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Summary

Mutations in cerebral cavernous malformation 3 gene are known

to result in development of vascular malformations and have

recently been proposed to also give rise to meningiomas. We

report in this study that lack of CCM3 unexpectedly impairs the

senescence response of cells, and this is related to the inability of

CCM3-deficient cells to induce the C/EBPb transcription factor and

implement the senescence-associated secretory phenotype.

Induction of C/EBPb and cytokines is also impaired in the absence

of CCM3 in response to cytokines in nonsenescent cells, pointing

to it being a primary defect and not secondary to impaired

senescence. CCM3-deficient cells also have a defect in autophagy

at late passages of culture, and this defect is also not dependent

on impaired senescence, as it is evident in immortal cells after

nutrient starvation. Further, these two defects may be related, as

enforcing autophagy in CCM3-deficient late passage cells

increases C/EBPb cytokine expression. These results broaden our

knowledge on the mechanisms by which CCM3 deficiency results

in disease and open new avenues of research into both CCM3 and

senescence biology.
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Introduction

Cellular senescence develops in response to a variety of stresses,

including telomere attrition, unscheduled DNA replication, oxidative

stress, suboptimal culture conditions, or the presence of an activated

oncogene (in the latter case being called oncogene-induced senescence,

OIS) (Hayflick, 1965; Kuilman et al., 2010). It was first described in cells

in culture and is now widely accepted as an important antioncogenic

mechanism in vivo (Braig et al., 2005; Collado et al., 2005; Michaloglou

et al., 2005).

Some of the best known characteristics of senescent cells are those

that are directly related to their growth arrest, such as the activation of

p53 or the upregulation of the cyclin-dependent kinase inhibitors

p16ink4a or p21CIP1 (Campisi & d’Adda di Fagagna, 2007). However, in

the last few years, several other physiological changes have been shown

to be important for the full implementation of the senescence program;

among these are the secretion of a plethora of extracellular messengers,

most prominently cytokines, by senescent cells (Krtolica et al., 2001;

Copp�e et al., 2006; Acosta et al., 2008; Kuilman et al., 2008; Kuilman &

Peeper, 2009), and the stimulation of the process of macroautophagy

(usually called simply autophagy) (Kurz et al., 2000; Young et al., 2009;

Narita et al., 2011). Autophagy is necessary in this context for the

efficient synthesis and secretion of extracellular messengers (Young

et al., 2009), and once established, the synthesis and secretion of

cytokines can be self-sustained by a positive feedback loop involving the

transcription factors NFjB and C/EBPb (Acosta et al., 2008).

Mutations in the CCM3/PDCD10 gene (CCM3 from here on)

predispose to cerebral cavernous malformations (CCM, OMIM

#116860), a common type of vascular malformation which develop

almost exclusively in the central nervous system (Rigamonti et al., 1988).

Its product is an adaptor protein that binds to the germinal center kinase

III (GCKIII) family of protein kinases (composed of Mst3/STK24, Mst4/

MASK, and SOK1/YSK1/STK25) through its N-terminal domain (Ma

et al., 2007; Voss et al., 2009; Fidalgo et al., 2010; Zalvide et al., 2013),

and to other proteins through its C-terminal end (Voss et al., 2007;

Goudreault et al., 2008; Fidalgo et al., 2010; Li et al., 2011). Several

functions have been proposed for CCM3, including modulation of cell

death, especially after oxidative stress (Chen et al., 2009; Schleider

et al., 2010; Fidalgo et al., 2012; Zhang et al., 2012), regulation of

transmembrane signaling and cell growth (Ma et al., 2007; Kleaveland

et al., 2009; He et al., 2010; Lin et al., 2010), and playing a role in

membrane trafficking, Golgi apparatus biogenesis, cell migration, and

regulated secretion (Fidalgo et al., 2010; Zhang et al., 2013; Louvi et al.,

2014).

Recently, patients carrying heterozygous CCM3 gene mutations have

been shown to be at high risk of developing meningiomas in which the

wild-type allele of CCM3 is mutated (Labauge et al., 2009; Riant et al.,

2013), which hints to a possible role of CCM3 as a tumor suppressor,

although no mechanism for such an effect has been proposed.

Here, we show that cells deficient in CCM3 do not enter senescence

after replicative stress or oncogene induction. Lack of CCM3 results in

impaired expression of cytokines and their regulator C/EBPb, both in

senescence and in response to cytokines. Moreover, CCM3-deficient

cells do not increase autophagy at late passages of culture or after

nutrient starvation.

Results

To study the biology of the cavernous malformation susceptibility gene

CCM3, we depleted the CCM3 protein in primary endothelial cells by

lentiviral transduction of CCM3 small hairpin RNAs. Two of the shRNAs –

shCCM3#1 and shCCM3#2 – we used gave a good downregulation of

CCM3 (Fig. 1A). As expected for primary cells, those infected with a

control shRNA stopped their proliferation when they reached between 6

and 12 population doublings, and showed the typical morphology of

senescent cells. Surprisingly, cells with a downregulated CCM3 contin-

ued to divide when they reached the same number of doublings. Cells
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infected with shCCM3#1 did not show a clear slowing in their

proliferation rate even after 25 population doublings, whereas cells

infected with the less effective shCCM3#2 shRNA had an intermediate

phenotype, proliferating longer than the control cells but ultimately

ceasing their division (Fig. 1B). Significantly, the proliferation during the

first divisions of the cells was undistinguishable in cells with different

levels of CCM3 (duplication time of 52.4 � 11.9 h for control vs.

56.7 � 14.2 h for CCM3 knockdown cells, P = 0.47), and their cell

cycle profile was also similar (Fig. S1A, Supporting information), which

pointed to a specific senescent defect. In the same analysis, no difference

in sub-2n DNA was found, suggesting also that lack of CCM3 does not

induce apoptosis at least in unstressed endothelial cells.

Consistently with an involvement in senescence, CCM3-depleted cells

did not acquire the morphology characteristic of senescent cells even

after 25 population doublings, and they did not accumulate senescence-

associated b-galactosidase (Fig. 1C). CCM3-depleted cells were clono-

genic, but did not form foci when allowed to grow to confluence (Fig.

S1B,C, Supporting information), and did not accumulate the cdk

inhibitors p21cip1 or p16ink4a (Fig. S1D,E, Supporting information). They

did show signs of low-intensity DNA damage, as seen by cH2AX levels

(Fig. S1F, Supporting information), and higher p53 levels than low

passage cells, although p53 could still respond to the intense DNA

damage induced by doxorubicin (Fig. S1G, Supporting information). To

further establish whether the effects of the shRNAs were due to CCM3

depletion and not to nonspecific effects of the shRNAs, we reexpressed

CCM3 with retroviral transduction. The shCCM3 #1 shRNA targets the

30 UTR of the CCM3 mRNA, and therefore, it does not have any effect

on a construct with the coding region of CCM3. CCM3 transduction

could recover CCM3 protein levels partially, and this was enough to

increase significantly the number of positive cells for SA-bGal activity
(Fig. 1D), indicating that senescence was being rescued.

To know how widespread the relation of CCM3 to senescence was,

we depleted this gene from IMR90 fibroblasts using a CCM3 shRNA

unrelated to those previously used (Fig. S2A, Supporting information).

CCM3-depleted fibroblasts did not enter senescence at the same

passage as control cells (Fig. S2B, Supporting information), although

they showed signs of senescence three passages later (not shown),

suggesting CCM3 only delays senescence in this model.

We hypothesized that if CCM3 was specifically required for replicative

senescence, its expression might be increased during the process.

However, CCM3 mRNA levels did not vary significantly as IMR90 cells

accumulated population doublings (Fig. S2C, Supporting information),

suggesting that if CCM3 is activated, it is through a mechanism different

than mRNA expression.

We then studied the effect of CCM3 in senescence in a well-known

model of senescence induction: IMR90 cells transduced with an onco-

genic H-ras switchable with the estrogen analog 4-hydroxytamoxifen (4-

OHT). When CCM3was inhibited in these cells (Fig. 2A), 4-OHT could still

increase the number of cH2AX-positive cells (Fig. 2B), showing that H-ras

was active in both control and CCM3-deficient cells. However, it did not

inhibit DNA synthesis (Fig. 2C), nor did it induce a senescent morphology

or senescence-associated b-galactosidase activity (Fig. 2D). Moreover,

depletion of CCM3 with completely unrelated shRNAs transduced by

retroviral vectors had the same effect (Fig. S2, Supporting information),

showing again that it is CCM3 downregulation and not a nonspecific

effect of CCM3 shRNAs what induces the senescence bypass.

(A)

(D)

(B) (C)

Fig. 1 CCM3-deficient endothelial cells do not undergo proliferative arrest. HCAEC cells were lentivirally infected with two different shRNA against CCM3 (shCCM3 #1 or

shCCM3 #2) or with a nontarget shRNA (shNT #1 or shNT #2). (A) CCM3 knockdown efficiency was assessed by Western blot. Tubulin is shown as a loading control.

(B) Cumulative population doublings in six independent populations of primary HCAEC cells transduced either with a nontarget shRNA (shNT), shCCM3#1, or shCCM3#2.

(C) Microphotographs showing SA-bGal activity in HCAEC shNT cells at population doublings 18, and shCCM3#1 cells cultures in parallel. Representative photographs

and a quantification of SA-bGal-positive cells (mean � SEM), n = 3. *P = 3.07 9 10�6. (D) Western blot of CCM3 showing the recovery of its levels after transduction

with pLOC or pLOC-CCM3 (upper panel); representative photographs of SA-bGal activity in HCAEC shNT and shCCM3#1 cells transduced with pLOC or pLOC-CCM3 (lower

panels); and quantification of SA-bGal-positive cells (mean � SEM), n = 3. *P = 2.4 9 10�6, #P = 0.018.
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Once we concluded that CCM3 depletion inhibited senescence in

several different models, we wanted to understand how CCM3 could

affect senescence in our original endothelial cells. Thus, we performed a

transcriptomic analysis comparing expression of genes regulated in

senescence in control cells (‘senescence genes’) between passage 12

shNT and shCCM3 cells (Fig. S4A, Supporting information). Gene set

enrichment analysis of this comparison against KEGG datasets showed

that two sets related to senescence were downregulated in shCCM3

cells: cytokine–cytokine receptor interaction and lysosome (Fig. S4B,

Supporting information). Indeed, expression of IL-6 and IL-8 mRNAs was

lower in late passage CCM3-depleted cells than in control cells as

assessed by quantitative RT–PCR (Fig. 3A). Also, while late passage

control cells secreted high quantities of IL-6, IL-8, and TGF-b2 to their

medium, cells without CCM3 did not (Fig. 3B). Interestingly, control cells

at high passage had a higher activity of caspase-1 than shCCM3 cells

(Fig. 3C), suggesting that the inflammasome is activated differently

depending on the CCM3 status, which might affect cytokine response to

inflammation-related stimuli.

Regulation of cytokines during senescence depends on a network of

positive feedback loops whereby some cytokines stimulate their own

expression or that of related molecules (Acosta et al., 2008; Kuilman

et al., 2008; Acosta et al., 2013). To assess the regulation of cytokine

expression by CCM3, we studied the response of cells to TNF, which is

known to regulate IL-8 and IL-6 in endothelial cells. TNF could induce

both IL-6 and IL-8 mRNA in a time-dependent manner in control cells,

and this response was clearly impaired in CCM3-deficient cells (Fig. 4A).

The same was true for IL-8 intracellular protein levels and extracellular

secretion (Fig. 4B,C). Furthermore, TNF could induce the nuclear

translocation of the transcriptional cytokine regulator NFjB and increase

the mRNA levels of the other principal regulator, C/EBPb. In the absence

of CCM3, the nuclear translocation of NFjB was unaffected while the

increase in C/EBPb mRNA was impaired (Fig. 4D,E). This defect in

cytokine regulation was not limited to the response to TNF. Treatment

with recombinant IL-8 induced the mRNAs of IL-6 and IL-8 in control but

not CCM3-deficient cells, and this was also accompanied by an impaired

induction of C/EBPb in the latter (Fig. 4F). We concluded that the

(A)

(D)

(B) (C)

Fig. 2 CCM3 depletion bypasses oncogene-induced senescence (OIS) in IMR90 cells. IMR90 cells expressing a switchable version of H-Ras (activated upon addition of 4-

hydroxytamoxifen, 4-OHT) were infected with a lentiviral CCM3 shRNAs (shCCM3) or nontarget shRNA (shNT), or with a retroviral p16 shRNA (shp16) or nontarget shRNA

(pRS), and then selected with puromycin. (A) CCM3 mRNA levels were assessed by qRT–PCR. n = 3, *P = 0.012 vs. shNT. (B) pH2AX-positive cells in the different

populations untreated or after 5 days of H-Ras activation (4-OHT). For B and C, the nuclear intensity average of the staining correlated to the shown percentage of positive

cells. (C) Percentage of BrdU-positive cells treated as in B, n = 3. *0.002, 0.005, 0.0002 vs. untreated control. (D) SA-bGal activity in the same cells under the same

treatments as in B. Shown are representative photographs and a quantification of SA-bGal-positive cells by two independent observers. *P = 0.0003 and 0.0002 vs. pRS cells

treated with 4-OHT.

(A)

(B)

(C)

Fig. 3 CCM3 knockdown endothelial cells show lower levels of SASP components

and inflammasome activation. (A) mRNA levels of IL-6 and IL-8 from shCCM3 and

shNT cells with 7 (PD7) or 12 (PD12) population doublings. n = 4, *P = 0.019,

0.023; and 0.017, and 0.04 vs. shNT. (B) Secretion of SASP components (IL-6, IL-8

and TGF-b2) in cell culture supernatants. n = 3, *P = 0.028, 0.048, 0.035, and

1.25 9 10�4 vs. shNT. (C) Activity of caspase-1 in late passage (PD18) shNT and

shCCM3 HCAEC cells. *P = 1.8 9 10�4.
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regulatory network of cytokine regulation was impaired in CCM3-

deficient cells, and this was closely related to their inability to induce the

C/EBPb transcriptional regulator.

C/EBPb was also induced in late passage (senescent) control cells but

not in CCM3-deficient cells (Fig. 5A). Moreover, when the expression of

C/EBPb was enforced in late passage shCCM3 HCAEC cells, a

significant percentage of them accumulated SA-bGal activity and

acquired a senescent-like morphology (Fig. 5B), suggesting that

CCM3 facilitates senescence at least in part through its effects on C/

EBPb expression.

Recently, the combination of autophagy and mTOR activity in a newly

defined cellular compartment called TOR-autophagy spatial coupling

compartment (TASCC), where lysosomes and mTOR accumulate, has

been proposed to be essential for cytokine secretion during senescence.

The lysosome gene set is also downregulated in late passage shCCM3

cells, and CCM3 has been implicated in Golgi biogenesis, vesicular

trafficking, and regulated secretion (Fidalgo et al., 2010; Kean et al.,

2011; Zhang et al., 2013). Thus, we hypothesized that formation of

TASCC might be altered in CCM3-deficient cells. As expected, senescent

control cells displayed a prominent protein degradation machinery as

seen by LAMP2 and p62 staining together with high levels of mTOR,

suggestive of the existence of the TASCC complex. On the contrary, cells

without CCM3 did not show any signs of TASCC (Fig. 6A).

TOR-autophagy spatial coupling compartment is formed by the

accumulation of mTOR and lysosomes that result from the high

autophagic activity of senescent cells (Narita et al., 2011). As CCM3 is

involved in vesicular traffic, we reasoned that it might have an effect on

autophagy. Thus, we monitored autophagy in early and late passage

(A)

(B)

(D)

(F)

(E)

(C)

Fig. 4 CCM3 is necessary for cytokine-

induced C/EBPb and cytokine induction. (A)

Induction of IL-6 and IL-8 mRNAs by TNF is

dependent on CCM3. Control (shNT) and

shCCM3 HCAEC cells were either treated

for 1 or 6 h with TNF 20 ng mL�1, or left

untreated. Levels of IL-6 and IL-8 mRNAs

were determined. n = 3, *P = 0.028 and

0.003 vs. shNT cells. (B) IL-8 induction by

TNF depends on CCM3. HCAEC cells were

either treated with 2 ng mL�1 or

20 ng mL�1 TNF, or left untreated. IL-8

levels were determined by Western blot.

Tubulin is shown as a loading control. (C)

Stimulation of IL-8 secretion by TNF

depends on CCM3. Levels of IL-8 were

determined in cell culture supernatants by

ELISA, after treatment with 2 ng mL�1 or

20 ng mL�1 TNF. n = 3, *P = 5.0 9 10�3,

2.4 9 10�4, 7.3 9 10�3 vs. shNT. (D)

CCM3 status does not affect NFjB nuclear

translocation. Immunofluorescence

showing NFjB activation after TNF

20 ng mL�1 treatment in control and

shCCM3 cells. The bar represents 20 lm.

(E) TNF induces C/EBPb mRNA in a CCM3-

dependent manner. HCAEC cells were

either treated for 1 or 6 h with TNF

20 ng mL�1, or left untreated. Levels of C/

EBPb mRNA were determined. n = 3,

P = 0.035 vs. shNT cells. (F) Induction of

cytokines and C/EBPb by IL-8 is dependent

on CCM3. Control (shNT) and shCCM3

HCAEC cells were grown in the presence or

absence of 200 ng lL�1 h�1 IL-8, and

levels of IL-6, IL-8 and C/EBPb mRNAs were

determined. n = 4, *P = 0.004, 0.007,

0.0001, 0.001, 0.035, and 0.023 vs. shNT.
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cells by measuring the lipidated form of LC3B, LC3B-II, by Western blot,

and estimated autophagy flux as the difference in LC3B-II levels between

cells with and without treatment with bafilomycin A (BAF), which inhibits

autophagosome–lysosome fusion (Klionsky et al., 2012). As described,

autophagy is elevated in late passage control cells. However, late

passage cells with silenced CCM3 did not show the same induction of

autophagy (Fig. 6B).

Our results showed that CCM3-deficient cells had a defect in both

autophagy and C/EBPb induction in several circumstances. Both effects

were related. The expression of C/EBPb in late passage shCCM3 cells

induced an accumulation of LC3B-II (Fig. 6C). Further, enforced induc-

tion of autophagy transiently induced C/EBPb and cytokine mRNAs. As

seen in Fig. 6D, the mTOR inhibitor Torin1 could induce autophagy in

CCM3-deficient endothelial cells, as assessed by the accumulation of

LC3B-II after treatment with bafilomycin. When autophagy was induced,

there was an accumulation of IL-6, IL-8, and C/EBPb mRNAs in CCM3-

deficient cells (Fig. 6D, lower graph). This induction was visible only at

early times after Torin1 treatment and was reverted as soon as after

24 h, which we interpret to reflect the need of mTOR activity in the full

induction of senescence.

We reasoned that if autophagy impairment is a primary effect of lack of

CCM3, it should be evident independently of senescence. Thus, we

inhibited CCM3 in an immortal cell line derived from retinal epithelial cells

(hTERT-RPE1) (Fig. S5A, Supporting information) and then induced

autophagy by incubating them in Hank’s Buffered Saline Solution (HBSS),

a medium poor in amino acids. Lack of CCM3 did not apparently affect

autophagy flux of hTERT-RPE1 cells when grown in completemedium, but

inhibited its stimulation by nutrient starvation (Fig. S5B, Supporting

information). When we monitored autophagy by counting the LC3B-

positive punctae per cell, we also found that nutrient starvation induced

significantlymore punctaewhenCCM3was present (Fig. S5C, Supporting

information). CCM3 did not affect the number of punctae in cells in

complete medium significantly, although in this case there was a trend

toward there being less punctae in CCM3-deficient cells. Further,

impairment of autophagy is a consequence of CCM3 silencing, because

enforcedexpressionofCCM3protein results in recoveryof autophagic flux

after nutrient starvation (Fig. S5D, Supporting information).We concluded

from the above experiments that lack of CCM3 impaired the entry of cells

into senescence througheffects on autophagy,which resulted in inhibition

of C/EBPb induction, and of the senescence-associated secretome.

Discussion

We show here that CCM3 is important for senescence in primary cells

and propose that the link between CCM3 and senescence is its

involvement in autophagy and TASCC formation, which are essential for

the induction of the transcription factor C/EBPb and the production of

senescence-associated cytokines. These results shed new light in the

actions of CCM3 at the cellular level and into the relations between

autophagy, C/EBPb, and senescence.

CCM3 is involved in autophagy, not only during senescence but also

after nutrient deprivation in postsenescent cells. As CCM3 is important

for certain aspects of membrane handling in the cell, such as Golgi

biogenesis and regulated secretion, we expect it to be involved in the

early stages of autophagosome formation. In fact, the ability of CCM3 to

bind to phosphatidylinositols on one end and kinases of the GCKIII family

on the other (Sugden et al., 2013; Zalvide et al., 2013), and its action

modulating the binding of the STK24 kinase to the secretory regulator

UNC13D (Zhang et al., 2013), may be important for its autophagy

promoting function.

CCM3 is also important in the induction of the transcriptional

regulator C/EBPb, both during senescence and in response to cytokines,

two responses that may be related given the importance of cytokine–

cytokine networks in the senescence process. The experiments also

suggest that C/EBPb expression depends upon autophagy induction, at

least in some settings. Because C/EBPb can also stimulate autophagy, as

it has also been found in other systems (Ma et al., 2011; Guo et al.,

2013), we propose there is a positive feedback loop between this

transcription factor and autophagy during senescence. C/EBPb has been

proposed to contribute to the cell cycle arrest in senescence by inducing

the expression of cdk inhibitors such as p15ink4b in models where this is

the principal inhibitor induced (Kuilman et al., 2008). Also, the senes-

cence-associated secretion has been shown to induce many of the

features of senescence in a paracrine manner (Acosta et al., 2013). Thus,

we hypothesize that lack of C/EBPb expression underlies the lack of

induction of senescence markers in CCM3 silenced cells and their

inability to growth arrest. This is supported by the rescue of the

senescence phenotype by enforced expression of C/EBPb.
Our results add to our knowledge of cellular functions of CCM3,

which has been implicated in cell death and in regulation of cell

proliferation. CCM3 overexpression has been shown to induce apopto-

sis, and its inhibition to protect from necrosis after oxidative stress; and

from apoptosis after serum deprivation, cycloheximide treatment, or

(A)

(B)

Fig. 5 CCM3 is necessary for C/EBPb in senescence and C/EBPb overexpression

rescues senescence in CCM3-deficient cells. (A) Induction of C/EBPb in senescence

depends on CCM3. C/EBPb mRNA (graph) and protein (right panel) were

determined in control (shNT) and shCCM3 HCAEC cells of population doubling 7

(PD7) or 12 (PD12) by qRT–PCR or Western blot. n = 4, *P = 0.029 vs. shNT. (B)

Rescue of C/EBPb induces senescence in late passage shCCM3 HCAEC cells. Lower

panel, left: Western blot of C/EBPb in shNT and shCCM3 cells transduced with

pLOC or pLOC-C/EBPb at population doublings 18. Upper panels:

Microphotographs showing SA-bGal activity in HCAEC shNT cells at population

doublings 18, and shCCM3 HCAEC cells transduced with pLOC or pLOC-C/EBPb.
Lower panel, right: quantification of SA-bGal-positive cells (mean � SEM), n = 3.

*P = 2.4 9 10�6. #P = 0.033.
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depletion of c-protocadherins (Chen et al., 2009; Lin et al., 2010; Louvi

et al., 2011; Fidalgo et al., 2012). We have not challenged our cells with

death inducing factors so that we do not observe cell death which CCM3

might inhibit, either by sub-2n DNA or nuclear morphology. Thus, we

propose that the senescent effect of CCM3 is independent of its

apoptosis regulating functions. We also do not see an effect on

proliferation in early passage endothelial cells. This is consistent with the

results reported for HuVEC cells, in which a marginal effect or no effect

at all of CCM3 depletion on proliferation is seen (Schleider et al., 2010;

Zhu et al., 2010), and opposed to the clear effect of CCM3 inhibition on

proliferation in astrocytes (Louvi et al., 2011).

Patients with a heterozygous mutation of CCM3 have a high

susceptibility to develop cerebral cavernous malformations, and it has

been shown recently that they can also develop meningiomas, which

places CCM3 as a possible tumor suppressor gene (Clark et al., 2013;

Riant et al., 2013). Despite intensive research in the last years, the

mechanism by which lack of CCM3 (or lack of CCM1 or CCM2) in

endothelial cells results in cavernous malformations is still the subject of

debate. Defects in cellular death, polarization, migration, adhesion, and

also in endothelial barrier functions, angiogenesis, and differentiation

have all been proposed as contributing to cavernoma development (for a

review, see Fischer et al., 2013). Our results add a new defect of

endothelial cells lacking a CCM gene, the inability to enter senescence.

While endothelial cell senescence is usually related to aging, senescent

cells can develop prematurely as a consequence of cell stress, and new

evidence suggests that senescence may also be a developmentally

regulated process that contributes to the disposal of surplus cells

(Munoz-Espin et al., 2013; Storer et al., 2013). Experiments designed to

analyze whether senescent endothelial cells appear in the brain under

specific circumstances, such as angiogenesis, are needed to further study

the possible relation between senescence and the development of

cavernous malformations.

Mutations of the CCM3 gene can also result in multiple meningio-

mas, and the ability of CCM3 to induce senescence is likely to contribute

to their development. This opens a new avenue of research on the

relation between CCM3, senescence, and meningioma development.

(A)

(B) (C) (D)

Fig. 6 CCM3 is important for autophagy induction during senescence. (A) TOR-autophagy spatial coupling compartment (TASCC) markers in control (shNT) and shCCM3

HCAEC cells as seen by immunofluorescence. Upper photographs show the costaining of p62/SQSTM1 and mTOR. Medium photographs show the costaining of the

lysosomal marker LAMP2 and mTOR. Lower photographs show the staining of the trans-Golgi marker TGN46 and the lysosomal marker LAMP2. The bar represents 20 lm.

(B) Western blot for LC3B in shNT and shCCM3 HCAEC cells at population doubling 7 and 18. Where indicated, cells were treated with autophagy inhibitor bafilomycin

100 nM for 1 h. LC3B-II levels were determined by fluorescent Western blot. Tubulin is shown as a loading control. Right panel: autophagic flux under each condition. (C) C/

EBPb expression induces autophagy in late passage CCM3-deficient cells. Western blot of LC3B-II in HCAEC cells transduced with pLOC or pLOC-C/EBPb. (D) Induction of

autophagy by mTOR inhibition upregulates IL-6, IL-8, and C/EBPb levels in endothelial cells deficient for CCM3. Cells were treated with Torin1 for 4 h and incubated with

bafilomycin 1 for the last hour where indicated. Accumulation of LC3B-II was quantified by Western blot. Levels of IL-6, IL-8, and C/EBPb mRNAs were then determined by

qRT–PCR after treatment with Torin1 250 nM for the indicated hours. n = 3, *P = 0.043, 5 9 10�6, and 0.044 vs. untreated cells.
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Experimental procedures

Antibodies and plasmids

The antibodies used in this study were as follows: TGN46 (Abcam;

ab16052); CCM3 (Acris; AP26023PU-N); BrdU (BD Biosciences; 555627),

Lamp-2 (BD Biosciences; 555803), p21CIP1 (F-5) (Santa Cruz; sc-6246),

p16INK4 (BD Biosciences; 511325), p62 (BD Biosciences; 610832);

GAPDH (Calbiochem; CB-1001); LC3B (Cell Signaling; 3868), mTOR

(Cell Signaling; 2983); H2AX (Ser139) (Millipore; 05-636); IL-8 (500-P28)

(PeproTech; 500-P28); NFjB p65 (Santa Cruz; sc-8008); p53 (DO-1)

(Santa Cruz; sc-126); C/EBPb (Santa Cruz; sc-150); and tubulin (T5168)

(Sigma-Aldrich). The secondary antibodies used were as follows: goat

anti-rabbit DyLightTM 800, goat anti-mouse DyLightTM 680 (Thermo

Scientific); goat anti-mouse Alexa 488, goat anti-rabbit Alexa 488, goat

anti-mouse Alexa 594, and goat anti-rabbit Alexa 546 (Molecular

Probes).

All plasmids were constructed using standard molecular biology

techniques.

Cell culture

HCAEC cells, hTERT-RPE1, and IMR90 cells were obtained from

European Collection of Cell Cultures and were grown as recommended.

Replicative senescence was induced in HCAEC cells by passaging them

every 2 days in MesoEndo Cell Growth Medium 212-500 (Cell

Applications, Inc.). Oncogene-induced senescence was induced in ER:

Ras-IMR90 by treatment with hydroxytamoxifen for 5 days. All exper-

iments where population doublings are specified refer to shCCM3 cells

of those population doublings or shNT cells cultured in parallel for the

same time.

shRNA-mediated knockdown and recovery

Stable cell populations with silenced CCM3 or control were obtained via

selection after lentiviral transduction using MISSION lentiviral nontarget

shRNA control transduction particles or MISSION lentiviral shRNA

transduction particles against human CCM3, from Sigma-Aldrich

(TRC), or by retroviral transduction where stated. shRNAs sequences

are available upon request. Lentiviral transduction of CCM3 and C/EBPb
was performed using plasmids from the Precision LentiORF Collection

(Thermo Scientific Open Biosystems). Transduced cells were then

selected by blasticidin.

Treatments

HCAEC cells were treated with doxorubicin (Sigma-Aldrich) 1 lM for

24 h. hTERT-RPE1 cells were treated HBSS (Invitrogen) for 4 h to trigger

autophagy. In the last hour, cells were treated with bafilomycin A1

(Calbiochem) 0.1 lM, or left untreated. HCAEC cells were grown in the

presence of recombinant human IL-8 or TNF (R & D Systems)

200 ng lL�1. mTOR activity was inhibited with Torin1 (Tocris) 250 nM.

IMR90 cells were treated with 4-hydroxytamoxifen (Sigma-Aldrich)

200 nM to activate Ras in IMR90 Ras:ER.

Immunofluorescence and image analysis

HCAEC and hTERT-RPE1 cells were fixed, permeabilized, blocked, and

incubated with primary antibodies overnight at 4 °C in PBS + 1% BSA.

DNA was stained with Hoechst 33342. Confocal images were collected

using a Leica confocal microscope equipped with an HCX PL APO CS

63x/1.32 objective. Leica LCS software was used for acquisition and

analysis. Images are combinations of optical sections taken in the z-axis

at 0.13-lm intervals. Immunofluorescences in IMR90 cells were analyzed

using the high-throughput InCell Analyzer 1000 (GE Healthcare)

following manufacturer’s instructions.

Western blot analysis

Western blotting was performed by standard procedures. Signals were

quantified with LI-COR Odyssey software.

Senescence-associated b-galactosidase assay

Cells were fixed and stained for SA-bGal by standard protocols.

Quantification was performed by two independent observers.

Quantitative RT–PCR

Primers for TaqMan analysis were from Roche Diagnostics: Samples were

normalized to ACTB and RPLP0. Primers for TaqMan analysis were from

Roche Diagnostics: ACTB (101125), C/EBPb (100269), IL-6 (113614), IL-8

(103136), LC3B (144005), and RPLP0 (101144).

ELISAs and conditioned media

ELISA kits to detect IL-6, IL-8, and TGF-b2 were from Gen-Probe

Diaclone. CM was prepared by washing with serum-free DMEM and

incubating in serum-free DMEM for 24 h. All ELISA data were

normalized to cell number.

Caspase-1 activity

Caspase-1 activity was measured with a caspase-1 fluorometric assay kit

(R & D systems) following manufacturer’s instructions.

Flow cytometry

Cell cycle distribution experiments were performed using a FACScan

flow cytometer (Becton & Dickinson, San Jose, CA, USA) and analyzed

using FLOWJO software.

Microarrays

RNA extracts from HCAEC cells were obtained using Trizol� reagent (Life

Technologies) and quantified with a NanoDrop 2000 (Thermo Scientific).

RNA quality was assessed using a RNA 6000 Nano Kit (Agilent

Biotechnologies). Microarrays were prepared using the following kits:

Ambion� WT Expression Kit (Life Technologies) and Human GeneChip�

Whole Transcript Terminal Labeling Expression Kit (Affymetrix). RNAs

were hybridized to GeneChip Human Gene 1.0 ST Arrays. Genes

differentially expressed between shNT p7 and p12 cells (senescence

genes) were ranked according to their relative expression between

shCCM3 and shNT p12 cells and used for gene set enrichment analysis

(Subramanian et al., 2005) against gene sets from KEGG pathways. The

microarray data from this publication have been submitted to the Gene

Expression Omnibus Data Repository and assigned the identifier

GSE54095.
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Statistical analysis

The statistical significance of all data obtained was assessed by Student’s

t-tests, or ANOVA testing followed by Bonferroni correction where

several comparisons were made, using SPSS software version 12.0.0. All

experiments where statistical significance is shown were repeated a

minimum of three times.
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Fig. S1 Phenotype of late passage CCM3 deficient endothelial cells.

Fig. S2 CCM3 depletion with unrelated shRNAs bypasses OIS in IMR90 cells.

Fig. S3 C/EBPb but not CCM3 mRNA levels are downregulated in

spontaneous meningiomas.

Fig. S4 Transcriptome analysis shows lack of induction of cytokine and

lysosome genes in late passage CCM3 depleted cells.

Fig. S5 CCM3 role in autophagy is independent of senescence.

Table S1. Senescence genes downregulated in the absence of CCM3.
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