if our model predicts a 
significant improvement in kidney function in the next 24 h, 
indicated by a notable decline in predicted SCr level, the clini-
cian may consider not adjusting standard doses. Conversely, 
if the model predicts declining kidney function, indicated by 

Figure 2. Temporal trends of prediction error for all days and unstable days. Reference SCr was defined as the measured SCr on the day of making the 
prediction. Predicted SCr was defined as the predicted SCr by Nephrocast on the next patient-day. Measured SCr was defined as the laboratory measured 
SCr on the next patient-day. Model error was defined as the difference between measured SCr and predicted SCr, which was compared against the 
difference between measured SCr and reference SCr. Unstable days were defined as those in which there was a change of 30% or 0.3 mg/dL or more in 
SCr concentration between the reference SCr and the measured SCr on the following patient day. Abbreviation: SCr ¼ serum creatinine.
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an increase in predicted SCr level, the clinician may consider 
intensified monitoring and perform dose adjustment if crite-
ria are met.41 It is also worth noting that the decision for 
dose adjustment is drug-dependent. For example, in drugs 
with a narrow therapeutic index, such as vancomycin or ami-
noglycosides, a conservative approach may be required with 
more frequent monitoring. In contrast, for wide therapeutic 
index drugs, such as cephalosporins, more aggressive doses 
may be warranted for critically ill patients. Those scenarios 

and considerations must be considered when developing a 
clinical protocol to incorporate the model predictions into 
clinical decision-making or conducting prospective imple-
mentation studies.

The set of important predictors identified by our model 
aligns with previous research to predict AKI. Song et al con-
ducted a systematic review of AKI prediction models and 
showed that creatinine-related variables were the most com-
mon significant predictors across machine learning models. 

Figure 3. Bland-Altman plots of predicted and measured serum creatinine in internal test dataset, temporal validation dataset, and prospective for both all 
days and unstable days. Unstable days were defined as those in which there was a change of 30% or 0.3 mg/dL or more in SCr concentration between 
the reference SCr and the measured SCr on the following patient day. Abbreviations: SCr ¼ serum creatinine; SD ¼ standard deviation.

JAMIA Open, 2024, Vol. 7, No. 3                                                                                                                                                                                                7 



The authors also showed that blood urea nitrogen and urine 
output are predictors of importance but to a lesser extent.56

Similarly, in Huang et al work to predict next-day CrCl, vari-
ables such as “CrCl of the previous day,” and “mean CrCl of 
all past days during ICU stay” were ranked as highly impor-
tant.41 These findings are expected, given the strong correla-
tion between repeated and longitudinal creatinine-based 
measurements in the same patient. Nonetheless, this issue 
might limit the utility of these models in patients whose SCr 
measurements are infrequent or far apart. Gender ranked as 
a feature of high importance in our model, which could be 
attributed to the gender-dependent difference in muscle mass 
and creatinine generation.57 Additionally, epidemiological 
studies continue to confirm a higher incidence of AKI in men 
compared to women.58 The relationship between gender and 
AKI continues to be an interesting research topic that requires 
further elucidation. Our model identified other clinical pre-
dictors indicative of systemic infections and organ dysfunc-
tion, underscoring the complex relationship between illness 
severity and SCr levels.59

We note limitations that are important to be acknowl-
edged. First, it is well established that creatinine has several 
drawbacks as a biomarker to estimate kidney function in crit-
ically ill patients. Catabolic conditions may lead to an 
increase or decrease in the production of creatinine.60 Fluid 
resuscitation will increase clearance and dilute SCr concen-
tration, resulting in a decline in SCr concentration. Medica-
tions commonly prescribed in the ICU settings (eg, cefazolin, 
albumin, dopamine) can interfere with the creatinine assay, 
resulting in biased results. Due to the increase in tubular 
secretion associated with the decline in GFR, a change in SCr 
will not be observed until 50% of GFR has been lost.60 Sev-
eral biomarkers have been evaluated as potential alternatives 
or adjuncts to SCr, but their clinical adaptation has been lim-
ited.61 Perhaps the most notable example would be Cystatin 
C (CysC), a low molecular weight protein that is produced 
constantly by all nucleated cells and filtered at the glomerulus 
and not reabsorbed. Unlike SCr, CysC is less affected by sex, 
muscle mass, nutritional status, and frailty. In a study con-
ducted at the Mayo Clinic hospital, CysC utilization in the 

Figure 4. Top 15 features in order of importance for all days in terms of continuous and categorical features. Abbreviations: CMS ¼ centers for medicare 
and medicaid services; SCr ¼ serum creatinine; SIRS ¼ systemic inflammatory response syndrome; SOFA ¼ sequential organ failure assessment; 
WBC ¼white blood cell.
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ICU has been shown to increase from 4 tests/1000 patient- 
days in 2011 to 44 tests/1000 patient-days in 2018 and was 
assessed 6.4-fold more in ICU patients compared non-ICU 
patients.62 While the increase in CysC utilization is consider-
able, it is far from comparable to SCr utilization. Addition-
ally, the Food and Drug Administration guidance on 
pharmacokinetic studies in kidney disease recommends using 
SCr and contemporary steady-state equations to estimate kid-
ney function for drug labeling purposes. Drug manufacturers 
have not yet incorporated the use of CysC in their pharmaco-
kinetic studies and drug labeling dose recommendations. 
Given the slow penetrance of routinely measuring CysC in 
clinical settings and lack of drug dosing guidance based on 
CysC, SCr will continue to serve as the standard biomarker 
to estimate kidney function and guide drug dosing, emphasiz-
ing the need for machine-learning models that can compen-
sate for the shortcomings of SCr.

Second, although we included a prospective validation, our 
model has not been externally validated, limiting the general-
izability of our findings and potentially the performance of 
our model if implemented in a different health system.63,64

Additionally, further work is required to investigate the inte-
gration of Nephrocast’s predictions into clinical practice and 
develop a best practice advisory in the EHR system.65,66

Third, the exclusion of patients of encounters with RRT on 
the predication day or the last 7 days, CKD stage 5, ESKD, 
and encounters after 14 days from the ICU admission date 
might have introduced a selection bias. While these decisions 
were made to ensure the reliability of our model, they further 
contribute to limiting the generalizability of this work. 
Fourth, potential predictors of AKI that were not available 
through the data pipeline were not included in the model. 
The inclusion of nephrotoxic drug count, concentration, and 
the drug’s risk of nephrotoxicity have been shown to be sig-
nificant predictors in AKI models.67–71 Similarly, undergoing 
major surgical procedures is known to increase the risk of 
AKI.72 The inclusion of these predictors could potentially 
improve the performance of Nephrocast. Lastly, Previous 
clinical trials involving EHR alerts did not demonstrate a 
statistically significant benefit on AKI-related outcomes 
despite showing that these alerts were associated with discon-
tinuing nephrotoxic medications, increasing fluid resuscita-
tion, optimizing hemodynamic parameters, and timely 
nephrologist consultations.66,73 Subsequent research should 
prioritize identifying patient subgroups that would benefit 
from these clinical interventions.74

Conclusions
By leveraging clinical data routinely collected in the ICU, we 
developed a deep learning model to predict next-day SCr in 
critically ill adult patients. Our model demonstrated superior 
performance compared to the reference SCr, especially in 
cases of unstable kidney function. This capability holds 
promise in assisting clinicians in identifying high-risk patients 
for AKI, predicting AKI trajectory, and informing the dosing 
of renally eliminated drugs. Further work is needed to exter-
nally validate the model’s performance, explore its clinical 
applications, and integrate SCr prediction into clinical work-
flows and decision-making.
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